Thèse soutenue

Résistance du radius humain distal soumis à un chargement représentatif d’une chute : étude expérimentale et numérique

FR  |  
EN
Auteur / Autrice : Edison Zapata
Direction : David MittonHélène Follet
Type : Thèse de doctorat
Discipline(s) : Biomécanique
Date : Soutenance le 02/12/2015
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Biomécanique et Mécanique des Chocs
Jury : Président / Présidente : Pascal Laugier
Examinateurs / Examinatrices : David Mitton, Hélène Follet, Jean-Baptiste Pialat
Rapporteurs / Rapporteuses : Lalaonirina R. Rakotomanana, Bert Van Rietbergen

Résumé

FR  |  
EN

Les fractures de fragilité représentent un problème de santé publique pour les personnes âgées. L'évaluation de la résistance osseuse et du risque de fracture par la méthode de référence (absorption bi-photonique à rayons X, DXA) est limitée. Les micro-modèles en éléments finis (µFEM) ont montré de meilleures prédictions de la résistance osseuse, mais on ne peut confirmer qu’ils améliorent l’estimation du risque de fracture par rapport à la DXA. L'objectif de cette thèse était donc d'évaluer si la prédiction par simulation numérique pouvait être améliorée en prenant en compte des conditions réalistes de chargement. Tout d’abord, les conditions de chargement correspondant à une chute vers l’avant ont été reproduites sur 32 radius humain dans une expérimentation ex-vivo. Les résultats expérimentaux ont conduits à deux groupes : un fracturé et un non fracturé. Puis, la capacité de prédiction d’un modèle « ségment » (9 mm de radius distal) créé en utilisant un scanner à très haute résolution (High Resolution peripheral Quantitative Computed Tomography) a été évaluée. . Différentes configurations (axiale (configuration standard) et 5 non-axiales) ont été simulées. L’implémentation de chargement non-axial n’a pas amélioré la capacité de prédiction du modèle « segment ». Finalement, un modèle hétérogène du radius distal entier a été créé à partir d’un scanner clinique (Cone Beam Computed Tomography). Ce modèle a pris en compte les conditions d’une chute en termes d’orientation et de vitesse. Le modèle de radius distal entier a montré une meilleure prédiction de la charge à la rupture expérimentale que le modèle « segment ». Cette étude propose des données originales pour la validation de modèles numériques pour l’amélioration de la prédiction du risque de fracture