Méthodes non-paramétriques pour l'apprentissage et la détection de dissimilarité statistique multivariée
Auteur / Autrice : | Alix Lhéritier |
Direction : | Frédéric Cazals |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 23/11/2015 |
Etablissement(s) : | Nice |
Ecole(s) doctorale(s) : | École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....) |
Partenaire(s) de recherche : | Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Algorithms, Biology, Structure |
Jury : | Président / Présidente : Vicente Zarzoso |
Examinateurs / Examinatrices : Frédéric Cazals, Vicente Zarzoso, Gadiel Seroussi, Peter D. Grünwald, Guillaume Obozinski | |
Rapporteur / Rapporteuse : Gadiel Seroussi, Peter D. Grünwald |
Mots clés
Mots clés contrôlés
Résumé
Cette thèse présente trois contributions en lien avec l'apprentissage et la détection de dissimilarité statistique multivariée, problématique d'importance primordiale pour de nombreuses méthodes d'apprentissage utilisées dans un nombre croissant de domaines. La première contribution introduit la notion de taille d'effet multivariée non-paramétrique, éclairant la nature de la dissimilarité détectée entre deux jeux de données, en deux étapes. La première consiste en une décomposition d'une mesure de dissimilarité (divergence de Jensen-Shannon) visant à la localiser dans l'espace ambiant, tandis que la seconde génère un résultat facilement interprétable en termes de grappes de points de forte discrépance et en proximité spatiale. La seconde contribution présente le premier test non-paramétrique d'homogénéité séquentiel, traitant les données issues de deux jeux une à une--au lieu de considérer ceux-ci- in extenso. Le test peut ainsi être arrêté dès qu'une évidence suffisamment forte est observée, offrant une flexibilité accrue tout en garantissant un contrôle del'erreur de type I. Sous certaines conditions, nous établissons aussi que le test a asymptotiquement une probabilité d'erreur de type II tendant vers zéro. La troisième contribution consiste en un test de détection de changement séquentiel basé sur deux fenêtres glissantes sur lesquelles un test d'homogénéité est effectué, avec des garanties sur l'erreur de type I. Notre test a une empreinte mémoire contrôlée et, contrairement à des méthodes de l'état de l'art qui ont aussi un contrôle sur l'erreur de type I, a une complexité en temps constante par observation, le rendant adapté aux flux de données.