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Chapter 1. Introduction

1.1 Introduction

A cooperative system is defined to be multiple dynamic entities that share information or tasks to
accomplish a common task. Some cooperative control systems might include: robots operating
within a manufacturing cell, unmanned aircraft in search and rescue operations or military
surveillance and attack missions. The term entity is most often associated with vehicles capable
of physical motion such as mobile robots, underwater vehicles, and aircraft, but the definition
extends to any entity concept that exhibits a time dependent behavior. The ability to maintain
the position of a group of autonomous vehicles relative to each other or relative to references
is referred as formation control. A team of manned or unmanned vehicles working together is
often more effective than a single agent acting alone in applications like surveillance, search
and rescue, perimeter security, and exploration of unknown and/or hazardous environments.
For example, a team of these vehicles each with a variety of sensors offers the opportunity
for increased sensor coverage when compared to a single mobile sensor or multiple stationary
sensors.

Formation control relates with the motion control of multiple vehicles to accomplish a common
task. The study of formation control is motivated by the advantages achieved by using a for-
mation of vehicles, instead of a single vehicle. The common unmanned vehicles would be a
variety of kinds of vehicles from on the ground, in the water to in the space. The formation
of vehicles may be constructed as centralized or decentralized control. In both schemes, the
communication and transition information keep a crucial key. In centralized control, a main
station is used to plan tasks for agents in formation to perform. This can be advantageous
because it has all information receiving from network so that the optimal tasks can be central-
ized and generated to achieve a global objective. However, centralized control requires more
power of computation and multi-directional information flow. In contrast, decentralized control
requires local information exchange between agents to achieve the control objective goal. Com-
paring with centralized control, the multi-directional information flow is divided to the agents
in the decentralized control. However, there usually exists delay in exchange information be-
tween agents. Several formation control approaches have been considered in the literature
such as leader-follower [AT13,BMF+11,BM02,EBOA04], behavior-based [BLH01,BSZX12], vir-
tual structure [CMSW11,BLH01,AT09], Geometric formation based on graph theory [ZK12], on
flocking [BVV11], and on swam aggregation [PAR05,HC08]. These approaches can be cataloged
into three main group [SHP04]: leader-follower, behavioral, and virtual structure.

The leader-follower approach ( [AT13, BMF+11, BM02, EBOA04]) uses several agents as lead-
ers and others as followers. The common task consists of forcing the followers tracking the
leaders. There are variety of successful publications using this approach for teams of mobile
robots [DL12, MS13], underwater vehicles [CS11, Sho15], and UAVs [YCLL08, RCC+14, AT13].
This approach ensures coordination maintenance if the leaders are disturbed but the desired
coordination shape can not be maintained if the followers are perturbed unless a feedback is
implemented [EH01].
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1.1. Introduction

The behavior-based approach consisting of prescribing several desired behaviors such as neigh-
bor tracking, collision and obstacle avoidance, and formation keeping is assigned for each indi-
vidual agent [Ark98]. This approach can naturally be used to design control strategies for robots
with multiple competing objectives. Moreover, it is suitable for large groups of robots, since it
is typically a decentralized strategy. A disadvantage of this method is that the complexity of
the dynamics of the group of robots does not lend itself for simple mathematical stability analy-
sis [LRH+08]. This approach has been employed in interesting applications applying for mobile
robots [CL98,LRH+08,LSZ14], underwater vehicles [SB00], and UAVs [CSW12,KK07,KKT09].
The flocking and swam aggregation can be cataloged in the behavioral group.

Virtual structure approach treats all the agents as a single entity, and is amenable to mathe-
matical analysis but has difficulties in controlling critical points. The application of this ap-
proach can be found in [Do11,SHK+11,Low14] for mobile robots, [Do12] underwater vehicles
, and [Low11,Do15] for UAVs.

The above approaches and applications of formation control consist of several issues in cooper-
ative control. Formation control for aerial vehicles is also relative with motion control of whole
group of vehicles to accomplish the common task and with motion control of each individual
vehicle. An autonomous underactuated quadrotor is an aerial vehicle which usually has three
to five fixed propellers or actuators. The quadrotor used in this thesis has four fixed propellers
and is one kind of VTOL UAVs. The formation control design for this kind of vehicles has been
developed in both theory and experiment. It can be classified into three layers. The first layer
is responsible for generating reference trajectories or creating a common task. Depending on
the formation control structure and approach, the suitable trajectory or task is formed. The
communication is extremely important to the success of the formation control task. The data re-
ceiving from sensors for common task and the data exchanging among formation can be used for
many purposes such as collision avoidance or collecting sampling data. The communication de-
lay problem in leader-follower formation of VTOL UAVs can be referred in [AT13]. The collision
avoidance based on the exchanging information among VTOL UAVs can be found in [Do15]. The
third layer contains individual quadrotors which are the most basic element of the formation. An
underactuated quadrotor has only four actuators when the degree of freedom to be controlled is
six. One can refer the difficulty in the control design for the underactuated vehicles in [DP09].
Since the quadrotor dynamics is underactuated and no general method exists to design efficient
autonomous navigation system for these vehicles. In fact, the position of quadrotor is modeled
in SE(3) and the Euler angles or quaternions are usually used to represent its attitude. The
singularity, using Euler angles for representing attitude, is a challenging problem when desiring
the global or semi-global results. Moreover, although the attitude describing in quaternions can
avoid the singularity in the model, it still also is a daresay problem to achieve the global results.
The control strategies have proposed in the literature including feedback linearization [Kha02],
backstepping [KKK95], slide-mode [Kha02], high gain [SDFC01] and nested saturation [Tee92]
method. Since the dynamics of quadrotor can be separated into two subsystems, the transla-
tional subsystem and the rotational subsystem. The rotational subsystem has three actuators
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with three degree of freedom to be controlled whereas the translational has only one actuator to
control for three remained degree of freedom. This mean that it can directly apply the control
technique to design control for the rotational subsystem while the coordinate transformation
techniques [OSM98,DP09] must be used for the translational subsystem.
The attitude controllers assume that the system attitude and angular velocity are accurately
known [WKD91, JKW95]. A number of authors also developed the attitude controller without
the system angular velocity measurements [Tay08, Tsi98]. To deal with the absence of angular
velocity measurements, an auxiliary system, lead filter, or attitude observer [Rob11], are used
to provide these values to the controller.
Position control for VTOL UAVs has been focused in several groups in the research community.
Due to the underactuated nature of VTOL UAVs, the system attitude must be used in order to
control the position and velocity of the system. The objective for this case is design control in-
puts such that the position and velocity errors comparing with the reference converging to zero.
The authors [MDTMC09] use a thrust vector, a function of the attitude and system thrust which
is associated with the system acceleration, to attempt this objective. In other cases, the au-
thors [Rob11] employ a thrust and attitude extraction algorithm to generate suitable thrust and
reference attitude for the rotational subsystem as the reference inputs. This algorithm makes
the control design process simpler. However, the heading angle of the vehicle is not concerned.
Thus, the problem of self-rotation around the vertical axis may be occurred. To overcome this
problem, the author [DP13] uses the standard backstepping control design technique and a com-
bination of Euler angles and quaternions to achieve the global results. However, the designed
control is quit complicated. It can be seen that the control design for VTOL UAVs is complicated
for a number of reasons, for instance, the coupling between two subsystems, the effect of exter-
nal disturbance, uncertainties of the dynamics, the singularities and requirement of achieving
the global results.

1.2 Thesis contributions and organization

The thesis consists of five chapters and two appendices. The contributions are presented two
main parts. The first part consists chapter 3 presenting two controllers for a single quadrotor
and introducing a new thrust and attitude extraction algorithm. The second part consists of
chapter 4. This part presents new results of formation control for multiple quadrotors where the
thrust and attitude extraction is embedded in the designed controllers.
The thesis is organized as follows:

• Chapter 1 presents an overview of formation control, formation control for VTOL UAVs,
control of a single VTOL UAV, and summary of contributions of the thesis.

• Chapter 2 provides an overview of the mathematical background used in development and
analysis of the control laws. The basic equations of motion of an underactuated quadrotor
and of multiple quadrotors are described in the form of Euler angles and quaternions. It
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also introduces some other mathematical tools such as projection operation, smooth and
smooth step function, and an adaptive controller for second order system.

• Chapter 3 contains two controllers for a single quadrotor, one using Euler angles and
one employing quaternions. By using conversion between Euler angles and quaternions, a
thrust and attitude extraction algorithm is generated. This algorithm is embedded in the
formation controller in the next sections.

• Chapter 4 consists of some formation controllers. In this chapter, two formation control
design approaches are presented. The first approach uses the virtual structure to develop
three formation controllers and the second approach employs the leader-follower com-
bining with virtual structure to expand two adding formation controllers. The collision
avoidance function based on the smooth step function and pairwise smooth step function
is embedded in the controller to avoid collision among quadrotors and obstacles.

• Chapter 5 provides a summary of the work in the thesis and discusses some research areas
in the future.

• Appendix 1 and 2: consists of some proof of lemma and theorem in the thesis.
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Chapter 2. Mathematical Preliminaries

In this chapter we review some of the mathematical background that is used in the development
and analysis of the control and estimation laws. The equations of motion for a single quadrotor
and for multiple quadrotors are presented in Section 2.1. Some preliminary results used in
the control design and stability analysis are illustrated in the next sections such as projection
operation, backstepping controller, saturation functions, smooth step function, and pairwise
collision avoidance functions.

2.1 Equations of motion of quadrotor

To represent the position and orientation of a quadrotor, we use two reference frames:

• Inertial or fixed to earth frame E: A frame rigidly attached to a position on the Earth in
NED coordinates (NED: North-East-Down coordinate system: Refers to the right-handed
frame where the x axis is directed towards North, y axis is directed towards the East, and
the z axis is directed downwards to the Earth).

• Body fixed frame B: A frame which is rigidly attached to the quadrotor where the origin
of the body fixed frame is coincident with the center of mass of the quadrotor. The x axis
is directed towards the front of the quadrotor, the y axis is taken towards the right side,
and the z axis is directed downwards.

The quadrotor used to model in this section is an X-type fixed pitch copter. It has four fixed
propellers mounted on the respective electric motors as shown in Figure 2.1. With this config-
uration, the lift coefficient provided by each propeller is fixed. Therefore the change of angular
velocity of the motors is chosen to produce control input for the quadrotor. To avoid gyroscopic
effects and aerodynamic torques, the rotate direction of the motor one and three is installed
opposite with the motor two and four as shown in Figure 2.2. It can be seen from this figure
that there are no actuators on sway and surge. The actuators acting on heave, roll, pitch and
yaw are functions of fi, including total forces generated by four propellers, the torques created
by (f4 − f2), (f3 − f1), and (−f1 + f2 − f3 + f4), respectively.
The earth-fixed frame and a body-fixed frame are defined as described in Figure 2.2. To simplify
the effects of internal and external disturbances are omitted and the following assumptions are
employed.

Assumption 2.1.

- The quadrotor structure is rigid and symmetric.

- The gravity center of the rigid is coincided with the origin body-fixed frame coordinate.

- The propellers are rigid, the thrust and drag forces in each propeller are proportional to the
square of speed of the propellers (fi = KtG

2
k; k = 1, . . . , 4), and all propellers have the same

coefficient, Kt.
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2.1. Equations of motion of quadrotor

Figure 2.1: A X-type quadrotor.
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Figure 2.2: Quadrotor parameters.

With Assumption 2.1, the equations of motion of a quadrotor using the Newton-Euler approach
are illustrated as follows:

ṗ = v

v̇ = ge3 − T
mR

T
η (η)e3

η̇ = Kη(η)ω

Jω̇ = τ − S(ω)Jω

(2.1)9



Chapter 2. Mathematical Preliminaries

where the vector p = [x y z]T denotes the displacements of the center of mass and the vector
v = [v1 v2 v3]

T designates the velocities of the quadrotor coordinated in the earth-fixed frame.
The vector η = [φ θ ψ]T denotes the orientation vector with coordinates in the earth-fixed frame.
The vector ω = [p q r]T denotes the body angular velocity. The matrices RT

η (η), Kη(η), J and
S(ω) are given by

RT
η (η) =


CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ

CθSψ CφCψ + SφSθSψ −SφCψ + CφSθSψ

−Sθ SφCθ CφCθ

 (2.2)

Kη(η) =


1 SφTθ CφTθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

 (2.3)

J =


IX 0 0

0 IY 0

0 0 IZ

 (2.4)

S(ω) =


0 −r q

r 0 −p

−q p 0

 (2.5)

where RT
η (η) and Kη(η) are the transformation matrices. It can be seen from (2.3) that Kη(η)

is singular at θ = ±π
2 . S(·), C(·), and T (·) stand for sin(·), cos(·), and tan(·), respectively. S(x),

a skew-symmetric matrix of the vector x = [x1 x2 x3]
T ∈ R3, is defined in Definition 2.2. The

control vectors T and τ are given by

T =
∑4

k=1KtG
2
k

τ =


Ktl(G

2
4 −G2

2)

Ktl(G
2
3 −G2

1)

Kdl(−G2
1 +G2

2 −G2
3 +G2

4)


(2.6)

where l is the distance between the center of mass of the quadrotor and the center of a propeller.
Kt, Kd are thrust and drag coefficients. Gk is the angular velocity of propeller k, k = 1, . . . , 4.

Although attitude describing in Euler angles is easy to visualize, one drawback of this approach is
that Kη(η) in (2.3) is singular at θ = ±π

2 . Using unit-quaternion approach is a possible solution
to overcome this problem. The dynamic model for a quadrotor described by using quaternions
is given as follows
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2.1. Equations of motion of quadrotor

ṗ = v

v̇ = ge3 − T
mR

T
Q(Q)e3

Q̇ = KQ(Q)ω

Jω̇ = τ − S(ω)Jω

(2.7)

where the vector p = [x y z]T denotes the displacements of the center of mass and the vector
v = [v1 v2 v3]

T denotes the velocities of the quadrotor coordinated in the earth-fixed frame.
The orientation of the quadrotor is presented by using the four-element unit quaternion Q =

[η qT ]T ∈ Q, where q = [q1 q2 q3]
T ∈ R3 and η ∈ R satisfy η2 + qTq = 1. Q is the set of unit-

quaternion defined by Q =
{
Q ∈ R× R3| ‖Q‖ = 1

}
. The quaternion product between two unit

quaternion, Q1 = [η1 q
T
1 ]T and Q2 = [η2 q

T
2 ]T , is defined by Q1 � Q2 = (η1η2 − qT1 q2, η1q2 +

η2q1+S(q1)q2). For a more complete description, it can be referred to [Shu93]. m and J ∈ R3×3

are the mass and inertia matrix of the quadrotor.

