Thèse soutenue

Caractérisation expérimentale et modélisation de la dispersion non-Fickiéenne dans les aquifères

FR  |  
EN
Auteur / Autrice : Filip Gjetvaj
Direction : Philippe Gouze
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre et de l'Univers
Date : Soutenance le 12/11/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement (Montpellier ; École Doctorale ; 2009-2015)
Partenaire(s) de recherche : Laboratoire : Géosciences (Montpellier)
Jury : Examinateurs / Examinatrices : Philippe Gouze, Branko Bijeljic, Michel Quintard, Anna Russian, Alberto Guadagnini, Séverin Pistre
Rapporteur / Rapporteuse : Branko Bijeljic, Michel Quintard

Résumé

FR  |  
EN

Ces travaux ont pour objectif de modéliser les mécanismes de dispersion dans les aquifères. L’hétérogénéité du champ de vitesse et le transfert de masse entre zones immobiles et mobiles sont deux origines possibles du comportement non-Fickéen, jusqu’alors étudiées de façon séparée. Notre hypothèse de départ est que ces deux mécanismes coexistent. Nos travaux comprennent : 1) des expériences de traçage sur colonnes de billes de verre et carottes de grès de Berea, en mode flow-through et push-pull, et 2) des simulations numériques réalisées à partir d’images en microtomographie RX segmentées en trois phases : solide, vide et microporosité. L’analyse du champ de vitesse (Stokes) montre l’importance de la discrétisation spatiale et de la prise en compte de la microporosité. Les résultats des simulations de transport (en utilisant la méthode time domain random walk) permettent de quantifier l’effet combiné de l’hétérogénéité du champ de vitesse et des transferts diffusifs dans la fraction micro-poreuse de la roche sur la dispersion non-Fickéenne, caractérisée à partir des courbes de restitution (BTC). Ces résultats sont cohérents avec les observations expérimentales. Nous concluons que ces deux effets doivent être pris en compte même si leur identification à partir de la forme des BTCs issues des traçages des milieux naturels (souvent caractérisés par de faible valeurs du nombre de Peclet ) reste difficile. Enfin, un modèle moyen macroscopique 1D est proposé dans le cadre d’une approche de type continuous time random walk dans laquelle des distributions spécifiques du temps de transfert des particules sont construites pour chacun des deux mécanismes de transport.