Horloge réseau optique à mercure : de la spectroscopie Lamb-Dicke à une opération horloge stable
Auteur / Autrice : | Rinat Tyumenev |
Direction : | Sébastien Bize, Philip Tuckey |
Type : | Thèse de doctorat |
Discipline(s) : | Physique Quantique |
Date : | Soutenance le 23/07/2015 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Physique en Île-de-France (Paris ; 2014-....) |
Partenaire(s) de recherche : | Laboratoire : Systèmes de référence temps-espace (Paris ; 1998-....) |
Jury : | Président / Présidente : François Nez |
Examinateurs / Examinatrices : François-Xavier Esnault | |
Rapporteurs / Rapporteuses : Jan W. Thomsen, Martina Knoop |
Mots clés
Mots clés contrôlés
Résumé
Les deux premiers chapitres de la thèse présentent le principe d’un étalon de fréquence optique et les applications qui en découlent. Les principaux avantages métrologiques de l’horloge à réseau optique de mercure sont mis en avant, et quelques rappels théoriques d’interraction matière-rayonnement appliquée à la métrologie des fréquences sont effectués. Le montage expérimental est décrit de manière générale dans le chapitre 3, en insistant particulièrement sur les différentes sources laser utilisées. Les améliorations apportées au montage durant la thèse, font l’objet du chapitre 4. La première amélioration concerne le laser de refroidissement à 254nm. Mes travaux nous ont permis d’augmenter le temps d’interrogation des atomes, étape nécessaire pour une nouvelle mesure de stabilité de l’horloge et la caractérisation des effets systématiques. Afin d’augmenter ultérieurement la stabilité, une refonte de la cavité optique qui piège les atomes dans le réseau s’est révèlée indispensable. La nouvelle cavité permet de capturer 10 fois plus d’atomes grâce à une profondeur de piégage acrue d’un facteur 3, influant directement sur le rapport signal sur bruit. Enfin, les résultats expérimentaux obtenus sont décrits dans le 5ème et dernier chapitre. La spectroscopie sur fond noir d’un échantillon de mercure polarisé en spin avec une largeur de raie record de 3.3Hz nous a permis de mesurer une stabilité de 1.2x10 -15 à une seconde, soit presque un facteur 5 mieux par rapport à notre précédente mesure. Une caractérisation de plusieurs effets systématiques sur la transitions d’horloge (shift colisionnel, effet zeeman ou encore effet de la lumière de piégage) a été menée au niveau de 10-16.