The transformation matrices RT
Q(Q) and KQ(Q) are given by

RT
Q(Q) = (η2 − qTq)I3×3 + 2qqT + 2ηS(q)

KQ(Q) = 1
2

 −qT

ηI3×3 + S(q)

 (2.8)

Noting that RT
Q(Q)RQ(Q) = I3×3, KT

Q(Q)KQ(Q) = 1
4I3×3, i.e., the dynamics (2.7) is singular-

free. In formation control, there are a number of quadrotors which are cooperated to obtain
the formation tasks. Each quadrotor in the group has its own dynamics and can exchange its
information with the others. The equations of motion of a quadrotor in the formation can be
expanded from the dynamics (2.7) for the quadrotor i as in (2.9). The parameters of quadrotor
i are shown in Figure 2.3. In this figure, OEe1e2e3 is the earth-fixed frame and Obie1bie2bie3bi

is the body-fixed frame whose origin coincides with the center of gravity. As such, equations of
motion of the quadrotor i can be described as follows:

ṗi = vi

v̇i = ge3 − Ti
mi
RT
Q(Qi)e3

Q̇i = KQ(Qi)ωi

Jiω̇i = τi − S(ωi)Jiωi

(2.9)

where the vector pi = [xi yi zi]
T denotes the displacements of the center of mass and the vector

vi = [v1i v2i v3i]
T denotes the velocities of the quadrotor i coordinated in the earth-fixed frame.

The orientation of the quadrotor i is presented by using the four-element unit quaternion Qi =

[ηi q
T
i ]T ∈ Q, where qi = [q1i q2i q3i]

T ∈ R3 and ηi ∈ R satisfy η2i + qTi qi = 1. mi and Ji ∈ R3×3
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Figure 2.3: Parameters of quadrotor i.

are the mass and inertia matrix of the quadrotor i.

The transformation matrices RT
Q(Qi) and KQ(Qi) are given by

RT
Q(Qi) = (η2i − qTi qi)I3×3 + 2qiq

T
i + 2ηiS(qi)

KQ(Qi) = 1
2

 −qTi

ηiI3×3 + S(qi)

 (2.10)

where RT
Q(Qi)RQ(Qi) = I3×3, KT

Q(Qi)KQ(Qi) = 1
4I3×3, i.e., the control vectors Ti and τi are

given by
Ti =

∑4
k=1KtiG

2
ki

τi =


Ktili(G

2
4i −G2

2i)

Ktili(G
2
3i −G2

1i)

Kdili(−G2
1i +G2

2i −G2
3i +G2

4i)


(2.11)

where li is the distance between the center of the quadrotor and the center of a propeller, Kti,
Kdi are thrust and drag coefficients and Gki is the propeller k speed of quadrotor i, k = 1, . . . , 4.
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2.2. Skew-Symmetric Matrix

2.2 Skew-Symmetric Matrix

The definition of the skew-symmetric matrix is illustrated as follows

Definition 2.1. Let x = [x1 x2 x3]
T ∈ R3 denotes a arbitrary vector. The skew-symmetric matrix

S(x) : R3 → R3 × R3 is given by

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (2.12)

Some useful properties of this matrix are given as follows

S(x)x = 03×1

S(x)T = −S(x)

S(x)2 = xxT − xTxI3×3

(2.13)

2.3 Smooth Saturation Functions

A definition of a smooth saturation function to be used in a smooth step function and in control
design later is described as follows.

Definition 2.2. The function σ(x) is said to be a smooth saturation function if it possesses the
following properties:

σ(x) = 0, σ(x)x > 0, ∀x ∈ R− {0},

(x− y)[σ(x)− σ(y)] ≥ 0, ∀(x, y) ∈ R2,

σ(−x) = −σ(x), | σ(x) |≤ 1, σ(x)
x ≤ 1

0 ≤ ∂σ(x)
∂x ≤ 1, ∀x ∈ R,

(2.14)

Some function satisfying the above properties include σ(x) = tanh(x) and σ(x) = x√
1+x2

. For
the vector x = [x1, ..., xn]T , we use the notation σ(x) = [σ(x1), ..., σ(xn)]T to denote the smooth
saturation function vector of x.

2.4 Smooth step function

This section gives a definition of a smooth step function followed by a construction of this
function. This function is to be embedded in a pairwise collision avoidance function to avoid
discontinuities in the control law in solving the collision avoidance problem.

13



Chapter 2. Mathematical Preliminaries

Definition 2.3. A scalar function h(x, a, b) is said to be a smooth step function if it is smooth and
possesses the following properties:

h(x, a, b) = 0, ∀x ∈ (−∞, a],

h(x, a, b) = 1, ∀x ∈ [b,∞),

0 < h(x, a, b) < 1 ∀x ∈ (a, b),

h′(x, a, b) > 0, ∀x ∈ (a, b),

(2.15)

where h′(x, a, b) = ∂h(x,a,b)
∂x , and a and b are constants such that a < b.

Lemma 2.1. Let the scalar function h(x, a, b) be defined as

h(x, a, b) =
f(τ)

f(τ) + f(1− τ)
, with τ =

x− a
b− a

, (2.16)

where f(τ) = 0 if τ ≤ 0 and f(τ) = e−
1
τ if τ > 0, with a and b being constants such that a < b.

Then the function h(x, a, b) is a smooth step function.

Proof. See [Do11].

2.5 Attitude and Thrust Extraction

In this section, a new attitude and thrust extraction using the conversion between Euler angles
and quaternions is calculated. This algorithm will be employed to develop the controller for a
single quadrotor and a formation of quadrotors in the next sections.

Lemma 2.2. Let F = T
mR

T
Q(Qd)e3 = [F1 F2 F3]

T ∈ R3, ψd is a heading angle reference and

Qd = [ηd q
T
d ]
T , then the solution for T and Qd is given by

T = m ‖F ‖

Qd =


C
αφ
2 C

αθ
2 C

αψ
2 + S

αφ
2 S

αθ
2 S

αψ
2

S
αφ
2 C

αθ
2 C

αψ
2 − C

αφ
2 S

αθ
2 S

αψ
2

C
αφ
2 S

αθ
2 C

αψ
2 + S

αφ
2 C

αθ
2 S

αψ
2

C
αφ
2 C

αθ
2 S

αψ
2 − S

αφ
2 S

αθ
2 C

αψ
2


(2.17)

where F 6= 0, αψ = ψd, αθ = arctan
(
CαψF1+SαψF2

F3

)
and αφ = arcsin

(
SαψF1−CαψF2

T

)
.

where S(·) and C(·) stand for sin(·), cos(·), respectively. ωd is the body angular velocity and is
calculated as follows

ωd =


1 0 −Sαθ

0 Cαφ SαφCαθ

0 −Sαφ CαφCαθ



α̇φ

α̇θ

α̇ψ

 (2.18)
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Proof. See Appendix A.1.

2.6 Projection Operator

To avoid the finite escape time in the adaptive controller, a projection operator is used. The
definition of it is shown as

˙̂
θ = proj (τ) =

 τ if Z ≤ 0 or Zθ̂τ ≤ 0,

0 if Z > 0 and Zθ̂τ > 0
(2.19)

where Z = ςm − θ̂, Zθ̂ = ∂Z/∂θ̂, ςm is a positive constant. Then the projection operator has
following properties:

|θ̂| ≥ ςm > 0,∀t ≥ t0 > 0,

proj(τ) is Lipschitz continuous

|proj(τ)| ≤ |τ |

(2.20)

Proof. See [KKK95].Appendix A2.

2.7 Adaptive Backstepping Tracking Controller

The quadrotor dynamics is separated into two individual subsystems after the thrust and at-
titude extraction algorithm is applied. Each subsystem has a form of a second order system.
The following adaptive backstepping tracking controller is developed and applied in the design
controller later.

Lemma 2.3. Consider the following second-order nonlinear system

ẋ1 = x2

ẋ2 = θ1u+ θ2ϕ(x)
(2.21)

where x1 and x2 are states, u is the control input, θ1 > 0 and θ2 are unknown constant parameters.
To globally asymptotically track a reference trajectory xd with bounded ẋd and ẍd, the following
control and update laws are used:

α2 = −k1x1e + ẋd

u = −k2x2e−x1e−θ̂2ϕ(x)+α̇2

θ̂1

˙̂
θ1 = proj(γ1x2eu)

˙̂
θ2 = γ2x2eϕ(x)

(2.22)

15



Chapter 2. Mathematical Preliminaries

where x1e = x1−xd, x2e = x2−α2; α2 is a virtual control of x2, θ̂1 ≥ ςm > 0, θ̂1 and θ̂2 are update
laws of θ1 and θ2, respectively. k1, k2, and ςm are positive constants. γ1 and γ2 are adaptive gains.

Proof. See Appendix A.2.

2.8 Stability Definitions

Through this work, the stability of equilibrium points is concerned. Stability of equilibrium
points relates directly with Lyapunov stability. The Lyapunov stability can be referred in [Kha02].
For convenience, some definitions and theorems of stability are represented. An equilibrium
point is stable if all solutions starting at nearby points stay nearby; otherwise it is unstable. It is
asymptotically stable if all solutions starting at nearby points not only stay nearby but also tend
to the equilibrium point as time approaches infinity.

Consider the autonomous system

ẋ = f(x) (2.23)

where f : D → Rn is a locally Lipschitz in x on D and D ⊆ Rn is a domain that contains the
origin x = 0.

Definition 2.4. The origin x = 0 is the equilibrium of (2.23) if

f(0) = 0 (2.24)

Definition 2.5. The equilibrium point x = 0 of (2.23) is

• stable if, for each ε > 0, the is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε,∀t ≥ 0 (2.25)

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0 (2.26)

Definition 2.6. The equilibrium point x = 0 of (2.23) is exponentially stable if there exist positive
constants c, k, and λ such that

‖x(t)‖ ≤ ‖x(t0)‖ e−λ(t−t0),∀t ≥ t ≥ t0,∀ ‖x(t0)‖ < c (2.27)

Theorem 2.1. Let x = 0 be an equilibrium point for (2.23) and D ⊆ Rn be a domain containing
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x = 0. Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}

V̇ (x) ≤ 0 in D
(2.28)

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0} (2.29)

then x = 0 is asymptotically stable.

Proof. See [Kha02].

Theorem 2.2. Let x = 0 be an equilibrium point for (2.23). Let V : Rn → R be a continuously
differentiable function such that

V (0) = 0 and V (x) > 0, ∀x 6= 0

‖x‖ → inf ⇒ V (x)→ inf

V̇ (x) < 0, ∀x 6= 0

(2.30)

then, x = 0 is globally asymptotically stable.

Proof. See [Kha02].

Theorem 2.3. Let x = 0 be an equilibrium point for (2.23). Let V : D → R be a continuously
differentiable function such that V (0) = 0 and V (x0) > 0 for some x0 with arbitrarily small ‖x0‖.
Let Br = x ∈ Rn|‖x‖ ≤ r denotes a ball of radius r > 0 and define a set U = {x ∈ Br|V (x) > 0},
and suppose that V̇ (x) > 0 in U . Then, x = 0 is unstable.

Proof. See [Kha02].

Lemma 2.4. (Barbalat’s lemma) Consider the function φ : R → R be a uniformly continuous
function on [0,∞). Suppose that lim

t→∞

∫ t
0 φ(τ)dτ exists and is finite. Then φ(t)→ 0 as t→∞.

Proof. See [Kha02].
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Chapter 3. Control Design for an underactuated quadrotor

Quadrotor is one kind of VTOL UAVs for a broad range of applications. Although there are
many kinds of quadrotors, it can classify into two classes: underactuated and full-actuated or
over-actuated quadrotor. The underactuated quadrotor usually has three to five fixed propellers
using as actuators for thrust and stationary whereas the full-actuated or over-actuated quadrotor
usually has equal or more than six actuators. With full-actuated and over-actuated quadrotor, it
can be directly applied the control design technique to develop the controller for these kinds of
quadrotor. For the underactuated quadrotor used in this section has four fixed propellers. The
difficulty in motion control of underactuated vehicles mentioned by author [DP09] is that it can
not directly applied the full-controller for this kind of vehicles because it totals loss of perfor-
mance and inability to meet the control objectives in any useful way. It is clear that obtain an
efficient attitude control and stabilization schemes is one of the most important tasks. The basic
motion tasks for air vehicles can be classified as follows: Point-to-point motion, Path-following,
Trajectory-tracking and path-tracking. The point-to-point motion task is a stabilization problem
for a (equilibrium) point in the state space. When using a feedback strategy, the point-to-point
motion task leads to a state regulation control problem for a point in the state space. In the
path-following task, the controller is given a geometric description of the assigned Cartesian
path. This information is usually available in a parameterized form expressing the desired mo-
tion in terms of a path parameter, which may be in particular the arc length along the path.
For this task, time dependence is not relevant because one is concerned only with the geometric
displacement between the air vehicle and the path. In the trajectory-tracking and path-tracking
tasks, the air vehicle must follow the desired Cartesian path with a specified timing law. Al-
though the reference trajectory/path can be split into a parameterized geometric path and a
timing law for the parameter, such separation is not strictly necessary. Often, it is simpler to
specify the workspace trajectory as the desired time evolution for the position of some represen-
tative point of the air vehicle. The trajectory-tracking and path-tracking problems consist then
in the stabilization to zero of the Cartesian errors using all the available control inputs. Attitude
control and stabilization for VTOL UAVs has been the focus of many researchers over past years.
Although there are a number of successful attitude controllers (refer [WKD91, TM06]), the po-
sition control of underactuated VTOL UAVs is more challenge than the attitude control problem
because of the lack of global results (see [PSH07,KS98]). In designing position control, the au-
thor in [PSH07] used vehicle orientation and thrust as control variables to stabilize the vehicle
position and then apply the backstepping method to design control input torque stabilizing the
attitudes. Another approach by using the angular velocity instead of the orientation, the au-
thor [MDTMC09] employed it as the intermediate control variables. The author in [AT10] uses
an extraction algorithm to provide necessary thrust and desired orientation of the aircraft from
an intermediate translational force. This algorithm provides nonsingular solutions and has been
used to develop the global controllers in many publications. However, this algorithm has a prob-
lem of self-rotation around the vertical axis. To deal with this issue, the author [DP13] employs
combination of Euler and quaternion method and uses the backstepping technique to design
control for a quadrotor in three dimension space. Both authors [AT10, DP13] have proposed a
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3.1. Trajectory-tracking control of a quadrotor

design system for VTOL UAVs achieving the global stability results.

In this chapter, Two controllers for an underactuated quadrotor are designed. The first controller
is described in the Euler angles and the second controller is illustrated in the unit-quaternion.
The purpose to design two these controllers is to point out some difficulties in design control for
an underactuated system and existed problems. New extraction algorithm using combination of
Euler angles and unit-quaternion is developed.

3.1 Trajectory-tracking control of a quadrotor

This section focuses to design control for an underactuated quadrotor following a predefined
path which satisfies the Assumption 3.1. The mathematical model is based on Euler angles
method and is prepared to develop a new attitude extraction algorithm used for control design
later. The proposed controller guarantees that stabilization and tracking errors converge to zero
asymptotically. Since the mathematical model of quadrotor is singularity in the second transfor-
mation matrix, it is easy to visualize and can avoid this issue with robust design approach. The
coordinate transformation calculated in the design controller satisfies the stabilization of the
translational dynamics and generates the thrust force and angular reference for design control
later. Lyapunov’s direct method and backstepping technique are also applied in control design.

