Thèse soutenue

Méthodes numériques et adaptation de maillage pour des simulations rans fiables

FR  |  
EN
Auteur / Autrice : Victorien Menier
Direction : Frédéric AlauzetAdrien Loseille
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 23/11/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : INRIA Paris-Rocquencourt
Jury : Examinateurs / Examinatrices : Marco Picasso, Bruno Koobus, Jean-Frédéric Gerbeau, Dave Marcum, Gilbert Rogé

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse porte sur la prédiction haute-fidélité de phénomènes visqueux turbulents modélisés par les équations Reynolds-Averaged Navier-Stokes (RANS). Si l’adaptation de maillage a été appliquée avec succès aux simulations non-visqueuses comme la prédiction du bang sonique ou la propagation d’explosion, prouver que ces méthodes s’étendent et s’appliquent également aux simulations RANS avec le même succès reste un problème ouvert. Dans ce contexte, cette thèse traite des problématiques relatives aux méthodes numériques (solveur de mécanique des fluides) et aux stratégies d’adaptation de maillage. Pour les méthodes numériques, nous avons implémenté un modèle de turbulence dans notre solveur et nous avons conduit une étude de vérification et validation en deux et trois dimensions avec comparaisons à l’expérience. Des bons résultats ont été obtenus sur un ensemble de cas tests, notamment sur le calcul de la traînée pour des géométries complexes. Nous avons également amélioré la robustesse et la rapidité de convergence du solveur, grâce à une intégration en temps implicite, et grâce à une procédure d’accélération multigrille. En ce qui concerne les stratégies d’adaptation de maillage, nous avons couplé les méthodes multigrilles à la boucle d’adaptation dans le but de bénéficier des propriétés de convergence du multigrille, et ainsi, améliorer la robustesse du processus et le temps CPU des simulations. Nous avons également développé un algorithme de génération de maillage en parallèle. Celui-ci permet de générer des maillages anisotropes adaptés d’un milliard d’éléments en moins de 20 minutes sur 120 coeurs de calcul. Enfin, nous avons proposé une procédure pour générer automatiquement des maillages anisotropes adaptés quasi-structurés pour les couches limites.