Propriétés critiques des modèles de dimères, de chaînes de spin et d’interfaces
Auteur / Autrice : | Nicolas Allegra |
Direction : | Malte Henkel, Jean-Yves Fortin |
Type : | Thèse de doctorat |
Discipline(s) : | Physique |
Date : | Soutenance le 29/09/2015 |
Etablissement(s) : | Université de Lorraine |
Ecole(s) doctorale(s) : | EMMA - Ecole Doctorale Energie - Mécanique - Matériaux |
Partenaire(s) de recherche : | Laboratoire : Institut Jean Lamour (Nancy ; Vandoeuvre-lès-Nancy ; Metz) |
Jury : | Président / Présidente : Philippe Ruelle |
Examinateurs / Examinatrices : Grégory Schehr, Kay Jörg Wiese | |
Rapporteur / Rapporteuse : Jesper Jacobsen, Herbert Spohn |
Mots clés
Mots clés contrôlés
Résumé
L’étude réalisée dans cette thèse porte sur les phénomènes critiques classiques et quantiques. En effet, les phénomènes critiques et les transitions de phases sont devenus des sujets fondamentaux en physique statistique moderne et en théorie des champs et nous proposons dans cette thèse d’étudier certains modèles qui présentent un comportement critique, à la fois à l’équilibre et hors de l’équilibre. Dans la première partie de la thèse, certaines propriétés du modèle de dimères à deux dimensions sont étudiées. Ce modèle a été largement étudié dans les communautés de physique statistique et de mathématiques et un grand nombre d’applications en physique de la matière condensée existent. Ici, nous proposons de mettre l’accent sur des solutions exactes du modèle et d’utiliser l’invariance conforme afin d’avoir une compréhension profonde de ce modèle en présence de monomères et/ou en présence de bords. Les mêmes types d’outils sont ensuite utilisés pour explorer un autre phénomène important apparaissant dans les modèles de dimères et de chaînes de spin : le cercle arctique. Le but étant de trouver une description adéquate en termes de théorie des champs de ce phénomène, en utilisant des calculs exacts ainsi que de l’analyse asymptotique. La deuxième partie de la thèse concerne les phénomènes critiques hors de l’équilibre dans le contexte des modèles de croissance d’interfaces. Ce domaine de recherche est très important de nos jours, principalement en raison de la découverte de l’équation Kardar-Parisi-Zhang et de ses relations avec les ensembles de matrices aléatoires. La phénoménologie de ces modèles en présence des bords est analysée via des solutions exactes et des simulations numériques, on montre alors que des comportements surprenants apparaissent proches des bords