3.1.1 Control objective

Before starting the control objective, we make the following assumptions:

Assumption 3.1. Assume that the reference position trajectory pd(t) = [xd(t) yd(t) zd(t)]
T and the

reference yaw angle ψd(t) are smooth and bounded such that:

sup
t∈R+

∥∥∥p(i)d ∥∥∥ ≤ εi, sup
t∈R+

∥∥∥ψ(j)
d

∥∥∥ ≤ εk (3.1)

where εi and εj are positive constants, i = 1, ..., 4, j = 1, 2, k = j + 4.

For more convenience, the mathematical model of a quadrotor in Euler angles, see Section 2.1,
is rewritten as

ṗ = v

v̇ = ge3 − T
mR

T
η (η)e3

η̇ = Kη(η)ω

Jω̇ = τ − S(ω)Jω

(3.2)

where all symbols in (3.2) are defined as in Section 2.1. Assuming that the predefined path
satisfies the Assumptions 3.1, the control objective is to design control inputs, T and τ , such that
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the position vector p(t) and the yaw angle ψ(t) of the quadrotor dynamics (3.2) asymptotically
track their reference trajectories pd(t) and heading angular ψd(t),

lim
t→∞

(p(t)− pd(t)) = 0

lim
t→∞

(ψ(t)− ψd(t)) = 0
(3.3)

3.1.2 Control Design

In this section we will use backstepping technique [Kha02, KKK95] to design control achieving
the Control Objective 3.1.1. The quadrotor dynamics (3.2) can be divided into two subsystems.
The first subsystem consists of two first equations for translational dynamics and the second sub-
system consists of two last equations for rotational dynamics. The control design includes two
steps. In the first step, the control input force for translational dynamics tracking the predefined
path is obtained. Unlike the standard application of backstepping method applied for design
control for an underactuated quadrotor, after the first step, a total force T satisfying the control
objective and a rotational reference ηd are generated. In the next step, the rotational reference
ηd are employed to design the control torque input τ to achieve the Control objective 3.1.1.

Step 1

In this step, the translational dynamics of (3.2) is considered. We will design a virtual control of
v to force p(t) to globally asymptotically track its reference trajectory pd(t). As such, we define
the tracking errors as follows:

pe = p− pd,

ve = v −αv
(3.4)

where αv is a virtual control of v. Substituting (3.4) into the first equation of (3.2) results in

ṗe = ve +αv − ṗd, (3.5)

To design the virtual control αv, we consider the following Lyapunov function candidate

V1 = 1
2p

T
e pe, (3.6)

which is positive definite and radially unbounded in pe. Differentiating both sides of (3.6) along
the solutions of (3.5) gives

V̇1 = pTe (ve +αv − ṗd) , (3.7)

which suggest that we choose the virtual control αv as follows

αv = −k1pe + ṗd, (3.8)
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where k1 is a positive constant. Then the time derivative of V1 becomes

V̇1 = −k1pTe pe + pTe ve, (3.9)

To prepare for the next step, we calculate v̇ by differentiating both sides of the second equation
of (3.4) along the solutions of (3.2) and (3.8) to obtain

v̇e = ge3 − F − α̇v, (3.10)

where F = T
mR

T
η (η)e3 is an intermediate control input force for the translational dynamics.

Unlike the standard backstepping method, for the next step, the stabilization of the orientation
in the rotational dynamics is controlled by a virtual control of η. In this section, we design the
intermediate control input F such that the tracking error, ve globally asymptotically converges
to zero. After that the control input T and the orientation reference are generated. To design
the intermediate control input F , consider the following Lyapunov candidate

V2 = V1 + 1
2v

T
e ve, (3.11)

Its time derivative is given by

V̇2 = −k1pTe pe + vTe (ge3 − F − α̇v + pe) , (3.12)

which suggests that we choose

F = k2ve + ge3 − α̇v + pe, (3.13)

where k2 is a positive constant. Then the derivative of Lyapunov candidate of V2 is

V̇2 = −k1pTe pe − k2vTe ve, (3.14)

To generate the input force T and the rotation reference αη, we assume that the transformation
matrix satisfies the control objective for the heading angle ψd then the intermediate control
input F can be expressed as follows:

Te3 = mRη(αη)F (3.15)

Since Rη
T (αη)Rη(αη) = I3×3, equation (3.15) yields

T = m
√
F TF (3.16)
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On the other hand, we expand the term Rη(αη)F in (3.15) by using e3 = [0 0 1]T to obtain αη.

CαθCαψF1 + CαθSαψF2 − SαθF3 = 0

[−CαφSαψ + SαφSαθCαψ]F1 + [CαφCαψ

+SαφSαθSαψ]F2 + SαφCαθF3 = 0

[SαφSαψ + CαφSαθCαψ]F1 + [−SαφCαψ

+CαφSαθSαψ]F2 + CαφCαθF3 = T

(3.17)

We choose αψ = ψd and calculate αφ and αθ depending on it. From the first equation of (3.17)
we have

αθ = arctan

(
CαψF1 + SαψF2

F3

)
(3.18)

Moreover, by multiplying the second equation of (3.17) with −cos(αφ) and the third equation
of (3.17) with sin(αφ) then adding them together, we obtain

αφ = arcsin

(
SαψF1 − CαψF2

T

)
(3.19)

Step 2

After first step, we obtain the input control force T in (3.16) and the rotation reference αη =

[αφ αθ αψ]T where αψ = ψd; αφ and αθ are expressed by (3.19) and (3.18). In the second step,
we first define the tracking errors for the rotational dynamics as follows

ηe = η −αη,

ωe = ω −αω
(3.20)

where αω is a virtual control of ω. Substituting (3.20) into the third equation of (3.2) results in

η̇e = Kη(η)(ωe +αω)− α̇η, (3.21)

To design the virtual control αω, we consider the following Lyapunov function candidate

V3 = 1
2η

T
e ηe, (3.22)

Differentiating both sides of (3.22) along the solutions of (3.20) gives

V̇3 = ηTe (Kη(η)(ωe +αω)− α̇η) , (3.23)

which suggest that we choose the virtual control αω as follows

αω = K−1η (η) (−k3ηe + α̇η) , (3.24)
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where k3 is a positive constant. Substituting (3.24) into (3.23) gives

V̇3 = −k3ηTe ηe + ηTeKη(η)ωe, (3.25)

To design the control input torque τ to stabilize ωe at the origin, differentiating both sides of
(3.20) along solutions of (3.24) and (3.2) yields

ω̇e = J−1τ − J−1S(ω)Jω − α̇ω, (3.26)

Consider the following Lyapunov function

V4 = V3 + 1
2ω

T
e ωe, (3.27)

Its time derivative gives

V̇4 = −k3ηTe ηe + ωTe
(
J−1τ − J−1S(ω)Jω − α̇ω +Kη(η)ηe

)
, (3.28)

which suggests that we choose the control input torque τ as

τ = J
(
−k4ωe + J−1S(ω)Jω + α̇ω −Kη(η)ηe

)
, (3.29)

where k4 is a positive constant. Then the derivative of Lyapunov candidate of V4 is

V̇4 = −k3ηTe ηe − k4ωTe ωe, (3.30)

Substituting control and virtual control from (3.8), (3.13), (3.24) and (3.29) into (3.5), (3.10),
(3.21) and (3.26), yields the closed loop system

ṗe = −k1pe + ve,

v̇e = −k2ve − pe,

η̇e = −k3ηe +Kη(η)ωe,

ω̇e = −k4ωe −Kη(η)ηe,

(3.31)

The control design has been completed. We summarize the results in the following theorem.

Theorem 3.1. Under Assumption 3.1, the control inputs consisting of (3.16) and (3.29) for
the quadrotor achieve the Control Objective 3.1.1. The position p(t) and yaw angle ψ(t) of the
quadrotor asymptotically track the reference trajectories pd(t) and ψd(t); lim

t→∞
(p(t)− pd(t)) = 0,

lim
t→∞

(ψ(t)− ψd(t)) = 0 and the closed loop system (3.31) is forward complete.

Proof. See Appendix B.1.
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3.1.3 Simulation Results

In this section, we illustrate the effectiveness of the proposed controller through a numerical
simulation. The quadrotor parameters for the simulation are taken from [EInE12] as follows:
m=1 kg, g = 9.81 kgm2, l = 0.15m, IX = 15.67 × 10−3 kgm2, IY = 15.67 × 10−3 kgm2;
IZ = 28.34×10−3 kgm2, Kt = 192.32×10−7Ns2, Kd = 4.003×10−7Nms2. The initial conditions
are taken as

p = [0 0 0]T ;v = [0 0 0]T ;η = [0 0 0]T ;ω = [0 0 0]T (3.32)

The reference trajectories are taken as

s = t,pd = [2.5sin(2s) 2.5cos(s) 5]T , ψd = t (3.33)

This reference path satisfies Assumption 3.1. The control gains are chosen as follows: k1 = 2,
k2 = 3, k3 = 1 and k4 = 1.

The simulation results are plotted as follows: the reference and real position trajectories are
plotted in Figure 3.1. The position tracking errors and attitude tracking errors are plotted in
Figure 3.2 and Figure 3.3. It can be seen from these figures that all tracking errors asymptotically
converge to zero. The control inputs, T and τ are illustrated in Figure 3.6
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Figure 3.1: Reference and real position trajectories pd and p.
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Figure 3.4: Linear velocity tracking errors.
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Figure 3.5: Angular velocity tracking errors.
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Figure 3.6: Thrust and torques.

3.1.4 Conclusion

A controller for an underactuated quadrotor asymptotically tracking a predefined path has been
presented. The quadrotor dynamics is divided into two subsystems, translational and rotational
subsystem. The tracking errors between the real and reference path in the translational subsys-
tem were achieved by the intermediate control input. This intermediate control input was used
to calculate and generate the input force and the rotation reference. After this step, the second
subsystem was stabilized directly by application of backstepping method. Although the quadro-
tor dynamics only describes in the simplest case where the disturbance of environment and the
change of quadrotor parameters are not considered, the separation in quadrotor dynamics is a
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based approach for employing and developing new controllers in next sections. The simulation
results demonstrated the effectiveness of the proposed controller.

3.2 Path-following control of a quadrotor

In this section, we focus to design control for an underactuated quadrotor following a predefined
path which satisfies the Assumption 3.1 under the effect of changing quadrotor parameters and
disturbance of environment. The proposed controller guarantees that stabilization and tracking
errors converge to zero asymptotically from any initial values. In comparison with the preceding
section, this section deal with the singularity issue in the transformation matrix by expanding
the model of quadrotor from the Euler angles form to the unit-quaternion form. Moreover, the
disturbances of changing environment and unknown parameters of an underactuated quadrotor
are also considered. The developed controller is based on the coordinate transformations which
employ the combination of Euler angles and unit quaternion via the attitude extraction algo-
rithm which generates force and unit quaternion reference for design control later, Lyapunov’s
direct method, and adaptive backstepping technique [KKK95].

3.2.1 Control objective

For more convenience, the mathematical model of a quadrotor, see Section 2.1, is recaptured
and expanded as

ṗ = v

v̇ = ge3 − J−11 TRT
Q(Q)e3 + dv

Q̇ = K(Q)ω

ω̇ = J−12 τ − J−12 S(ω)J2ω + dω

(3.34)

where dv ∈ R3 and dω ∈ R3 are unknown disturbance matrices, J1 and J2 ∈ R3×3 are unknown
mass and inertial matrices, all the other symbols in (3.34) are defined as in Section 2.1.

To solve the path-tracking problem, assuming that the predefined path satisfies the Assumptions
3.1 , the control objective is to design control inputs, T and τ , such that the position vector p(t)

and the yaw angle ψ(t) of the quadrotor dynamics (3.34) globally track their reference trajecto-
ries pd(t) and heading angular ψd(t) under the effect of unknown parameters and disturbance,

lim
t→∞

(p(t)− pd(t)) = 0

lim
t→∞

(ψ(t)− ψd(t)) = 0
(3.35)
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Chapter 3. Control Design for an underactuated quadrotor

3.2.2 Control Design

In this section we will use adaptive backstepping technique [KKK95] to design control and de-
velop a new extraction algorithm for a quadrotor. Like in the previous section, the quadrotor
dynamics (3.34) is separated into two subsystems. The first subsystem contains two first equa-
tions for translational dynamics and the second subsystem consists two last equations for rota-
tional dynamics. In the first step, the adaptive backstepping technique evolved in the Section 2.3
is applied to obtain the control input force for translational dynamics tracking the predefined
path. After this step, a new extraction algorithm using some conversions between Euler angles
and unit-quaternion to reject the self-rotation of quadrotor around its vertical axis to generate
a total force T and a unit-quaternion reference Qd which can be employed as the reference for
the second subsystem is applied. The attitude extraction algorithm is shown in Figure 3.7. In
the next step, the torque τ to force Q→ Qd is designed.

pd,

yd

System Attitude Q

T
Thrust and

Attitude
Extraction

Attitude
Controller

t

Qd
p

Figure 3.7: Attitude Extraction Algorithm.

Step 1

In this step, the translational dynamics of (3.2) is considered. We will design a virtual control of
v to force p(t) to globally asymptotically track its reference trajectory pd(t). As such, we define
the tracking errors as follows:

pe = p− pd,

ve = v −αv,
(3.36)

where αv is a virtual control of v. differentiating both sides of (3.36) and using the first subsys-
tem, the error dynamics are expressed as

ṗe = ve +αv − ṗd,

v̇e = ge3 − J−11 F + dv − α̇v
(3.37)

where F is an intermediate control input. It can be seen from (3.37) that it has the form of
(2.21) in which J1 and dv are unknown parameters. We can use the results of Lemma 2.3 to
design the control and update laws for the tracking errors (3.37) as
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3.2. Path-following control of a quadrotor

αv = −k1pe + ṗd

F = Ĵ1(k2ve + pe − α̇v + ge3 + d̂v)

˙̂J1 = (ĴT1 )−1proj(γv1v
T
e Ĵ1F )

˙̂dv = γv2ve

(3.38)

Noting that F = TRT
Q(Q)e3 and it can be expressed in the Euler angles form as F = TRT

η (η)e3.
Differing from standard backstepping application that the errors of η would be controlled by
a virtual control of η, we assume that the control input F forces the quadrotor tracking the
predefined path and heading angle ψd in ideal case. We define an orientation vector αQ =

[αφ αθ αψ]T in the earth-fixed frame and RT
η (αQ) is the transformation matrix (A.3) such that

RT
η (αQ) = RT

Q(Qd) where the combination of the transformation matrix RT
Q(Qd) and thrust

force T stabilizes the tracking error (3.37) at the origin. The αφ, αθ and αψ are the roll, pitch
and yaw angles, respectively. Applying Lemma 2.3 for the tracking error (3.37), we obtain the
thrust T and the reference unit-quaternion vector as follows:

T = ‖F ‖

Qd =


C
αφ
2 C

αθ
2 C

αψ
2 + S

αφ
2 S

αθ
2 S

αψ
2

S
αφ
2 C

αθ
2 C

αψ
2 − C

αφ
2 S

αθ
2 S

αψ
2

C
αφ
2 S

αθ
2 C

αψ
2 + S

αφ
2 C

αθ
2 S

αψ
2

C
αφ
2 C

αθ
2 S

αψ
2 − S

αφ
2 S

αθ
2 C

αψ
2


(3.39)

where
αψ = ψd,

αθ = arctan
(
CαψF1+SαψF2

F3

)
,

αφ = arcsin
(
SαψF1−CαψF2

T

)
,

(3.40)

The desired angular velocity is calculated as follows

ωd =


1 0 −Sαθ

0 Cαφ SαφCαθ

0 −Sαφ CαφCαθ



α̇φ

α̇θ

α̇ψ

 (3.41)

where ωd is the body angular velocity; S(·) and C(·) stand for sin(·), cos(·), respectively.

