Modélisation et analyse mathématique de la dynamique du carbone organique dans le sol
Auteur / Autrice : | Alaaeddine Hammoudi |
Direction : | Oana Iosifescu, Martial Bernoux |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et Modélisation |
Date : | Soutenance le 08/12/2015 |
Etablissement(s) : | Montpellier |
Ecole(s) doctorale(s) : | École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Montpelliérain Alexander Grothendieck (Montpellier ; 2003-....) |
Jury : | Examinateurs / Examinatrices : Oana Iosifescu, Martial Bernoux, Michel Pierre, Philippe Souplet, Jérôme Balesdent, Alain Rapaport, Stéphane Cordier |
Rapporteurs / Rapporteuses : Michel Pierre, Philippe Souplet, Jérôme Balesdent |
Mots clés
Mots clés contrôlés
Résumé
La compréhension du cycle de la matière organique du sol (MOS) est un outil majeur dans la lutte contre le réchauffement climatique, la préservation de la biodiversité ainsi que dans la consolidation de la sécurité alimentaire. Dans ce contexte, cette thèse porte sur la modélisation et l'analyse mathématique de modèles de la dynamique du carbone organique dans le sol.Dans le chapitre 2, nous avons étudié la robustesse et les propriétés mathématiques d'un modèle non linéaire (MOMOS). Nous avons montré que si les données sont périodiques nous obtenons l'existence d'une solution périodique attractive. Le chapitre3 est consacré à la validation mathématique d'un modèle spatialisé basé sur les équations de MOMOS, auxquels nous avons ajouté des opérateurs de diffusion et de transport. L'effet de l'hétérogénéité spatiale sur ce modèle est étudié dans le chapitre4 en utilisant des techniques d'homogénéisation. Suivant la méthodologie de Bosattaet Agren, nous dérivons un autre modèle à qualité continue, qui prend en compte l'effet de l'âge sur la décomposition de la MOS. Le chapitre 5 contient la validation mathématique et expérimentale du modèle. Enfin, nous considérons dans les chapitres6 et 7, un modèle incluant l'effet de la chemotaxie. Nous montrons l'existence, la positivité et l'unicité des solutions dans des domaines suffisamment réguliers de dimension inférieure ou égale à 3.