Thèse soutenue

Apprentissage automatique de fonctions d'anonymisation pour les graphes et les graphes dynamiques

FR  |  
EN
Auteur / Autrice : Maria Coralia Laura Maag
Direction : Patrick GallinariLudovic Denoyer
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 08/04/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Informatique, télécommunications et électronique de Paris (1992-...)
Partenaire(s) de recherche : Laboratoire : LIP6 (1997-....)
Jury : Examinateurs / Examinatrices : Bernd Amann, Maryline Laurent, Philippe Jacquet, Hakim Hacid
Rapporteurs / Rapporteuses : Fabrice Rossi, Benjamin Nguyen

Résumé

FR  |  
EN

La confidentialité des données est un problème majeur qui doit être considéré avant de rendre publiques les données ou avant de les transmettre à des partenaires tiers avec comme but d'analyser ou de calculer des statistiques sur ces données. Leur confidentialité est principalement préservée en utilisant des techniques d'anonymisation. Dans ce contexte, un nombre important de techniques d'anonymisation a été proposé dans la littérature. Cependant, des méthodes génériques capables de s'adapter à des situations variées sont souhaitables. Nous adressons le problème de la confidentialité des données représentées sous forme de graphe, données qui nécessitent, pour différentes raisons, d'être rendues publiques. Nous considérons que l'anonymiseur n'a pas accès aux méthodes utilisées pour analyser les données. Une méthodologie générique est proposée basée sur des techniques d'apprentissage artificiel afin d'obtenir directement une fonction d'anonymisation et d'optimiser la balance entre le risque pour la confidentialité et la perte dans l'utilité des données. La méthodologie permet d'obtenir une bonne procédure d'anonymisation pour une large catégorie d'attaques et des caractéristiques à préserver dans un ensemble de données. La méthodologie est instanciée pour des graphes simples et des graphes dynamiques avec une composante temporelle. La méthodologie a été expérimentée avec succès sur des ensembles de données provenant de Twitter, Enron ou Amazon. Les résultats sont comparés avec des méthodes de référence et il est montré que la méthodologie proposée est générique et peut s'adapter automatiquement à différents contextes d'anonymisation.