Step 2

In this step, the torque input, τ , will be designed. The unit-quaternion vector Qd is used as the
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Chapter 3. Control Design for an underactuated quadrotor

reference. We first define the following tracking errors

Qe = Q−1d �Q,
ωe = ω −αω,

(3.42)

where αω is a virtual control of ω; Qe = [ηe q
T
e ]T and ωe are attitude tracking and angular

velocity error vector, respectively.

Differentiating both sides of (3.42) yields

q̇e = G(ωe +αω − ωd)
ω̇e = J−12 τ − J−12 S(ω)J2ω + dω − α̇ω

(3.43)

where G = 1
2 (ηeI3×3 + S(qe)) and ωd can be obtained by using equation (3.41). Using Lemma

2.3 for the tracking error (3.43), the following update laws and controls are employed:

αω = −k3GTqe + ωd

τ = Ĵ2(−k4ωe −Gqe + α̇ω + S(ω)ω − d̂ω)
˙̂J2 = (ĴT2 )−1proj(γω1(q

T
e Ĵ2τ )

˙̂
dω = γω2ωe

(3.44)

From the above control design, we have the following closed loop system:

ṗe = −k1pe + ve

v̇e = −k2ve − pe − J̃−11 Fd + d̃v

q̇e = −k3GGTqe +Gωe

ω̇e = −k4ωe −Gqe + J̃−12 τ + d̃ω
˙̃J1 = −(J̃T1 )−1proj(γv1(v

T
e J̃1Fd)

˙̃dv = −γv2ve
˙̃J2 = −(J̃T2 )−1proj(γω1(q

T
e J̃2τ )

˙̃
dω = −γω2ωe

(3.45)

The control design has been completed. We summarize the results in the following theorem.

Theorem 3.2. Under Assumption in the section 3.2.1, the control and update laws consisting of
(3.38) and (3.44) for the quadrotor achieve the Control Objective 3.2.1. The position p(t) and
yaw angle ψ(t) of the quadrotor globally asymptotically track the reference trajectories pd(t) and
ψd(t); lim

t→∞
(p(t)− pd(t)) = 0, lim

t→∞
(ψ(t)− ψd(t)) = 0 and the closed loop system (3.45) is forward

complete.

Proof. See Appendix B.2.
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3.2. Path-following control of a quadrotor

3.2.3 Simulation Results

In this section, we illustrate the effectiveness of the proposed controller through a numerical
simulation. The quadrotor parameters for the simulation are taken from [EInE12] as follows:
m=1 kg, g = 9.81 kgm2, l = 0.15m, IX = 15.67 × 10−3 kgm2, IY = 15.67 × 10−3 kgm2;
IZ = 28.34×10−3 kgm2, Kt = 192.32×10−7Ns2, Kd = 4.003×10−7Nms2. The initial conditions
are taken as

p = [0 0 0]T ;v = [0 0 0]T ;Qi = [1 0 0 0]T ;ω = [0 0 0]T (3.46)

The reference trajectory are taken as

s = 0.5t,pd = [2.5sin(0.5s) 2.5cos(0.5s) 2]T , ψd = 0.5t (3.47)

This reference satisfies assumption (3.1). The control gains are chosen as follows: k1 = 1, k2 =

2, k3 = 5 and k4 = 2. The unknown parameters are taken as follows: dv = [.5+.2∗sin(rand); 1+

0.2 ∗ cos(rand); 1.5 + .2 ∗ sin(rand)], dω = [0.3 + 0.1 ∗ rand; 0.5 + 0.1 ∗ rand; 0.7 + 0.1 ∗ rand],
and after 10s J1 = 2J1. With these unknown parameters, the quadrotor used in simulation is
affected by uncertain case and external disturbance.
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Figure 3.8: Reference and real position trajectories pd and p.
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The simulation results are plotted as follows: the reference and real position trajectories are
plotted in Figure 3.8. The position tracking errors and attitude tracking errors are plotted in
Figure 3.9 and Figure 3.10. It can be seen from these figures that all tracking errors globally
asymptotically converge to zero. Unknown parameters are shown in Figure 3.12, 3.14 and 3.15.
Unlike the observer design approach that all the observers reach to the real values, the estimates
of disturbance and uncertainty via control update laws are combined with the energy function
to eliminate the tracking errors. The control inputs, T and τ are illustrated in Figure 3.16
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Figure 3.9: Position tracking errors.
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Figure 3.11: Linear velocity tracking errors.
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Figure 3.13: Angular velocity tracking errors.
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Figure 3.16: Thrust and torques.
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3.2.4 Conclusion

A global controller for tracking a predefined path was presented. By using combination of Euler
and unit-quaternion model, the singularity in the quadrotor dynamics and self-rotation of the
quadrotor are rejected. Uncertainty and external disturbances are solved by employing adaptive
backstepping method in which they are estimated as unknown parameters. The simulation
results demonstrated that the the proposed controller works well with changing of internal and
external disturbances.

3.3 Conclusion

Two controllers for an underactuated quadrotor have been developed. In the first controller,
a transformation coordinate is calculated from that a thrust force to stabilize the translational
subsystem is generated. Moreover, the orientation for the rotational subsystem used as a refer-
ence is also created. However, it has the singularity in describing the quadrotor dynamics in the
Euler angles. To overcome this problems, the quadrotor dynamics describing in unit-quaternion
is used in the second controller. Furthermore, a new extraction algorithm, using conversion
between Euler angles and quaternions to generate the total force thrust to stabilize the transla-
tional subsystem and to create the unit-quaternion reference which ideally tracks the heading
angle reference, is constructed. This new extraction algorithm is used to develop the controllers
for formation of quadrotors in the next chapter.

38



CHAPTER

4 Fomation control design for a group
of quadrotors

Contents
4.1 Obstacle avoidance functions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Pairwise Collision Avoidance Functions . . . . . . . . . . . . . . . . . . . 43

4.2 Controller 1 - Global formation tracking control . . . . . . . . . . . . . . . . 44

4.2.1 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Formation control design . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Controller 2 - linear velocity and disturbance observer . . . . . . . . . . . . 58

4.3.1 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2 Observer design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.3 Formation control design . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Controller 3 - Adaptive control . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Controller 4 - Leader-follower with limited sensing . . . . . . . . . . . . . . 91

4.5.1 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

39



Chapter 4. Fomation control design for a group of quadrotors

4.5.2 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.6 Controller 5 - Formation of second order system . . . . . . . . . . . . . . . 112

4.6.1 Control objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6.2 Control Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

40



4.1. Obstacle avoidance functions

The ability to maintain the position of a group of autonomous vehicles relative to each other
or relative to a reference is referred to as formation control. The study of formation control
is motivated by the advantages achieved by using a formation of vehicles, instead of a single
vehicle. It can be seen that a formation of vehicles each with a variety of sensors offers the
opportunity for increased sensor coverage when compared to a single mobile sensor or multiple
stationary sensors. The common unmanned vehicles would be a variety of kinds of vehicles from
on the ground, in the water to in the space. Each kind of environments has its own dynamic
modeling that would be concerned when designing control for these vehicles. The control design
for formation of vehicles can be centralized or decentralized. Centralized control uses a main
station that plan tasks for agents in formation to perform. This can be advantageous because
it has all information receiving from network so that the optimal tasks can be centralized and
generated to achieve a global objective. However, centralized control requires more power of
computation and multi-directional information flow. In contrast, a decentralized control requires
local information exchange between agents to achieve the control objective goal. Comparing
with centralized control, the multi-directional information flow is separated to the agents in the
decentralized control. However, there usually exists delay in exchange information between
agents. Several coordination control approaches have been considered in the literature such
as leader-follower [AT13, BMF+11, BM02, EBOA04], behavior-based [BLH01, BSZX12], virtual
structure [CMSW11, BLH01, AT09], Geometric formation based on graph theory [ZK12], on
flocking [BVV11], and on swam aggregation [PAR05,HC08].
In this chapter, all the quadrotor dynamics is described in unit-quaternion form. The extraction
algorithm developed in the previous chapter is applied to design control for formation of quadro-
tors. After an obstacle avoidance function is defined and constructed, the formation control in
five sections.

4.1 Obstacle avoidance functions

The collision avoidance approach can be divided into: 1) Global path planning, 2) Local collision
avoidance and 3) Combining both global and local collision avoidance. Global path planning
method usually attempts to find optimal paths to the target and check other vehicle’s dynamic
constraints when the environment (such as free-obstacle, static-obstacle and dynamic environ-
ment) is known in advance. Local collision avoidance usually deals with the static and dynamic
obstacles in its sensing range to evade from them and keep following the global target. It can be
seen that when solving collision problem, depending on the environment, the collision problem
can be split into three different problem layers. Collision avoiding 1) in the free-obstacle en-
vironment, 2) in the static-obstacle environment and 3) in the dynamic environment. To solve
this problem, the parameters of location or distance from the obstacles to the vehicle, size and
movement speed of obstacles relative with the vehicle position need to be determined. How-
ever, the location, size, kinetic and dynamics parameters of the vehicle also affect to the ability
to handle the collision problems. In particle, these values can be provided by sensors installed
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Chapter 4. Fomation control design for a group of quadrotors

on/out of vehicles such as GPS, RADAR, Laser units, IMU,... These values used as reference data
for control design can be directly taken from these data or combined with other algorithms to
increase the precise reference data. An example for this can be referred [CLH+05] in which the
distance from other vehicles and obstacles can be determined through the SLAM algorithms.

Many collision avoidance approaches such as Geometric approach, Grid-based approach and Ar-
tificial potential field approach. In the geometric approach, one of the straightforward approach
is based in a simple geometric space to solve the collision problem among vehicles. There are
some approaches in this area such as point of closest approach [POT08], collision cone ap-
proach [Muj09], and Dubins paths [STWZ10]. With the point of closed approach, based on
current vehicle speed, bearing and its future way-point, the miss distance vector between vehi-
cles is created. When the actual distance is less than the desired distance, both vehicles take a
avoiding action by turning along the miss distance vector in positive and negative direction to
extend the space between them. With collision cone approach, a circle around obstacles and
other vehicles are placed and two tangent lines from the center of vehicle to these circles form
the collision cone. If the path of vehicle in these cones, an avoiding algorithm based on the
velocity and bearing of vehicle is made to evade these obstacles. Geometric approach has sim-
ple and direct approach for solving collision problem. However, when the number of vehicles
increase, it need a lot of time to calculate for path planning and to check again and recalculate
for possible conflicts with other vehicles in its sense. In the grid-based approach, graph search
algorithms for collision-free path planning, based on grid approach and usually searching an
optimal trajectory between initial and goal target, are deployed in two steps: A map of the en-
vironment showing all possible ability for vehicle without collision is generated and a trajectory
for vehicle with a minimized cost function, typically with the shortest distant path, with dynamic
constraints or with the most economic issue, is deployed. Some popular technique examples for
this approach are A* search algorithm [TDY09] and probabilistic sampling based planners such
as [CLH+05]. This approach usually archives global and local result for path planning [LaV06]
and can be applied for 2D and 3D environment. In the artificial potential field approach, the
potential function is usually based on electric potential and applied for real time robot control.
It can be classified into: Artificial potential field (APF) methods and artificial intelligence (AI)
methods. Many existed AI methods relative to path planning based on artificial intelligence
tools such as fuzzy, neural network, genetic algorithm, evolutionary algorithm [RKPC02]. These
methods are connected with optimal algorithms for the best global path planning and relative to
complex calculation and time consuming. Motivating from the first public for avoiding collision
in [Kha85] , some other potential field approaches are illustrated by using artificial potential
field in [LF01], artificial force field, total field [SH03]. With these approaches, the path will be
generated safely and optimal when combining with AI approaches.

A plenty of collision avoidance approaches solving the global and local problem in path plan-
ning are reviewed in which some main methods mentioned above. It seems that probabilistic
approach and potential field are can be applied for real robots when resolving collision prob-
lem. It can be also seen that the collision avoidance is directly related to local problems, the
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4.1. Obstacle avoidance functions

distance from the position of the robot to the obstacle, the kinetic and the dynamic parameters
of the robot. There have been many theoretical models presented path planning for dealing with
obstacles and determine the trajectory that robot can be followed, but the problem is how to
measure the value of the distance from the obstacle to the robot in simulation. In particle, some
common sensors used in robotics and control as mentioned above provide the desired value for
control design.

The collision avoidance function used in this chapter is one kind of potential functions. The
definition of this function is described in the subsection 4.1.1.

4.1.1 Pairwise Collision Avoidance Functions

This section gives a definition of the pairwise collision avoidance function. This function will be
embedded in a potential function for the formation control design later.

Definition 4.1. Let βij with (i, j) ∈ N and i 6= j be a scalar function of αij , which is defined
in (4.3). The function βij is said to be a pairwise collision function if it possesses the following
properties:

(1) βij = 0, β′ij = 0, β′′ij = 0, ∀αij ∈ [α∗ij ,∞),

(2) βij > 0, ∀αij ∈ (0, α∗ij), β′ij < 0, ∀αij ∈ R,

(3) lim
αij→0

βij =∞, lim
αij→0

β′ij = −∞, lim
αij→0

β′′ij = −∞,

(4) βij is smooth, ∀αij ∈ (0,∞),

(4.1)

where β′ij =
∂βij
∂αij

, β′′ij =
∂2βij
∂α2

ij
, and α∗ij is a strictly positive constant satisfying the following

condition:
α∗ij ≤ αRij (4.2)

Remark 4.1. Property (1) implies that the function βij is zero when the quadrotors i and j are at
their desired locations or adequately far away from each other since the constant α∗ij satisfies the
condition (4.2). Property (2) implies that the function βij is positive definite when the quadrotors i
and j are sufficiently close to each other. Property (3) means that the function βij is equal to infinity
when a collision between quadrotor i and j occurs. Property (4) allows us to use control design and
stability analysis methods for continuous systems. Using the smooth function given in Definition
2.14, we can find many functions that satisfy all the properties listed in (4.1). The function βij is
defined in (4.3).

βij =
1− h(αij , aij , bij)

αij
(4.3)

where h(αij , aij , bij) is a smooth step function defined in Definition 2.3. The positive constants aij
and bij satisfy the following condition:

0 < aij < bij ≤ α∗ij (4.4)
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It can be directly verified that the function βij given in (4.3) possesses all the properties listed in
(4.1).

4.2 Controller 1 - Global formation tracking control

In this section, we focus to design control for a group of quadrotor following predefined paths
which satisfies the Assumption 4.2. The proposed controller guarantees that stabilization and
tracking errors converge to zero asymptotically from any initial values. The developed controller
is based on the coordinate transformations which employ the combination of Newton-Euler and
unit quaternion via the attitude extraction algorithm which has been presented in the preview
chapter. The Lyapunov’s direct method, and backstepping technique [KKK95] are also used to
design for the formation controller.

