Thèse soutenue

Marches aléatoires branchantes, temps inhomogène, sélection

FR  |  
EN
Auteur / Autrice : Bastien Mallein
Direction : Zhan Shi
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 01/07/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de probabilités et modèles aléatoires (Paris ; 1997-2017)
Jury : Examinateurs / Examinatrices : Alain Rouault, Thomas Duquesne, Bernard Derrida
Rapporteurs / Rapporteuses : Jean Bérard, Yueyun Hu

Résumé

FR  |  
EN

On s'intéresse dans cette thèse au modèle de la marche aléatoire branchante, un système de particules qui évoluent au court du temps en se déplaçant et se reproduisant de façon indépendante. Le but est d'étudier le rythme auquel ces particules se déplacent, dans deux variantes particulières de marches aléatoires branchantes. Dans la première variante, la façon dont les individus se déplacent et se reproduisent dépend du temps. Ce modèle a été introduit par Fang et Zeitouni en 2010. Nous nous intéresserons à trois types de dépendance en temps : une brusque modification du mécanisme de reproduction des individus après un temps long ; une lente évolution de ce mécanisme à une échelle macroscopique ; et des fluctuations aléatoires à chaque génération. Dans la seconde variante, le mécanisme de reproduction est constant, mais les individus subissent un processus de sélection darwinien. La position d'un individu est interprétée comme son degré d'adaptation au milieu, et le déplacement d'un enfant par rapport à son parent représente l'héritage des gènes. Dans un tel processus, la taille maximale de la population est fixée à une certaine constante N, et à chaque étape, seuls les N plus à droite sont conservés. Ce modèle a été introduit par Brunet, Derrida, Mueller et Munier, et étudié par Bérard et Gouéré en 2010. Nous nous sommes intéressés dans un premier temps à une variante de ce modèle, qui autorise quelques grands sauts. Dans un second temps, nous avons considéré que la taille totale N de la population dépend du temps.