Thèse soutenue

Le cycle biogéochimique du silicium dans l’Océan Austral par les approches isotopiques

FR  |  
EN
Auteur / Autrice : Ivia Closset
Direction : Damien Cardinal
Type : Thèse de doctorat
Discipline(s) : Biogéochimie marine
Date : Soutenance le 07/04/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences de l'environnement d'Île-de-France (Paris ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'océanographie et du climat : expérimentations et approches numériques (Paris ; 2005-....)
Jury : Président / Présidente : Alain Saliot
Examinateurs / Examinatrices : Karine Leblanc, Christine Klaas
Rapporteurs / Rapporteuses : Frank Dehairs, Philippe Pondaven

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La biogéochimie de l’Océan austral joue un rôle crucial dans la régulation de la production primaire marine globale en contrôlant la disponibilité des nutriments dans les eaux de surface des basses latitudes. Les variations du cycle du silicium (Si) sont nombreuses et son couplage avec les autres éléments n’est pas encore bien compris dans cet océan. Les résultats issus de deux approches isotopiques différentes suggèrent qu’une pompe de Si active est rapidement initiée au printemps par la transition d’un mode de production de silice biogénique régénéré à une production dite « nouvelle ». L’évolution saisonnière de la composition isotopique naturelle du Si (δ30Si) est principalement contrôlée par l’équilibre entre les rapports « dissolution/production » et « Si-supply/Si-uptake » qui découplent la dynamique isotopique des réservoirs de Si dissout et particulaire (respectivement DSi et BSi). Nous avons également utilisé les mesures de δ30Si pour retracer les flux saisonniers de BSi vers l’océan profond. Ces résultats confirment que le δ30Si n’est pas altéré durant la sédimentation des particules. L’évolution saisonnière du δ30Si a permis de quantifier pour la première fois certains processus contrôlant la production des diatomées et leur devenir, tels que les évènements de mélange alimentant la ML en nutriments, ou l’évolution saisonnière de la vitesse de sédimentation des particules. Ces résultats confirment que le δ30Si du DSi et de la BSi, combinés aux techniques isotopiques de mesure des flux dans la ML, sont des outils prometteurs dans l’amélioration de nos connaissances du cycle du Si et apportent des informations nouvelles à intégrer aux modèles biogéochimiques.