Thèse soutenue

Quelques développements combinatoires autour des groupes de Coxeter et des partitions d'entiers

FR  |  
EN
Auteur / Autrice : Mathias Pétréolle
Direction : Frédéric Jouhet
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 25/11/2015
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale InfoMaths (Lyon ; 2009-....)
Partenaire(s) de recherche : Laboratoire : Institut Camille Jordan (Rhône ; 2005-....)
Jury : Président / Présidente : Mireille Bousquet-Mélou
Examinateurs / Examinatrices : Frédéric Jouhet, Boris Adamczewski, Vincent Pilaud
Rapporteur / Rapporteuse : Christian Krattenthaler, Guoniu Han

Résumé

FR  |  
EN

Cette thèse porte sur l'étude de la combinatoire énumérative, plus particulièrement autour des partitions d'entiers et des groupes de Coxeter. Dans une première partie, à l'instar de Han et de Nekrasov-Okounkov, nous étudions des développements combinatoires des puissances de la fonction êta de Dedekind, en termes de longueurs d'équerres de partitions d'entiers. Notre approche, bijective, utilise notamment les identités de Macdonald en types affines (en particulier le type C), généralisant l'approche de Han en type A. Nous étendons ensuite avec de nouveaux paramètres ces développements, grâce à de nouvelles propriétés de la décomposition de Littlewood vis-à-vis des partitions et statistiques considérées. Cela nous permet de déduire des formules des équerres symplectiques, ainsi qu'une connexion avec la théorie des représentations. Dans une seconde partie, nous étudions les éléments cycliquement pleinement commutatifs dans les groupes de Coxeter introduits par Boothby et al., qui forment une sous famille des éléments pleinement commutatifs. Nous commençons par développer une construction, la clôture cylindrique, donnant un cadre théorique qui est aux éléments CPC ce que les empilements de Viennot sont aux éléments PC. Nous donnons une caractérisation des éléments CPC en terme de clôtures cylindriques pour n'importe quel système de Coxeter. Celle-ci nous permet de déterminer en termes d'expressions réduites les éléments CPC dans tous les groupes de Coxeter finis ou affines, et d'en déduire dans tous ces groupes l'énumération de ces éléments. En utilisant la théorie des automates finis, nous montrons aussi que la série génératrice de ces éléments est une fraction rationnelle