4.2.1 Control objective

The quadrotor dynamics i, described in Section 2.1, is rewritten as follows

ṗi = vi

v̇i = ge3 − Ti
mi
RT
Q(Qi)e3

Q̇i = KQ(Qi)ωi

Jiω̇i = τi − S(ωi)Jiωi

(4.5)

where i ∈ N, N is the set of all quadrotors in the group. All other symbols are defined in the
Section 2.1.

It can be seen from Figure 4.1, each quadrotor in the formation needs its reference trajectory
to track. The reference trajectory can be predefined or obtained from measurement data. Fur-
thermore, each quadrotor needs to communicate with other quadrotors in the group to perform
its cooperative mission. Thus, before starting the formation control objective we impose the fol-
lowing assumption on the reference trajectories, communication and initial conditions between
the quadrotor in the group:

Assumption 4.1.

1. The quadrotor i has a physical safety ball, which is centered at the point pi and has a radius
αSi , and has a communication ball, which is centered at the point pi and has a radius αRi , see
Figure 4.1. Let us define

pij = pi − pj

vij = vi − vj

αij = pTijpij

(4.6)
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4.2. Controller 1 - Global formation tracking control

Then the distance between quadrotor i and quadrotor j, αij , is such that

αij > (αSi + αSj ) (4.7)

for all i, j ∈ N, i 6= j

2. The quadrotor i and j can communicate with each other and exchange their states, if they
satisfy the following condition:

αij ≤ min(αRi , α
R
j ) (4.8)

3. Let pod is a based point on the predefined trajectory and the desired formation structure be
formed by the vectors li, i ∈ N, coordinated at pod. The desired velocity vector l̇i is bounded in
norm, and specifies a desired change of the desired formation shape. The design of l̇i depends
on a specific application.

4. the quadrotor i and j can measure their relative position if they are in their communication
region. In the dynamical environment, it also assumes that the minimum distance from
quadrotor i to obstacles can be measured.

5. At the initial time t0 ≥ 0. all the quadrotors in the group are sufficiently far away from each
other in the sense that there are no collision between all the quadrotors.

Quadrotor (i)

a
S

(i)

p(i)

p(i+1)

p(i-1)

Quadrotor (i-1)

Quadrotor
(i+1)

pod

pd (i+1)

pd (i-1)

pd (i)

l (i-1)

l (i)

e1O

l (i+1)

e2

a
R

(i)

Figure 4.1: Formation parameters.
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Remark 4.2. Item 2) specifies the way each quadrotor communicating with other quadrotors in the
group with in its communication range. In Figure 4.1, the quadrotor i and (i+1) are communicating
with each other since the points pi and p(i+1) are in the communication areas of the quadrotors i
and (i + 1), respectively. In other hand, the quadrotor (i − 1) is not in the communication region.
The conditions (4.7) and (4.8) imply that there are no collision between all the quadrotors and that
all the quadrotors are communicating with each other.

Assumption 4.2.

1. The reference position trajectory pdi(t) = [xdi(t) ydi(t) zdi(t)]
T and the heading angle ψid for

the quadrotor i to track satisfies the following condition:

‖pdij‖ ≥ εij ,∥∥∥p(k)di ∥∥∥ ≤ εkd,∥∥∥ψ(k)
di

∥∥∥ ≤ δkd,
(4.9)

for all (i, j) ∈ N, i 6= j where pdij = pdi − pdj , εij is a strictly positive constant. εkd and δkd,
k = 1, . . . , 4 , are nonnegative constants.

2. Each quadrotor starts at a different location and do not have any collision among all the
quadrotors. Specially, there exist strictly positive constants εij and αSij = (αSi +αSj ) such that
for all (i, j) ∈ N, i 6= j, the following conditions holds:

‖pij(t0)‖ ≥ εij ,

αij(t0) ≥ αSij
(4.10)

Remark 4.3. In the Assumption 4.2, property 1) specifies possible reference trajectory pdi for the
quadrotor i in the group to track since it has to satisfy the condition (4.9). Property 2) implies that
at the initial time, there are no collision between all the quadrotors.

Control Objective 4.1. Under the Assumption 4.2, for each quadrotor i design the control inputs
Ti and τi such that the position vector pi(t) of the quadrotor i track their reference trajectories
pdi(t) while avoid collision with all the other quadrotors. Specifically, we design the control inputs
Ti and τi such that

lim
t→∞

(pi(t)− pdi(t)) = 0,

lim
t→∞

(ψi(t)− ψdi(t)) = 0

‖pi − pj‖ ≥ αSij

(4.11)

For all (i, j) ∈ N, i 6= j and t ≥ t0 ≥ 0, the control design needs to keep all other states of the
quadrotor dynamics bounded for all initial conditions and there are no collision between all the
quadrotors.

46



4.2. Controller 1 - Global formation tracking control

4.2.2 Formation control design

In this section we will use the pairwise collision avoidance function (4.3) and the new attitude
extraction algorithm to design control for a formation of quadrotors. Similarly in the previous
section, the quadrotor dynamics i (4.5) is separated into two subsystems. The first subsystem
contains two first equations for translational dynamics and the second subsystem consists two
last equations for rotational dynamics. In the first step, the intermediate control input for the
translational dynamics tracking the predefined path is designed. After this step, the new ex-
traction algorithm using some conversions between Euler angles and unit-quaternion to reject
the self-rotation of quadrotor around its vertical axis to generate a total force Ti and a unit-
quaternion reference Qdi which can be employed as the reference for the second subsystem is
applied. The attitude extraction algorithm is shown in Figure 3.7. In the next step, the torque
τi to force Qi → Qdi is designed.

Step 1

In this step, the translational dynamics of (4.5) is considered. We will design a virtual control
of vi to force pi(t) to globally asymptotically track its reference trajectory pdi(t). As such, we
define the tracking errors as follows:

pei = pi − pdi,

vei = vi −αvi,
(4.12)

where αvi is a virtual control of vi. Differentiating both sides of (4.12) and using the first
subsystem, the error dynamics are expressed as

ṗei = vei +αvi − ṗdi,

v̇ei = ge3 − F − α̇vi
(4.13)

where Fi is an intermediate control input and Fi = Ti
mi
RT
Q(Qi)e3

In order to design the intermediate control input Fi for quadrotor i that achieves the Formation
control objective 4.1, we consider the following potential function:

V1 =
1

2

N∑
i=1

peiTpei +
∑
J∈Ni

βij

 (4.14)

where Ni is the set containing all the quadrotors except for the quadrotor i, βij is taken from
(4.3) where αij is calculated from (4.6).

Differentiating both sides of (4.14) gives
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V̇1 =
N∑
i=1

[
pei

T ṗei +
∑
j∈Ni

β′ijα̇ij

]

=
N∑
i=1

[
pei

T ṗei +
∑
j∈Ni

β′ijpij
T ṗij

] (4.15)

Noting that ṗij = (ṗi − ṗdi)− (ṗj − ṗdj) = vei − vej , we can write (4.15) as follows

V̇1 =
N∑
i=1

(pei
T +

∑
j∈Ni

β′ijpij
T )(vei +αvi − ṗdi)

=
N∑
i=1

Ωi
T (vei +αvi − ṗdi)

(4.16)

where
Ωi = pei +

∑
j∈Ni

β′ijpij (4.17)

The equation (4.16) suggests that we choose

αvi = −k1Ωi + ṗdi (4.18)

To design the intermediate control input Fi, considering the following Lyapunov function

V2 = V1 +
1

2

N∑
i=1

vei
Tvei (4.19)

Differentiating both sides of (4.19) gives

V̇2 =

N∑
i=1

[
−k1Ωi

TΩi + vei
T (ge3 − Fi − α̇vi + Ωi)

]
(4.20)

which suggests that we choose:

Fi = k2vei + ge3 − α̇vi + Ωi (4.21)

We assume that the control input Fi forces the quadrotor i tracking the predefined path and
heading angle ψdi in ideal case. Applying Lemma 2.3 for the intermediate control input (4.21),
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4.2. Controller 1 - Global formation tracking control

we obtain the thrust Ti and the reference unit-quaternion vector Qdi as follows:

Ti = ‖Fi‖

Qdi =


C
αφi
2 C

αθi
2 C

αψi
2 + S

αφi
2 S

αθi
2 S

αψi
2

S
αφi
2 C

αθi
2 C

αψi
2 − C

αφi
2 S

αθi
2 S

αψi
2

C
αφi
2 S

αθi
2 C

αψi
2 + S

αφi
2 C

αθi
2 S

αψi
2

C
αφi
2 C

αθi
2 S

αψi
2 − S

αφi
2 S

αθi
2 C

αψi
2


(4.22)

where
αψi = ψdi,

αθi = arctan
(
CαψiFi1+SαψiFi2

Fi3

)
,

αφi = arcsin
(
SαψiFi1−CαψiFi2

Ti

)
,

(4.23)

The reference angular velocity of quadrotor i is calculated as follows

ωdi =


1 0 −Sαθi

0 Cαφi SαφiCαθi

0 −Sαφi CαφiCαθi



α̇φi

α̇θi

α̇ψi

 (4.24)

where ωdi is the body reference angular velocity; S(·) and C(·) stand for sin(·), cos(·), respec-
tively.

Step 2

In this step, the torque input τi will be designed. The unit-quaternion vector Qdi is used as the
reference. We first define the following tracking errors

Qei = Q−1di �Qi,

ωei = ωi −αωi
(4.25)

where αωi is a virtual control of ωi. Qei = [ηei q
T
ei]
T and ωei are attitude tracking and angular

velocity error vector, respectively.

Differentiating both sides of (4.25) yields

q̇ei = Gi(ωei +αωi − ωdi)

ω̇ei = J−1i (τi − S(ωi)Jiωi)− α̇ωi
(4.26)

where Gi = 1
2 (ηeiI3×3 + S(qei)) and ωdi can be obtained by using equation (4.24).
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To obtain the control input τi, we consider the following Lyapunov function:

V3 =

N∑
i=1

1

2
qTeiqei (4.27)

The time derivative of V3 along solutions (4.26) is given by

V̇3 =
N∑
i=1
qTeiGi(ωei +αωi − ωdi) (4.28)

which suggests that we choose

αωi = −k3GT
i qei + ωdi (4.29)

To design the control input torque, τi, considering the following Lyapunov candidate

V4 = V3 +
N∑
i=1
ωTeiωei (4.30)

The time derivative of (4.30) is given

V̇4 =
N∑
i=1

(
−k3qTeiGiG

T
i qei + ωTei(J

−1
i (τi − S(ωi)Jiωi)− α̇ωi +Giqei)

)
(4.31)

which suggests that we choose the control input torque as follows

τi = Ji(−k4ωei + α̇ωi −Giqei) + S(ωi)Jiωi (4.32)

Substituting control and virtual control from (4.18), (4.21), (4.29) and (4.32) into (4.13), and
(4.25), we have the following closed loop system:

ṗei = vei − k1Ωi

v̇ei = −k2vei −Ωi

q̇ei = Gi(−k3GT
i qei + ωei)

ω̇ei = −k4ωei −Giqei

(4.33)

The control design has been completed. We summarize the results in the following theorem.

Theorem 4.1. Under Assumption 4.2, the formation control laws consisting of (4.21) and (4.32)
for the quadrotor i achieve the Formation Control Objective 4.1, there is no collision between all the
quadrotors, the position pi and heading angle ψi of quadrotor i globally asymptotically track their
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4.2. Controller 1 - Global formation tracking control

reference trajectories pdi and ψdi,

lim
t→∞

(pi(t)− pdi(t)) = 0,

lim
t→∞

(ψi(t)− ψdi(t)) = 0

‖pi − pj‖ ≥ αSij

(4.34)

and the closed loop system (4.33) is forward complete.

Proof. See Appendix B.3.

4.2.3 Simulation results

In this section, we illustrate the effectiveness of the proposed formation control design through a
numerical simulation on a group of N = 12 identical quadrotors. The quadrotor parameters for
the simulation are taken from [EInE12] as following: mi=0.35 kg, g = 9.81 kgm2, li = 0.15m,
IXi = 15.67 × 10−3 kgm2, IYi = 15.67 × 10−3 kgm2; IZi = 28.34 × 10−3 kgm2, Kti = 192.32 ×
10−7Ns2, Kdi = 4.003× 10−7Nms2.

The initial conditions are taken as

pi(0) = [R1 ∗ j R1 ∗ k 0]T ;vi(0) = [0 0 0]T

Qi(0) = [1 0 0 0]T ;ωi(0) = [0 0 0]T
(4.35)

where R1 = 1.5m, j and k combine such that at the first time, all quadrotors are distributed on
land in a rectangle form with 3 rows and 4 columns. The initial distance between quadrotors
are satisfied (4.10).

For the stabilization, the reference points are taken as

Ldi = [R0sin((i− 1)2pi/N) R0cos((i− 1)2pi/N) 0]T ,

p0d = [5 5 10]T ,

pdi = p0 +Ldi,

ψdi = 0,

(4.36)

and for the path-tracking, the reference trajectories are chosen as

Ldi = [R0sin((i− 1)2pi/N) R0cos((i− 1)2pi/N) 0]T ,

s = 0.5 ∗ t,

p0d = [3 ∗ sin(0.5 ∗ s) 3 ∗ cos(0.5 ∗ s) 5 + s]T ,

pdi = p0 +Ldi,

ψdi = 0.5 ∗ t,

(4.37)
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with R0 = 5m. The purpose of choosing the initial (4.36) is to illustrate both collision avoidance
and reference tracking capacities of the proposed formation controller. With the above initial
reference, all quadrotors are distributed on a circle shape at the goal point or tracking a helix
path p0 and satisfy conditions (4.9) and (4.10).
The control gains are chosen as |aij | = 0.4m, |bij | = 5m, k1 = 1, k2 = 2, k3 = 5 and k4 = 2. Sim-
ulation results are plotted in two cases, formation formed at the goal point, Figure. 4.2, and at a
predefined path, Figure. 4.10. To illustrate the effectiveness of collision avoidance function and
formation controller, the minimum distances among quadrotors and position errors are shown in
Figure. 4.7 and Figure. 4.15. Noting that the minimum distances among quadrotors satisfy that
there are no collisions among any quadrotors,in which the minimum distances among quadro-
tors are always larger than 0.3m (safe area αSij). and all the tracking errors converge to the
origin are shown in the Figure 4.3, 4.4, 4.5, and 4.11, 4.12, 4.13. Torque and force applied for
quadrotor 1 are demonstrated in Figure 4.14 and Figure 4.14.
Case 1: All the quadrotors in the formation is distributed at the goal point in a circle shape.
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Figure 4.2: Formation of 12 quadrotors.
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Figure 4.3: x tracking errors.
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Figure 4.4: y tracking errors.
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Figure 4.5: z tracking errors.
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Figure 4.6: Attitude tracking errors.
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Figure 4.7: The minimum distance among quadrotors.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Time [s]

T
 [N

]

Figure 4.8: Force of 12 quadrotors.
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Figure 4.9: Torque of 12 quadrotors.

