Thèse soutenue

Rôle des glaces interstellaires dans la complexité moléculaire de l’espace : modélisation par les méthodes de la chimie théorique

FR  |  
EN
Auteur / Autrice : Pierre Ghesquière
Direction : Dahbia TalbiTzonka Mineva
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 04/11/2015
Etablissement(s) : Montpellier
Ecole(s) doctorale(s) : École doctorale Information, Structures, Systèmes (Montpellier ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Univers et Particules de Montpellier (Montpellier)
Jury : Président / Présidente : Jérôme Pety
Examinateurs / Examinatrices : Dahbia Talbi, Tzonka Mineva, Jérôme Pety, Olivier Parisel, Marie-Christine Bacchus-Montabonel, Patrice Theulé, Jean-Christophe Loison
Rapporteurs / Rapporteuses : Olivier Parisel, Marie-Christine Bacchus-Montabonel

Résumé

FR  |  
EN

Les glaces du milieu interstellaire sont invoquées comme l'une des origines de la formation de molécules organiques complexes dans l'espace. En effet, elles constituent un support catalytique pour des réactions chimiques et pourraient ainsi expliquer la formation de molécules d'intérêt prébiotique. Toutefois, en raison de la faible température des milieux considérés, la vitesse de la réaction est contrainte par le déplacement des différentes réactifs l'un vers l'autre. L'objectif de cette thèse est donc de traiter la réactivité et la diffusion de molécules simples dans les glaces interstellaires. Je présente dans cette thèse les résultats de l'étude de la réaction entre le dioxyde de carbone et l'ammoniac dans les glaces interstellaires. Cette étude a été effectuée au Laboratoire Univers et Particules de Montpellier ; elle combine différentes méthodes de la chimie théorique et confronte les résultats avec ceux issus d'expériences que j'ai réalisées au Laboratoire de Physique des interactions Ioniques et Moléculaires de l'Université d'Aix-Marseille. Dans une première partie, des simulations de dynamique moléculaire classiques sont employées pour simuler un modèle de glace amorphe basse densité. Ce modèle est utilisé pour simuler la trajectoire de petites molécules (NH3, CO, CO2, H2CO) dans cette glace et en déduire des coefficients de diffusion à différentes températures. Ces résultats sont comparés à des résultats expérimentaux de diffusion du dioxyde de carbone ce qui valide la méthode théorique utilisée et permet de suggérer un mécanisme pour ce processus de diffusion. Dans une deuxième partie, la réaction entre le dioxyde de carbone et l'ammoniac est traitée dans le cadre de la théorie de la fonctionnelle densité par une approche « super-molécule ». Dans cette approche, le profil d'énergie et le mécanisme de la réaction dans des complexes moléculaires xNH3:CO2:yH2O sont étudiés. Deux produits de la réaction sont localisés : le carbamate d'ammonium et l'acide carbamique. La barrière d'énergie de la réaction obtenue est similaire à celle obtenue expérimentalement, et le carbamate d'ammonium est confirmé comme produit majoritaire de la réaction. Le profil d'énergie obtenu par cette approche « super-molécule » est ensuite étudié par dynamique moléculaire ab initio contrainte et le profil d'énergie libre est calculé par la méthode d'Intégration Thermodynamique. Cette approche confirme la forme générale du profil d'énergie et met en évidence un fort effet entropique du réseau d'eau. Je dresse finalement des conclusions sur les plans méthodologiques et astrochimiques permettant d'inscrire ma thèse dans des perspectives futures, notamment en incluant les barrières d'énergie de diffusion et de réaction, dans des modèles astrochimiques prenant en compte directement les réactions chimiques dans les glaces interstellaires.