Thèse soutenue

Emergence de comportements complexes par commande prédictive coordonnée en robotique humanoïde

FR  |  
EN
Auteur / Autrice : Aurélien Ibanez
Direction : Philippe BidaudVincent Padois
Type : Thèse de doctorat
Discipline(s) : Robotique
Date : Soutenance le 25/09/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris (2000-....)
Partenaire(s) de recherche : Laboratoire : Institut des systèmes intelligents et de robotique (Paris ; 2009-....)
Jury : Examinateurs / Examinatrices : Faïz Ben Amar, Christian Ott, Ludovic Righetti
Rapporteurs / Rapporteuses : Yoshihiko Nakamura, Bruno Siciliano

Résumé

FR  |  
EN

Le problème de commande motrice de systèmes exécutant des activités multi-objectifs et fortement contraintes est à résoudre pour permettre l’émergence de comportements performants et robustes ; l’élaboration de stratégies complexes de coordination motrice est critique pour en assurer les performances, faisabilité et sécurité.Bien que les approches de commande prédictive multi-objectifs permettent la définition de stratégies complexes et sous contraintes coordonnant l’activité motrice du système, leur coût de calcul est un inconvénient critique à leur application.Le travail présenté dans ce manuscrit vise à considérer des techniques de commande prédictive multi-objectifs pour des applications pratiques à la robotique humanoïde.Une architecture de commande est alors proposée sous la forme d’un contrôleur multi-objectif à deux niveaux, exploitant les avantages respectifs des formulations prédictive et instantanée.La contribution de ce travail prend la forme de la validation des avantages d’une telle approche dans son développement pour des défis pratiques, en simulation et implémentation temps-réel, sur les robots iCub et TORO ainsi que sur des modèles d’humain.Le coût de calcul du niveau prédictif est contenu par l’introduction de problèmes réduits, permettant la formulation avantageuse de problèmes de commande au travers de programmes en nombres entiers mixtes et de distributions séquentielles et parallèles.Malgré les approximations sur la dynamique du système au niveau prédictif, des comportements complexes émergent, exploitant des stratégies de coordination entre objectifs et contraintes conflictuels pour augmenter les performances et robustesse face à des perturbations.