Case 2: All the quadrotors in the formation is distributed in a circle shape while tracking a
predefined helix path.
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Figure 4.10: The formation of 12 quadrotors.
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Figure 4.11: x tracking errors.
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Figure 4.12: y tracking errors.
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Figure 4.13: z tracking errors.
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Figure 4.14: Attitude tracking errors.
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Figure 4.15: The minimum distance among quadrotors.
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Figure 4.16: Force of 12 quadrotors.
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Figure 4.17: Torque of 12 quadrotors.

4.2.4 Conclusion

A distributed formation controllers for a group of underactuated quadrotors in three dimensional
space has been presented. The controllers guaranteed no collision among any quadrotors and
satisfied all properties of the formation control objective. The design procedure is based on the
attitude extraction algorithm for the desired orientation which is satisfied to be singularity-free
under the input control conditions. The simulation results illustrated the effectiveness of the
proposed controllers.

4.3 Controller 2 - linear velocity and disturbance observer

In this section the controller is developed and solved by focusing on the formation problem with
assuming that the dynamics of quadrotor has disturbances from environment and the linear
velocity is not measured. After the control objective is proposed, the observers for linear velocity
and disturbance are designed. The control design is illustrated in Section 4.3.3.

4.3.1 Control objective

The dynamics of quadrotor is written as in (4.38)

ṗi = vi

v̇i = ge3 − Ti
mi
RT
Q(Qi)e3 + dvi

Q̇i = KQ(Qi)ωi

Jiω̇i = τi − S(ωi)Jiωi + dωi

(4.38)

where i ∈ N, N is the set of all quadrotors in the group. dv and dω are unknown disturbances.
All the other symbols are defined in the Section 2.1.
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Before starting the formation control objective we impose the following assumption on the ref-
erence trajectories, communication and initial conditions between the quadrotor in the group.

Assumption 4.3.

1. The reference position trajectory pdi(t) = [xdi(t) ydi(t) zdi(t)]
T and the heading angle ψdi for

the quadrotor i to track satisfies the following conditions:

‖pdij‖ ≥ εij ,∥∥∥p(k)di ∥∥∥ ≤ εkd,∥∥∥ψ(k)
di

∥∥∥ ≤ δkd,
(4.39)

for all (i, j) ∈ N, i 6= j where pdij = pdi − pdj , εij is a strictly positive constant. εkd,
k = 1, . . . , 4 , are nonnegative constants.

2. The quadrotor i and j can communicate with each other and exchange their states, if satisfy
the following condition:

αij ≤ αRij (4.40)

where αRij is a strictly positive constant.

3. Let us define
p̂ij = p̂i − p̂j

αij = 1
2 p̂

T
ijp̂ij

(4.41)

Each quadrotor starts at a different location and do not have any collision among them.
Specially, there exist strictly positive constants εij and αSij such that for all (i, j) ∈ N, i 6= j,
the following conditions hold:

‖pij(t0)‖ ≥ εij ,

αij(t0) ≥ αSij
(4.42)

Remark 4.4. In the Assumption 4.3, property (1) specifies possible reference trajectory pdi for the
quadrotor i in the group to track since it has to satisfy the condition (4.39), property (2) implies
that we need to design a distributed formation control system since the condition (4.40) indicates
that when αij ≥ αRij the quadrotor i and j do not communicate with each other, and property
(3) implies that the designed controllers for the formation guarantee collision avoidance among the
quadrotors.

Control Objective 4.2. Under the Assumption 4.3, for each quadrotor i design the control inputs
Ti and τi such that the position vector pi(t) of the quadrotor i track their reference trajectories
pdi(t) under the effect of environment disturbance while avoid collision with all other quadrotor.

59



Chapter 4. Fomation control design for a group of quadrotors

Specifically, we design the control inputs Ti and τi such that

lim
t→∞

(pi(t)− pdi(t)) = 0,

lim
t→∞

(ψi(t)− ψdi(t)) = 0

‖pi − pj‖ ≥ αSij

(4.43)

For all (i, j) ∈ N, i 6= j and t ≥ t0 ≥ 0, the control design needs to keep all other states of the
quadrotor dynamics bounded for all initial conditions.

4.3.2 Observer design

With the assumption that the linear velocity and environment disturbance are unmeasured.
Before designing control for a formation of quadrotor, we first design observers to estimate the
linear velocity and environment disturbance then we use these estimated values to design the
formation controller later.

4.3.2.1 Linear Velocity Observer

Consider the first subsystem

ṗi = vi

v̇i = ge3 − Ti
mi
RT
Q(Qi)e3 + dvi

(4.44)

The following observer:

˙̂pi = v̂2

v̂i = ξi + k2(pi − p̂i)

ξ̇i = ge3 − Ti
mi
RT
Q(Qi)e3 + dvi + k1(pi − p̂i)

(4.45)

guarantees that the observer errors p̃i and ṽi of (4.45) semi-globally converges to the origin.
where p̂i and v̂i denote estimates of pi and vi, respectively, k1 and k2 are positive constants.

Proof. We define the following observer errors:

p̃i = pi − p̂i

ṽi = vi − v̂i
(4.46)

Differentiating both sides of (4.46) along the solutions of (4.44) and (4.45) yields

˙̃pi = ṽi

˙̃vi = −k1p̃i − k2ṽi
(4.47)
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Consider the following Lyapunov function

Vov = 1
2 p̃

T
i p̃i + 1

2 ṽ
T
i ṽi (4.48)

Differentiating both sides of (4.48) yields

V̇ov = p̃Ti ṽi + ṽTi (−k1p̃i − k2ṽi) (4.49)

If k1 = 1 then (4.49) can be rewritten as

V̇ov = −k2ṽTi ṽi ≤ 0 (4.50)

By using LaSalle’s invariance principle, It can be seen that the observer errors of (4.47)asymptotically
stable at the origin.

4.3.2.2 Disturbance Observer

We rewrite the dynamics system (4.38) in the following form

ẋ1i = F1i(x1i,x2i)

ẋ2i = F2i(x1i,x2i,ui) +G2i(x1i)di
(4.51)

where x1i = [pi Qi]
T , x2i = [vi ωi]

T , F1i(x1i,x2i) = [vi KQ(Qi)ωi]
T ; F2i(x1i,x2i, ui) =

[ge3 − Ti
mi
RT
Q(Qi)e3 J−1i (τi − S(ωi)Jiωi)]

T ; G2i(x1i) = [1 0; 0 1] is an invertible matrix;
di = [dvi dωi] is a vector of unknown disturbance. We assume that there exists a nonnegative
constant Cd such that ḋi ≤ Cd. Now we want to design a disturbance observer, d̂i, that estimates
di sufficiently accurately.

The disturbance observer is given in the following lemma.

Lemma 4.1.

d̂i = zi +K0iG
−1
2i (x1i)x2i

żi = −K0izi −K0i[Ġ
−1
2i (x1i)x2i +G−12i (x1i)F2i(x1i,x2i,ui) +K0iG

−1
2i (x1i)x2i]

(4.52)

where K0i is a positive definite symmetric matrix. The disturbance observer (4.52) guarantees that
the disturbance observer error d̃i(t) = di(t)− d̂i(t) exponentially converges to a ball centered at the
origin. The radius of this ball can be made arbitrarily small by adjusting the matrixK0i. In the case
where the disturbance vector di(t) is constant, the disturbance observer error d̃i(t) exponentially
converges to zero.

Proof. See Appendix A.2
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Chapter 4. Fomation control design for a group of quadrotors

4.3.3 Formation control design

The dynamics system (4.38) is rewritten as follows

˙̂pi = v̂i

˙̂vi = ge3 − Ti
mi
RT
Q(Qi)e3 + d̂vi + d̃vi + k2ṽi + k1p̃i

Q̇i = KQ(Qi)ωi

Jiω̇i = τi − S(ωi)Jiωi + d̂ωi + d̃ωi

(4.53)

Similarly in the previous section, the quadrotor dynamics i (4.53) is separated into two subsys-
tems. The first subsystem contains two first equations for translational dynamics and the second
subsystem consists two last equations for rotational dynamics. For convenience, the control de-
sign process is re-illustrated. In the first step, the intermediate control input for the translational
dynamics tracking the predefined path is designed. After this step, the new extraction algorithm
using some conversions between Euler angles and unit-quaternion to reject the self-rotation of
quadrotor around its vertical axis to generate a total force Ti and a unit-quaternion reference
Qdi which can be employed as the reference for the second subsystem is applied. In the next
step, the torque τi to force Qi → Qdi is designed.

Step 1

In this step, the translational dynamics of (4.53) is considered. We will design a virtual control
of vi to force pi(t) to globally asymptotically track its reference trajectory pdi(t). As such, we
define the tracking errors as follows:

pei = p̂i − pdi,

vei = v̂i −αvi,
(4.54)

where αvi is a virtual control of v̂i. differentiating both sides of (4.54) and using the first
subsystem, the error dynamics are expressed as

ṗei = vei +αvi − ṗdi,

v̇ei = ge3 − F + d̂vi + d̃vi + k2ṽi + k1p̃i − α̇vi
(4.55)

where Fi is an intermediate control input and Fi = Ti
mi
RT
Q(Qdi)e3 is illustrated in the ideal case

where Qdi is obtained via Lemma 2.3.

In order to design the intermediate control input Fi for quadrotor i that achieves the Formation
control objective 4.2, we consider the following potential function:

V1 =
1

2

N∑
i=1

peiTpei +
∑
J∈Ni

βij

 (4.56)
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4.3. Controller 2 - linear velocity and disturbance observer

where Ni is the set containing all the quadrotors except for the quadrotor i, βij is taken from
(4.3) where αij is calculated from (4.41).

Differentiating both sides of (4.56) gives

V̇1 =
N∑
i=1

[
pei

T ṗei +
∑
j∈Ni

β′ijα̇ij

]

=
N∑
i=1

[
pei

T ṗei +
∑
j∈Ni

β′ijp̂
T
ij

˙̂pij

] (4.57)

Noting that ˙̂pij = ( ˙̂pi − ṗdi)− ( ˙̂pj − ṗdj) = vei − vej , we can write (4.57) as follows

V̇1 =
N∑
i=1

(pei
T +

∑
j∈Ni

β′ijp̂
T
ij)(vei +αvi − ṗdi)

=
N∑
i=1

Ωi
T (vei +αvi − ṗdi)

(4.58)

where
Ωi = pei +

∑
j∈Ni

β′ijp̂ij (4.59)

The equation (4.58) suggests that we choose

αvi = −k1Ωi + ṗdi (4.60)

To design the intermediate control input Fi, considering the following Lyapunov function

V2 = V1 +
1

2

N∑
i=1

vei
Tvei (4.61)

Differentiating both sides of (4.61) gives

V̇2 =
N∑
i=1

[
−k1Ωi

TΩi + vei
T (ge3 − Fi − α̇vi + Ωi + d̂vi + d̃vi + k2ṽi + k1p̃i)

]
=

N∑
i=1

[
−k1Ωi

TΩi + vei
T (ge3 − Fi − α̇vi + Ωi + d̂vi) + vei

T (d̃vi + k2ṽi + k1p̃i)
]
(4.62)

which suggests that we choose:

Fi = k2vei + ge3 − α̇vi + Ωi + d̂vi (4.63)

We assume that the control input Fi forces the quadrotor i tracking the predefined path and
heading angle ψdi in ideal case. Applying Lemma 2.3 for the intermediate control input (4.63),
we obtain the thrust Ti and the reference unit-quaternion vector Qdi as follows:
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Ti = ‖Fi‖

Qdi =


C
αφi
2 C

αθi
2 C

αψi
2 + S

αφi
2 S

αθi
2 S

αψi
2

S
αφi
2 C

αθi
2 C

αψi
2 − C

αφi
2 S

αθi
2 S

αψi
2

C
αφi
2 S

αθi
2 C

αψi
2 + S

αφi
2 C

αθi
2 S

αψi
2

C
αφi
2 C

αθi
2 S

αψi
2 − S

αφi
2 S

αθi
2 C

αψi
2


(4.64)

where
αψi = ψdi,

αθi = arctan
(
CαψiFi1+SαψiFi2

Fi3

)
,

αφi = arcsin
(
SαψiFi1−CαψiFi2

Ti

)
,

(4.65)

The reference angular velocity of quadrotor i is calculated as follows

ωdi =


1 0 −Sαθi

0 Cαφi SαφiCαθi

0 −Sαφi CαφiCαθi



α̇φi

α̇θi

α̇ψi

 (4.66)

where ωdi is the body reference angular velocity; S(·) and C(·) stand for sin(·), cos(·), respec-
tively.

Step 2

In this step, the torque input, τi, will be designed. The unit-quaternion vector Qdi is used as the
reference. We first define the following tracking errors

Qei = Q−1di �Qi,

ωei = ωi −αωi
(4.67)

where αωi is a virtual control of ωi. Qei = [ηei q
T
ei]
T and ωei are attitude tracking and angular

velocity error vector, respectively.

Differentiating both sides of (4.67) yields

q̇ei = Gi(ωei +αωi − ωdi)

ω̇ei = J−1i

(
τi − S(ωi)Jiωi + d̂ωi + d̃ωi

)
− α̇ωi

(4.68)

where Gi = 1
2 (ηeiI3×3 + S(qei)) and ωdi can be obtained by using equation (4.66).

To obtain the control input τi, we consider the following Lyapunov function:

V3 =
N∑
i=1

1

2
qTeiqei (4.69)
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4.3. Controller 2 - linear velocity and disturbance observer

The time derivative of V3 along solutions (4.68) is given by

V̇3 =
N∑
i=1
qTeiGi(ωei +αωi − ωdi) (4.70)

which suggests that we choose

αωi = −k3GT
i qei + ωdi (4.71)

To design the control input torque, τi, considering the following Lyapunov candidate

V4 = V3 +
N∑
i=1
ωTeiωei (4.72)

The time derivative of (4.72) is given

V̇4 =
N∑
i=1

[
−k3qTeiGiG

T
i qei

]
+

N∑
i=1

[
ωTei

(
J−1i

(
τi − S(ωi)Jiωi + d̂ωi + d̃ωi

)
− α̇ωi +Giqei

)]
=

N∑
i=1

[
−k3qTeiGiG

T
i qei

]
+

N∑
i=1

[
ωTei

(
J−1i

(
τi − S(ωi)Jiωi + d̂ωi

)
− α̇ωi +Giqei

)
+ ωTeiJ

−1
i d̃ωi

]
(4.73)

which suggests that we choose the control input torque as follows

τi = Ji(−k4ωei + α̇ωi −Giqei) + S(ωi)Jiωi − d̂ωi (4.74)

Substituting control and virtual control from (4.60), (4.63), (4.71) and (4.74) into (4.55), and
(4.68), we have the following closed loop system:

ṗei = vei − k1Ωi

v̇ei = −k2vei −Ωi + d̃vi + k2ṽi + k1p̃i

q̇ei = Gi(−k3GT
i qei + ωei)

ω̇ei = −k4ωei −Giqei + J−1i d̃ωi

(4.75)

The control design has been completed. We summarize the results in the following theorem.

