Comportement asymptotique des solutions des équations de Navier-Stokes stationnaires incompressibles
Auteur / Autrice : | Agathe Decaster |
Direction : | Dragos Iftimie |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 08/12/2015 |
Etablissement(s) : | Lyon 1 |
Ecole(s) doctorale(s) : | École doctorale en Informatique et Mathématiques de Lyon (Lyon ; 2009-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Camille Jordan (Rhône ; 2005-....) |
Jury : | Président / Présidente : Isabelle Gallagher |
Examinateurs / Examinatrices : Dragos Iftimie, Lorenzo Brandolese | |
Rapporteurs / Rapporteuses : Matthieu Hillairet, Peter Wittwer |
Mots clés
Résumé
Cette thèse traite de l'étude des équations de Navier-Stokes stationnaires incompressibles et, plus précisément, le comportement quand x→∞ de ses solutions. On étudie la situation dans différents types de domaines non bornés en supposant une condition de nullité à l'infini. On regarde d'abord la dimension 3, dans lequel on sait que si le terme de force décroît très vite à l'infini, le comportement asymptotique est donné par les solutions de Landau, qui sont homogènes de degré -1. On généralise donc ce résultat à des termes de force petits dont le comportement asymptotique est donné par un terme avec l'homogénéité correspondante, c'est-à-dire de degré -3. Pour cela, on trouve une condition nécessaire et suffisante qui est que la partie homogène du terme de force soit de moyenne nulle sur la sphère. Pour finir, on généralise ce résultat au cas d'un domaine extérieur. Dans le cas d'un demi-espace, on va plus loin en montrant que si le terme de force décroit assez à l'infini on obtient des solutions décroissant comme 1/|x|2 à l'infini et on trouve une expression explicite du terme dominant. On peut aussi montrer le même type de résultat que dans l'espace entier avec un terme de force en 1/|x|3 mais la condition de moyenne nulle sur la sphère disparaıt. Dans l'étude de la dimension 2 dans le plan tout entier, on se rend compte que les choses sont plus compliquées. D'abord, pour les solutions homogènes, on arrive à trouver les conditions pour que, si le terme de force est suffisamment petit, on obtienne l'existence de solution qui forment alors une famille à deux paramètres. Mais en leur imposant la restriction d'avoir un flux nul sur le cercle unité, on obtient une famille avec un paramètre seulement. Enfin on étudie les solutions non homogènes, mais pour cela on doit supposer certaines conditions de symétrie sur les données. On trouve alors, pour des termes de force décroissant très vite à l'infini, des solutions en 1/|x|3 et on obtient une formule explicite pour le terme principal de leur développement asymptotique. Ce résultat se généralise aussi au cas d'un domaine extérieur et pour finir, dans ce cadre symétrique, on trouve un résultat analogue au cas de la dimension 3 pour des termes de force qui décroissent en 1/|x|3 à l'infini