Thèse soutenue

Modélisation et analyse mathématique de la dynamique du carbone organique dans le sol

FR  |  
EN
Auteur / Autrice : Alaaeddine Hammoudi
Direction : Oana IosifescuMartial Bernoux
Type : Thèse de doctorat
Discipline(s) : Mathématiques et Modélisation
Date : Soutenance le 08/12/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Institut Montpelliérain Alexander Grothendieck (Montpellier ; 2003-....)
Jury : Examinateurs / Examinatrices : Oana Iosifescu, Martial Bernoux, Michel Pierre, Philippe Souplet, Jérôme Balesdent, Alain Rapaport, Stéphane Cordier
Rapporteurs / Rapporteuses : Michel Pierre, Philippe Souplet, Jérôme Balesdent

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La compréhension du cycle de la matière organique du sol (MOS) est un outil majeur dans la lutte contre le réchauffement climatique, la préservation de la biodiversité ainsi que dans la consolidation de la sécurité alimentaire. Dans ce contexte, cette thèse porte sur la modélisation et l'analyse mathématique de modèles de la dynamique du carbone organique dans le sol.Dans le chapitre 2, nous avons étudié la robustesse et les propriétés mathématiques d'un modèle non linéaire (MOMOS). Nous avons montré que si les données sont périodiques nous obtenons l'existence d'une solution périodique attractive. Le chapitre3 est consacré à la validation mathématique d'un modèle spatialisé basé sur les équations de MOMOS, auxquels nous avons ajouté des opérateurs de diffusion et de transport. L'effet de l'hétérogénéité spatiale sur ce modèle est étudié dans le chapitre4 en utilisant des techniques d'homogénéisation. Suivant la méthodologie de Bosattaet Agren, nous dérivons un autre modèle à qualité continue, qui prend en compte l'effet de l'âge sur la décomposition de la MOS. Le chapitre 5 contient la validation mathématique et expérimentale du modèle. Enfin, nous considérons dans les chapitres6 et 7, un modèle incluant l'effet de la chemotaxie. Nous montrons l'existence, la positivité et l'unicité des solutions dans des domaines suffisamment réguliers de dimension inférieure ou égale à 3.