Thèse soutenue

Modélisation non-linéaire, identification et contrôle des bioréacteurs à membranes

FR  |  
EN
Auteur / Autrice : Guilherme Araujo Pimentel
Direction : Alain RapaportAlain Vande Wouwer
Type : Thèse de doctorat
Discipline(s) : Mathématiques et modélisation
Date : Soutenance le 26/02/2015
Etablissement(s) : Montpellier en cotutelle avec Université de Mons
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (Montpellier)
Jury : Président / Présidente : Jean-Luc Vasel
Examinateurs / Examinatrices : Alain Rapaport, Alain Vande Wouwer, Jean-Luc Vasel, Isabelle Queinnec, Philippe Bogaerts, Anne-Lise Hantson, Marc Héran, Jérôme Harmand
Rapporteur / Rapporteuse : Isabelle Queinnec, Philippe Bogaerts

Mots clés

FR  |  
EN

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Cette thèse propose un modèle dynamique d'un bioréacteur à membrane submergée (sMBR) comprenant les comportements physiques et biologiques du processus. La filtration (aspect physique) est un modèle de résistances en série composé de la résistance réversible (liée au processus de formation d'un gâteau qui peut être enlevé par lavage de l'air) et de la résistance à colmatage irréversible. La fonction biologique est mise en œuvre par l'extension du modèle de chemostat simple avec un mécanisme de filtration.L'analyse du modèle comprend : l'analyse asymptotique, l'observabilité, la contrôlabilité et l'étude dynamique lente et rapide. Cette dernière, basée sur le théorème de Tikhonov, révèle la possibilité de simplifier la dynamique du modèle en découplant le processus en trois échelles de temps : l'évolution du colmatage à long terme (dynamique lente), la dégradation biologique ( dynamique rapide) et la formation du gâteau (dynamique ultrarapide). Comme les processus avec sMBRs sont relativement nouveaux, les données réelles de processus sont difficiles à obtenir. Ainsi, une installation pilote d'un système de recirculation de l'aquaculture avec une sMBR est conçue, construite et automatisée. Des mesures en ligne du processus, tels que la température, les matières en suspension (MES), l'ammoniac et les concentrations des effluents nitrates, la croisée de l'air et des débits d'effluents et la pression transmembranaire, sont réunis afin de valider le modèle proposé.Pour mettre en évidence le cadre général du modèle proposé, le même modèle est composé d'ensembles de données réelles obtenues à partir d'une installation de traitement des eaux usées à sMBR. Par conséquent, une identification de paramètre est organisée en trois étapes correspondant aux trois échelles de temps obtenues à partir de l'analyse analytique. L'identification de paramètre est implémentée en utilisant une fonction de coût aux moindres carrés pondérés et l'inverse de la Fisher Matrix Information (FIM), qui est utilisé pour obtenir les intervalles de confiance des paramètres calculées par une borne inférieure sur la matrice de covariance des estimations des paramètres. La capacité du modèle à prédire la pression transmembranaire et la dégradation biologique est prouvée par la validation du modèle et la validation croisée des résultats.Concernant le contrôle du processus, deux approches différentes sont utilisées : un contrôleur partielle linéaire basé sur la théorie de Lyapunov est conçu afin de stabiliser la production encrassement en actionnant dans la croisée de l'air et les flux d'effluents; une commande prédictive de modèle non linéaire (NMPC) est mise en œuvre afin d'optimiser le taux de production d'effluent et de maximiser la période entre deux opérations de lessivage chimique.Les résultats présentés dans cette thèse montrent l'importance des études analytiques sur des modèles afin de traiter la cognition et la simplification de modèle. Un autre point important est la structure du modèle dynamique simple avec une petite quantité de paramètres. Ce travail montre que cette structure est suffisante pour mettre en œuvre des stratégies de contrôle avancé sur les processus sMBR et même de prédire la dégradation biologique et la dynamique de croissance du colmatage.