Thèse soutenue

Prévision de crues rapides par apprentissage statistique

FR  |  
EN
Auteur / Autrice : Thomas Darras
Direction : Séverin PistreAnne Johannet
Type : Thèse de doctorat
Discipline(s) : Hydrogéologie
Date : Soutenance le 02/11/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : Systèmes Intégrés en Biologie, Agronomie, Géosciences, Hydrosciences, Environnement (Montpellier ; École Doctorale ; 2009-2015)
Partenaire(s) de recherche : Laboratoire : HydroSciences (Montpellier)
Jury : Président / Présidente : Pierre Ribstein
Examinateurs / Examinatrices : Séverin Pistre, Anne Johannet, Pierre Ribstein, Michaël Aupetit, Pierre-Yves Jeannin, Roger Moussa
Rapporteurs / Rapporteuses : Michaël Aupetit, Pierre-Yves Jeannin

Résumé

FR  |  
EN

Le pourtour du bassin méditerranéen subit fréquemment des épisodes de pluie diluvienne à l’origine de crues rapides pouvant provoquer de nombreuses victimes et des dégâts considérables. Afin de faire face à ce phénomène, la prévision hydrologiques, permettant au Service Central d’Hydrométéorologie et d’Appui à la Prévision des Inondations de produire des vigilances crues, tient une place centrale. Durant les dernières décennies l’efficacité des réseaux de neurones formels pour la prévision des crues rapides a été montrée sur différents bassins versant. Les travaux menés au cours de cette thèse visent à développer une méthodologie générique de mise en œuvre de réseaux de neurones, testée sur les bassins versants du Gardon d’Anduze et du Lez à Lavalette, dont le comportement hydrodynamique est particulièrement non-linéaire. Afin de limiter l’incertitude des performances en prévision en fonction de l’initialisation du modèle, nous avons, dans un premier temps, proposé un modèle d’ensemble, basé sur la médiane à chaque pas de temps des sorties d’un nombre adéquat de modèles variant uniquement par leur initialisation. D’autre part, sur le bassin du Gardon d’Anduze, afin d’améliorer les performances des réseaux de neurones récurrents par l’introduction d’informations sur l’état du bassin versant avant et pendant l’épisode de crue, différentes variables susceptibles de représenter l’état du système ont été introduites successivement afin de sélectionner celles fournissant les modèles les plus performants. Sur le bassin karstique du Lez, dont la structure est très hétérogène, nous avons appliqué la méthode KnoX permettant d’estimer les contributions au débit à l’exutoire de quatre zones aux comportements hydrologique et hydrogéologique considérés comme homogènes. Ainsi les zones les plus contributives ont été identifiées ; ceci permettra dans un second temps de rechercher les variables les mieux à même de représenter l’humidité dans ces zones. Les performances des modèles développés montrent que la méthodologie générale de conception d’un modèle pluie-débit par réseaux de neurones s’adapte de manière satisfaisante aux deux bassins cibles dont les fonctionnements hydrologiques et hydrogéologiques sont pourtant très différents. Certaines pistes de progrès restent à investiguer parmi lesquelles l’amélioration de l’information d’état est prépondérante.