Theorem 4.2. Under Assumption 4.3, the formation control laws consisting of (4.63) and (4.74)
for the quadrotor i achieve the Formation Control Objective 4.2, there is no collision between all the
quadrotors, the position pi and heading angle ψi of quadrotor i globally asymptotically track their
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reference trajectories pdi and ψdi,

lim
t→∞

(pi(t)− pdi(t)) = 0,

lim
t→∞

(ψi(t)− ψdi(t)) = 0

‖pi − pj‖ ≥ αSij

(4.76)

and the closed loop system (4.75) is forward complete.

Proof. See Appendix B.4.

4.3.4 Simulation results

In this section, we illustrate the effectiveness of the proposed formation control design through
a numerical simulation on a group of N = 9 identical quadrotors. The quadrotor parameters for
the simulation are taken from [EInE12] as following: mi=0.35 kg, g = 9.81 kgm2, li = 0.15m,
IXi = 15.67 × 10−3 kgm2, IYi = 15.67 × 10−3 kgm2; IZi = 28.34 × 10−3 kgm2, Kti = 192.32 ×
10−7Ns2, Kdi = 4.003× 10−7Nms2.

The initial conditions are taken as

pi(0) = [R1 ∗ j R1 ∗ k 0]T ;vi(0) = [0 0 0]T

Qi(0) = [1 0 0 0]T ;ωi(0) = [0 0 0]T
(4.77)

where R1 = 1.5m, j and k combine such that at the first time, all quadrotors are distributed on
land in a rectangle form with 3 rows and 3 columns. The initial distance between quadrotors
are satisfied (4.42).

For the path-tracking, the reference trajectories are chosen as

Ldi = [Rfsin((i− 1)2pi/N) R0cos((i− 1)2pi/N) 0]T ,

s = 0.5 ∗ t,

p0d = [s 3 ∗ sin(0.5 ∗ s) 3]T ,

pdi = p0 +Ldi,

ψdi = 0.5 ∗ t,

(4.78)

with R0 = 5m, Rf = 3m. The purpose of choosing the initial (4.36) is to illustrate both collision
avoidance and reference tracking capacities of the proposed formation controller. With the
above initial reference, all quadrotors are distributed on a ellipse shape and tracking a sine path
p0. These initial reference satisfies conditions (4.39) and (4.42).

The control gains are chosen as |aij | = 0.4m, |bij | = 5m, k1 = 1, k2 = 2, k3 = 5 and k4 = 2.
Simulation results are plotted in two cases, where the disturbances are chosen as follows
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4.3. Controller 2 - linear velocity and disturbance observer

Case 1:
dvi = [.5 + .2sin(s); 1 + 0.2cos(2s); 1.5 + .2sin(3s)]T ;

dωi = [.1 + .2sin(.5s); .3 + 0.2cos(s); 1.5 + .2sin(2.5s)]T ;
(4.79)

Case 2:

dvi = [.5 + .2sin(s+ rand); 1 + 0.2cos(2s+ rand); 1.5 + .2sin(3s+ rand)]T ;

dωi = [.1 + .2sin(.5s+ rand); .3 + 0.2cos(s+ rand); 1.5 + .2sin(2.5s+ rand)]T ;
(4.80)

The observers of quadrotor 1 for linear velocity and disturbances are plotted on the Figure. 4.28,
Figure. 4.39, Figure. 4.26, Figure. 4.37, Figure. 4.27 and Figure. 4.38. It can be seen from these
figures that all the observers converge to the real values. The formation results are shown on
the Figure. 4.18 and the Figure. 4.29. From the Figure. 4.23 and the Figure. 4.34, there are
no collisions between all the quadrotors. The tracking errors in both two cases are convergent
to the origin as shown in the Figure 4.19, 4.20, 4.21, and 4.30, 4.31, 4.32. Torque and force
applied for quadrotor 1 are demonstrated in Figure 4.22 and Figure 4.33.
Case 1: All the quadrotors in the formation is distributed in an ellipse shape while tracking a
sine path. The disturbance of translational and rotational subsystem is chosen as in (4.79)
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Figure 4.18: The formation of 9 quadrotors.
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Figure 4.19: x tracking errors.
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Figure 4.20: y tracking errors.
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Figure 4.21: z tracking errors.
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Figure 4.22: Attitude tracking errors.
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Figure 4.23: The minimum distance among quadrotors.
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Figure 4.24: Thrust force of 9 quadrotors.
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Figure 4.25: Torque of 9 quadrotors.
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Figure 4.26: Disturbances and estimations of dv of the quadrotor 1
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Figure 4.27: Disturbances and estimations of do of the quadrotor 1
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Figure 4.28: Velocities and estimations of the quadrotor 1

Case 2: All the quadrotors in the formation is distributed in an ellipse shape while tracking
a sine path. The disturbance with random signal on translational and rotational subsystem is
chosen as in (4.80)
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Figure 4.29: The formation of 9 quadrotors.
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Figure 4.30: x tracking errors.
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Figure 4.31: y tracking errors.
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Figure 4.32: z tracking errors.
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Figure 4.33: Attitude tracking errors.
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Figure 4.34: The minimum distance among quadrotors.
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Figure 4.35: Thrust force of 9 quadrotors.
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Figure 4.36: Torque of 9 quadrotors.
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Figure 4.37: Disturbances and estimations of dv of the quadrotor 1
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Figure 4.38: Disturbances and estimations of do of the quadrotor 1
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Figure 4.39: Velocities and estimations of the quadrotor 1

4.3.5 Conclusion

A distributed formation controllers for a group of underactuated quadrotors in three dimen-
sional space under the assumption that the linear velocity and disturbance are unmeasured was
presented. As proving via simulations, all the observer errors of linear velocity and disturbance
were converged to the zero and the formation controller guaranteed no collision between all the
quadrotors and satisfied all properties of the formation control objective. The simulation results
shown that the proposed controller worked well with the disturbance of environment.

4.4 Controller 3 - Adaptive control

In this section the controller is developed and solved by focusing on the formation problem with
assuming that the dynamics of quadrotor has disturbances from environment and the mass and
inertia matrix are unknown. The controller developed in this section is based on the adaptive
backstepping technique [KKK95].

4.4.1 Control objective

The dynamics of quadrotor is written as in (4.81)

ṗi = vi

v̇i = ge3 − Ti
mi
RT
Q(Qi)e3 + dvi

Q̇i = KQ(Qi)ωi

ω̇i = J−1i τi − J−1i S(ωi)Jiωi + dωi

(4.81)

where i ∈ N, N is the set of all quadrotors in the group. dvi ∈ R3 and dωi ∈ R3 are unknown
disturbance matrices, mi and Ji ∈ R3×3 are unknown mass and inertial matrices, all the other
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symbols in (4.81) are defined as in Section 2.1.
Before starting the formation control objective we impose the following assumption on the ref-
erence trajectories, communication and initial conditions between the quadrotor in the group.

Assumption 4.4.

1. The reference position trajectory pdi(t) = [xdi(t) ydi(t) zdi(t)]
T and the heading angle ψdi for

the quadrotor i to track satisfy the following conditions:

‖pdij‖ ≥ εij ,∥∥∥p(k)di ∥∥∥ ≤ εkd,∥∥∥ψ(k)
di

∥∥∥ ≤ δkd,
(4.82)

for all (i, j) ∈ N, i 6= j where pdij = pdi − pdj , εij is a strictly positive constant. εkd,
k = 1, . . . , 4 , are nonnegative constants.

2. The quadrotor i and j can communicate with each other and exchange their states, if satisfy
the following condition:

αij ≤ αRij (4.83)

where αRij is a strictly positive constant.

3. Let us define
pij = pi − pj

αij = 1
2p

T
ijpij

(4.84)

Each quadrotor starts at a different location and do not have any collision among them.
Specially, there exist strictly positive constants εij and αSij such that for all (i, j) ∈ N, i 6= j,
the following conditions holds:

‖pij(t0)‖ ≥ εij ,

αij(t0) ≥ αSij
(4.85)

Control Objective 4.3. Under the Assumption 4.4, for each quadrotor i design the control inputs
Ti and τi such that the position vector pi(t) of the quadrotor i track their reference trajectories
pdi(t) while avoid collision with all other quadrotor with assuming that environment disturbance,
mass and inertia matrix are unknown. Specifically, we design the control inputs Ti and τi such that

lim
t→∞

(pi(t)− pdi(t)) = 0,

lim
t→∞

(ψi(t)− ψdi(t)) = 0

‖pi − pj‖ ≥ αSij

(4.86)

For all (i, j) ∈ N, i 6= j and t ≥ t0 ≥ 0, the control design needs to keep all other states of the
quadrotor dynamics bounded for all initial conditions.
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4.4.2 Control Design

In this section we will use adaptive backstepping technique [KKK95] to design control for a for-
mation of quadrotor satisfying the control objective 4.3. Similarly in the previous section, the
dynamics of quadrotor i (4.81) is separated into two subsystems. The first subsystem contains
two first equations for translational dynamics and the second subsystem consists two last equa-
tions for rotational dynamics. In the first step, the adaptive backstepping technique evolved in
the Section 2.3 is applied to obtain the intermediate control input force for translational dy-
namics asymptotically tracking the predefined path. Using the extraction algorithm, the total
force Ti and a unit-quaternion reference Qdi are generated. The attitude extraction algorithm is
shown in Figure 4.40. In the next step, the torque τ to force Q→ Qd is designed.

Pdi,ydi

System Attitude Qi

Ti
Subsystem 1

Thrust and
Attitude

Extraction
Subsystem 2

Attitude
Controller

ti

Qdipi

pj

Figure 4.40: Attitude Extraction Algorithm.

Step 1
In this step, the translational dynamics of (4.81) is considered. We will design a virtual control
of vi to force pi(t) to globally asymptotically track its reference trajectory pdi(t). As such, we
define the tracking errors as follows:

pei = pi − pdi,

vei = vi −αvi,
(4.87)

where αvi is a virtual control of vi.
Differentiating both sides of (4.87) and using the first subsystem, the error dynamics are ex-
pressed as

ṗei = vei +αvi − ṗdi,

v̇ei = ge3 − J1iFi + dvi − α̇vi
(4.88)

where Fi is an intermediate control input and Fi = TiR
T
Q(Qdi)e3 is illustrated in the ideal case
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where Qdi is obtained via Lemma 2.3.

In order to design the intermediate control input Fi for quadrotor iwhich achieves the Formation
control objective 4.3, we consider the following potential function:

V1 =
1

2

N∑
i=1

peiTpei +
∑
J∈Ni

βij

 (4.89)

where Ni is the set containing all the quadrotors except for the quadrotor i, βij is taken from
(4.3) where αij is calculated from (4.84).

Differentiating both sides of (4.89) gives

V̇1 =
N∑
i=1

[
pei

T ṗei +
∑
j∈Ni

β′ijα̇ij

]

=
N∑
i=1

[
pei

T ṗei +
∑
j∈Ni

β′ijpij
T ṗij

] (4.90)

Noting that ṗij = (ṗi − ṗdi)− (ṗj − ṗdj) = vei − vej , we can write (4.90) as follows

V̇1 =
N∑
i=1

(pei
T +

∑
j∈Ni

β′ijpij
T )(vei +αvi − ṗdi)

=
N∑
i=1

Ωi
T (vei +αvi − ṗdi)

(4.91)

where
Ωi = pei +

∑
j∈Ni

β′ijpij (4.92)

The equation (4.91) suggests that we choose

αvi = −k1Ωi + ṗdi (4.93)

To design the intermediate control input Fi, considering the following Lyapunov function

V2 = V1 +
1

2

N∑
i=1

vei
Tvei (4.94)

Differentiating both sides of (4.94) gives

V̇2 =
N∑
i=1

[
−k1Ωi

TΩi + vei
T (ge3 − J1iFi − α̇vi + Ωi + dvi)

]
=

N∑
i=1

[
−k1Ωi

TΩi + vei
T (ge3 − Ĵ1iFi − α̇vi + Ωi + d̂vi) + vei

T (−J̃1iFi + d̃vi)
] (4.95)
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which suggests that we choose:

Fi = (k2vei + ge3 − α̇vi + Ωi + d̂vi)/Ĵ1i (4.96)

where Ĵ1i and d̂vi are estimations of J1i and dvi, respectively. The update laws for these estima-
tions and are chosen as follows

˙̂
J1i = proj(γ1vv

T
eiFi)

˙̂dvi = γ2vvei

(4.97)

We assume that the intermediate control input Fi forces the quadrotor i tracking the predefined
path and heading angle ψdi in ideal case. Applying Lemma 2.3 for the intermediate control input
(4.63), we obtain the thrust Ti and the reference unit-quaternion vector Qdi as follows:

Ti = ‖Fi‖

Qdi =


C
αφi
2 C

αθi
2 C

αψi
2 + S

αφi
2 S

αθi
2 S

αψi
2

S
αφi
2 C

αθi
2 C

αψi
2 − C

αφi
2 S

αθi
2 S

αψi
2

C
αφi
2 S

αθi
2 C

αψi
2 + S

αφi
2 C

αθi
2 S

αψi
2

C
αφi
2 C

αθi
2 S

αψi
2 − S

αφi
2 S

αθi
2 C

αψi
2


(4.98)

where
αψi = ψdi,

αθi = arctan
(
CαψiFi1+SαψiFi2

Fi3

)
,

αφi = arcsin
(
SαψiFi1−CαψiFi2

Ti

)
,

(4.99)

The reference angular velocity of quadrotor i is calculated as follows

ωdi =


1 0 −Sαθi

0 Cαφi SαφiCαθi

0 −Sαφi CαφiCαθi



α̇φi

α̇θi

α̇ψi

 (4.100)

where ωdi is the body reference angular velocity; S(·) and C(·) stand for sin(·), cos(·), respec-
tively.

Step 2

In this step, the unit-quaternion vector Qdi obtained from (4.98) is used as the reference for
designing the torque input τi.

Qei = Q−1di �Qi,

ωei = ωi −αωi
(4.101)

where αωi is a virtual control of ωi. Qei = [ηei q
T
ei]
T and ωei are attitude tracking and angular
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velocity error vector, respectively.

Differentiating both sides of (4.101) yields

q̇ei = Gi(ωei +αωi − ωdi)

ω̇ei = J−1i τi − J−1i S(ωi)Jiωi + dωi − α̇ωi
(4.102)

where Gi = 1
2 (ηeiI3×3 + S(qei)) and ωdi can be obtained by using equation (4.100).

