Thèse soutenue

Etude du paramagnétisme des actinides en solution

FR  |  
EN
Auteur / Autrice : Matthieu Autillo
Direction : Philippe Moisy
Type : Thèse de doctorat
Discipline(s) : Chimie séparative, matériaux et procédés
Date : Soutenance le 19/11/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Sciences Chimiques (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut de Chimie Séparative de Marcoule
Jury : Président / Présidente : Gilles Silly
Examinateurs / Examinatrices : Philippe Moisy, Gilles Silly, Michel Ephritikhine, Catherine Bessada, Hélène Bolvin, Jean-François Desreux, Claude Berthon
Rapporteurs / Rapporteuses : Michel Ephritikhine, Catherine Bessada

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Les propriétés physicochimiques des actinides (An) en solution restent difficiles à interpréter et plus particulièrement la différence de comportement entre An(III) et Ln(III). L'étude du comportement paramagnétique des cations actinide peut constituer une méthode « simple » et particulièrement intéressante qui permet de sonder les propriétés électroniques de ces éléments et obtenir des informations sur la nature de l'interaction ligand-actinide. L'objectif de ce travail de thèse est d'appréhender les propriétés paramagnétiques de ces éléments par des mesures de susceptibilité magnétique d'une part et l'étude des déplacements chimiques d'autre part.L'apport d'informations sur les propriétés électroniques des ions actinide pour une variété de degrés d'oxydation (+III, +IV, +V et +VI) a été réalisé par des mesures de susceptibilité magnétique en solution selon la méthode d'Evans. Contrairement aux éléments Ln(III), il n'existe aucun modèle spécifique décrivant clairement les propriétés magnétiques de ces ions en solution. L'acquisition de données de bonnes qualités étant nécessaires, l'influence des dispositifs expérimentaux et de la radioactivité de ces éléments a été analysée. Afin de décrire la structure des états électroniques de faible énergie pour ces cations, les résultats expérimentaux ont été confrontés à des calculs de chimie quantique à partir desquels l'influence du champ des ligands a été étudiée. Ces interprétations ont ensuite été appliquées à la variation des propriétés magnétiques des cations actinide lors de la complexation avec les anions chlorure et nitrate. Les informations sur les liaisons ligand-actinide peuvent être déduites de l'étude directe par RMN des déplacements chimiques de complexes d'actinide. En effet, la présence d'un ion paramagnétique au sein d'un complexe induit des modifications spectrales pouvant être séparées en deux composantes. L'une reliée au degré de covalence des liaisons de coordination et l'autre à la structure tridimensionnelle des complexes en solution. Le problème majeur de ce type d'étude réside dans la difficulté de distinguer les deux contributions. Afin de réaliser une telle étude, nous avons choisi de travailler avec les complexes d'actinide de l'acide dipicolinique (DPA). Dans un premier temps, une étude structurale (par DRX monocristal puis EXAFS) a été menée sur ces complexes formés avec les cations actinide aux degrés d'oxydation +III, +IV, +V et +VI pour caractériser avec précision leurs paramètres structuraux. Ensuite, les différentes méthodes de séparation des deux contributions mettant en jeu la spectroscopie RMN et éprouvées lors de l'étude des complexes de lanthanide (III) ont ensuite été appliquées aux éléments actinide. L'étude des déplacements paramagnétiques associée aux calculs de chimie quantique a permis de caractériser les propriétés magnétiques de ces cations. Contrairement aux études réalisées sur les ions Ln(III), une contribution de contact importante participe au déplacement paramagnétique des complexes d'An(III) et d'An(IV). A l'inverse, pour les cations actinyle, le déplacement paramagnétique des signaux RMN 1H est caractérisé par l'absence de contribution de contact. Cette particularité associée à la géométrie de ces ions a permis de caractériser précisément leurs propriétés magnétiques. Une application de ces résultats à l'étude de complexes formés avec le ligand TEDGA a pu être réalisée. Il apparait de cette étude que les informations obtenues par la description du comportement magnétique des actinides apportent une meilleure compréhension des propriétés physicochimiques de ces ions en solution.