To obtain the control input τi, we consider the following Lyapunov function:

V3 =
N∑
i=1

1

2
qTeiqei (4.103)

The time derivative of V3 along solutions (4.102) is given by

V̇3 =
N∑
i=1
qTeiGi(ωei +αωi − ωdi) (4.104)

which suggests that we choose

αωi = −k3GT
i qei + ωdi (4.105)

To design the control input torque, τi, considering the following Lyapunov candidate

V4 = V3 +
N∑
i=1
ωTeiωei (4.106)

The time derivative of (4.106) is given

V̇4 =
N∑
i=1

[
−k3qTeiGiG

T
i qei

]
+

N∑
i=1

[
ωTei
(
J−1i τi − J−1i S(ωi)Jiωi + dωi − α̇ωi +Giqei

)]
=

N∑
i=1

[
−k3qTeiGiG

T
i qei

]
+

N∑
i=1

[
ωTei

(
Ĵ
−1
i τi − J−1i S(ωi)Jiωi + d̂ωi − α̇ωi +Giqei

)]
+

N∑
i=1

[
ωTei

(
J̃
−1
i τi + d̃ωi

)]
(4.107)

which suggests that we choose the control input torque as follows

τi = Ĵi

(
−k4ωei + α̇ωi −Giqei) + J−1i S(ωiJiωi − d̂ωi

)
(4.108)

where Ĵi and d̂ωi are estimations of Ji and dωi, respectively. The update laws for these estima-
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tions and are chosen as follows

˙̂J
−1
i = proj(Ĵ i(γ1ωω

T
eiFi))

˙̂
dωi = γ2ωωei

(4.109)

Substituting update laws, controls and virtual controls from (4.93), (4.96), (4.97), (4.105)
(4.109) and (4.108) into (4.88), and (4.102), we have the following closed loop system:

ṗei = vei − k1Ωi

v̇ei = −k2vei −Ωi − J̃1iFi + d̃vi

q̇ei = Gi(−k3GT
i qei + ωei)

ω̇ei = −k4ωei −Giqei + J̃−1i τ̃i + d̃ωi

˙̃J1i = − ˙̂
J1i = −proj(γ1vvTeiFi)

˙̃dvi = − ˙̂dvi = −γ2vvei

˙̃J
−1
i = − ˙̂J

−1
i = −proj(Ĵ i(γ1ωωTeiFi))

˙̃dωi = − ˙̂dωi = −γ2ωωei

(4.110)

The control design has been completed. We summarize the results in the following theorem.

Theorem 4.3. Under Assumption 4.4, the formation control and update laws consisting of (4.96),
(4.97), (4.109) and (4.108) for the quadrotor i achieve the Formation Control Objective 4.3, there
is no collision between all the quadrotors, the position pi and heading angle ψi of quadrotor i
globally asymptotically track their reference trajectories pdi and ψdi,

lim
t→∞

(pi(t)− pdi(t)) = 0,

lim
t→∞

(ψi(t)− ψdi(t)) = 0

‖pi − pj‖ ≥ αSij

(4.111)

and the closed loop system (4.110) is forward complete.

Proof. See Appendix B.5.

4.4.3 Simulation Results

In this section, we illustrate the effectiveness of the proposed formation control design through
a numerical simulation on a group of N = 3 identical quadrotors. The parameters of quadrotor
i for the simulation are taken from [EInE12] as following: mi=0.35 kg, g = 9.81 kgm2, li =

0.15m, IXi = 15.67 × 10−3 kgm2, IYi = 15.67 × 10−3 kgm2; IZi = 28.34 × 10−3 kgm2, Kti =

192.32× 10−7Ns2, Kdi = 4.003× 10−7Nms2.
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The initial conditions are taken as

pi(0) = [R1 ∗ j R1 ∗ k 0]T ;vi(0) = [0 0 0]T

Qi(0) = [1 0 0 0]T ;ωi(0) = [0 0 0]T
(4.112)

where R1 = 1.5m, j and k combine such that at the first time, all quadrotors are distributed on
land in a rectangle form with 1 row and 3 columns. The initial distance between quadrotors are
satisfied (4.85).

For the path-tracking, the reference trajectories are chosen as

Ldi = [Rfsin((i− 1)2pi/N) R0cos((i− 1)2pi/N) 0]T ,

s = 0.5 ∗ t,

p0d = [s 3 ∗ sin(0.5 ∗ s) 3]T ,

pdi = p0d +Ldi,

ψdi = 0.5 ∗ t,

(4.113)

with R0 = 5m, Rf = 3m. The purpose of choosing the initial (4.113) is to illustrate both
collision avoidance and reference tracking capacities of the proposed formation controller. With
the above initial reference, all quadrotors are distributed on a ellipse shape and tracking a sine
path pdi. These initial reference satisfies conditions (4.82) and (4.85).

The control gains are chosen as |aij | = 0.4m, |bij | = 5m, k1 = 1, k2 = 2, k3 = 5 and k4 = 2.
Simulation results are plotted in two cases, where the disturbances are chosen as follows

Case 1:
mi = m01 + sin(0.5 ∗ s)

Ji = J0i(1 + sin(0.5 ∗ s))

dvi = [.5 + .2sin(s); 1 + 0.2cos(2s); 1.5 + .2sin(3s)]T ;

dωi = [.1 + .2sin(.5s); .3 + 0.2cos(s); 1.5 + .2sin(2.5s)]T ;

(4.114)

Case 2:

mi = m01 + sin(0.5 ∗ s)

Ji = J0i(1 + sin(0.5 ∗ s))

dvi = [.5 + .2sin(s+ rand); 1 + 0.2cos(2s+ rand); 1.5 + .2sin(3s+ rand)]T ;

dωi = [.1 + .2sin(.5s+ rand); .3 + 0.2cos(s+ rand); 1.5 + .2sin(2.5s+ rand)]T ;

(4.115)

The estimations of unknown parameters for quadrotor 1 are plotted on the Figure. 4.51, Fig-
ure. 4.62, Figure. 4.49, Figure. 4.60, Figure. 4.50 and Figure. 4.61. Unlike previous section
that all the estimation parameters converge to the real values, in this section, all the estimation
values are generated such that they eliminate the errors in the energy functions. The forma-
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tion results are shown on the Figure. 4.41 and the Figure. 4.52. From the Figure. 4.46 and the
Figure. 4.57, it can be seen that there are no collision among all the quadrotors. The tracking
errors in both two cases are converged to the origin as shown in the Figure 4.42, 4.43, 4.44, for
case 1 and 4.53, 4.54, 4.55 for case 2. Torque and thrust force are demonstrated in Figure 4.47,
4.48, 4.58 and 4.59.
Case 1: Formation of three quadrotors distributed on a circle shape while tracking a sine path
is simulated. The disturbance on translational and rotational subsystem is chosen as in (4.114)
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Figure 4.41: The formation of three quadrotors.
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Figure 4.42: x tracking errors.
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Figure 4.43: y tracking errors.
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Figure 4.44: z tracking errors.
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Figure 4.45: Attitude tracking errors.
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Figure 4.46: The minimum distance among quadrotors.
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Figure 4.47: Force of three quadrotors.
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Figure 4.48: Torque of three quadrotors.
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Figure 4.49: Disturbances and estimations of dv of the quadrotor 1
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Figure 4.50: Disturbances and estimations of do of the quadrotor 1
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Figure 4.51: Uncertainty and estimation of mass of the quadrotor 1

Case 2: Formation of three quadrotors distributed on a circle shape while tracking a sine path is
simulated. The disturbance with random signal acting on translational and rotational subsystem
is chosen as in (4.115)
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Figure 4.52: The formation of three quadrotors.
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Figure 4.53: x tracking errors.
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Figure 4.54: y tracking errors.
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Figure 4.55: z tracking errors.
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Figure 4.56: Attitude tracking errors.
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Figure 4.57: The minimum distance among quadrotors.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

Time [s]

T
 [N

]

Figure 4.58: Thrust force of three quadrotors.
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Figure 4.59: Torque of three quadrotors.
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Figure 4.60: Disturbances and estimations of dv of the quadrotor 1
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Figure 4.61: Disturbances and estimations of do of the quadrotor 1
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Figure 4.62: Uncertainty and estimation of mass of the quadrotor 1

4.4.4 Conclusion

An adaptive formation controller was presented. Uncertainty and external disturbances are
estimated by employing adaptive backstepping method. The simulation results demonstrated
that the proposed controller works well with changing of unknown parameters and external
disturbances. The total force for each quadrotor is still high and the formation is not rotative
during tracking the reference path. These problems are going to concern in the next section.

4.5 Controller 4 - Leader-follower with limited sensing

In this section, a leader-follower formation controller is developed. Assuming that the dynamics
of quadrotor has disturbances from environment and the mass and inertia matrix are unknown.
Moreover, only quadrotor in the sensing range can exchange their information. The problems in
the previous section, the rotation of formation along the predefined path is also concerned.

4.5.1 Control objective

The dynamics of quadrotor is written as in (4.116)

ṗij = vij

v̇ij = ge3 − Tij
mij
RT
Q(Qij)e3 + dvij

Q̇ij = KQ(Qij)ωij

ω̇ij = J−1ij τij − J
−1
ij S(ωij)Jijωij + dωij

(4.116)

where ij ∈ N, N is the set of all quadrotors in the group. dvij ∈ R3 and dωij ∈ R3 are unknown
disturbance matrices, mij and Jij ∈ R3×3 are unknown mass and inertial matrices, all the other
symbols in (4.116) are defined as in Section 2.1.
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Before starting the formation control objective we impose the following assumption on the ref-
erence trajectories, communication and initial conditions between the quadrotor in the group

Assumption 4.5.

1. Let us define the formation of a group of quadrotors and the initial position of the leader
quadrotor as follows

LLdLi = [xLdLi yLdLi zLdLi]
T

pLi(t) = [xi1(t) yi1(t) zi1(t)]
T

(4.117)

where LLdi defines the formation shape of the leader quadrotors and pLi is position vector
of the leader quadrotors and it is defined as the first quadrotor in each group. The follower
dynamics then is defined as follows

LF_Ldij = [xF_Ldij yF_Ldij zF_Ldij ]
T

pF_Lij(t) = [xF_Lij(t) yF_Lij(t) zF_Lij(t)]
T

(4.118)

whereLF_Ldij defines the formation shape of the follower quadrotors and pF_Lij(t) is position
vector of follower quadrotors in the pLi group.

2. The reference position trajectory pd(t) = [xd(t) yd(t) zd(t)]
T and the heading angle ψd are the

based path for the leader quadrotors to track satisfying the assumption 4.4. The other initial
values satisfy that there is no collision and all the quadrotors are in the sensing range.

3. Let us define
pijmn = pij − pmn

αijmn = 1
2p

T
ijmnpijmn

(4.119)

where ij ∈ Nmn, Nmn is the set of all quadrotors in the sensing range except the quadrotor ij.

To avoid collision and keep all the quadrotors in the sensing range, the collision avoidance
function is chosen as follows

βijmn = kβ
1−h(αijmn,αSijmn,αSijmn+δ)+h(αijmn,αRijmn−δ,αRijmn)

αijmn
(4.120)

where δ is a positive constant defined the working zone of the obstacle avoidance function.

Remark 4.5. In the Assumption 4.5, property (1) is the definition for formation shape of the
leaders and followers. Property (2) implies that at the initial time, there is no collision between
all the quadrotors and the reference path smooth for tracking. Property (3) illustrates a definition
of an obstacle avoidance which guarantees capacity of communication and no collision among the
quadrotors.

Control Objective 4.4. Under the Assumption 4.5, first we design control input TLi and τLi such
that the Leader quadrotor vector pLi(t) globally track the reference trajectory pLdi(t) = pd+LLdLi.
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Then for each quadrotor in the group, design control for the followers to track their references
formed by vector pF_Ldij(t) = pLi +LF_Ldij . In more detail, For each quadrotor F_Lij, design the
control inputs TF_Lij and τF_Lij such that the position vector pF_Lij(t) of the follower quadrotor
F_Lij track their reference trajectories pF_Ldij(t) while avoid collision with all other quadrotors
and keep them in the sensing range. The environment disturbance, mass and inertia matrix are
unknown. Specifically, we design the control inputs TLi, τLi, TF_Lij and τF_Lij such that

lim
t→∞

(pLi(t)− pLdi(t)) = 0,

lim
t→∞

(ψLi(t)− ψdi(t)) = 0

lim
t→∞

(
pF_Lij(t)− pF_Ldij(t)

)
= 0,

lim
t→∞

(
ψF_Lij(t)− ψLi(t)

)
= 0

‖pij − pmn‖ ≥ αSijmn

(4.121)

For all ij ∈ N, ij 6= mn and t ≥ t0 ≥ 0, the control design needs to keep all other states of the
quadrotor dynamics bounded for all initial conditions.

4.5.2 Control Design

In this section we will use adaptive backstepping technique [KKK95] to design control for a
formation of quadrotor satisfying the control objective 4.4. In first step, the controller for the
leader quadrotor track the predefined path is designed. After that the reference formation of
followers is formed then the control inputs TLi, τLi, TF_Lij and τF_Lij are constructed.

Step 1

In this step, the control inputs to force the leader quadrotors tracking their references are de-
signed. The control design process is similar in the previous section. For convenience, the details
of these steps are represented. Two groups, leaders and followers, are concerned. First the trans-
lational dynamics of (4.116) is considered. We will design a virtual control of vLi to force pLi(t)
to globally asymptotically track its reference trajectory pLdi(t), and design a virtual control of
vF_Lij to force pF_Lij(t) to globally asymptotically track its reference trajectory pF_Ldij(t) As
such, we define the tracking errors as follows:

peLi = pLi − pLdi,

veLi = vLi −αvLi,

peF_Lij = pF_Lij − pF_Ldij ,

veF_Lij = vF_Lij −αvF_Lij ,

(4.122)

where αvLi is a virtual control of leader velocity vLi and αvF_Lij is a virtual control of follower
velocity vF_Lij .

Differentiating both sides of (4.122) and using the first subsystem of (4.116), the error dynamics
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are expressed as
ṗeLi = veLi +αvLi − ṗLdi,

v̇eLi = ge3 − J1LiFLi + dvLi − α̇vLi

ṗF_Lij = veF_Lij +αvF_Lij − ṗF_Lij ,

v̇eF_Lij = ge3 − J1F_LijFF_Lij + dvF_Lij − α̇vF_Lij

(4.123)

where FLi is an intermediate control input of the leader Li and FLi = TLiR
T
Q(QLdi)e3 is illus-

trated in the ideal case whereQdi is obtained via Lemma 2.3. Similarly, FF_Lij is an intermediate
control input of the follower F_Lij where FF_Lij = TF_LijR

T
Q(QF_Ldij)e3 and QF_Ldij is also

obtained via Lemma 2.3.

In order to design the intermediate control input FLi for the leader quadrotor Li and the inter-
mediate control input FF_Lij for the follower quadrotor F_Lij achieving the Formation control
objective 4.4, we consider the following potential function:

V1a =
1

2

NL∑
i=1

NF (i)∑
j=1

pTeLipeLi +
∑
ij∈Nij

βijmn

 (4.124)

where Nij is the set containing all the quadrotors in the sensing range except for the quadrotor
ij, NL is number of leaders, and NF (i) is number of followers in the group i. βijmn is taken
from (4.120) where αijmn is calculated from (4.119).

Differentiating both sides of (4.124) gives

V̇1a =
NL∑
i=1

NF (i)∑
j=1

[
pTeLiṗeLi +

∑
ij∈Nij

β′ijmnα̇ijmn

]

=
NL∑
i=1

NF (i)∑
j=1

[
pTeLiṗeLi +

∑
ij∈Nij

β′ijmnp
T
ijmnṗijmn

] (4.125)

Noting that ṗijmn = (ṗij − ṗLdij) − (ṗmn − ṗLdmn) = veLij − veLmn, we can write (4.125) as
follows

V̇1a =
NL∑
i=1

NF (i)∑
j=1

(pTeLi +
∑

ij∈Nij
β′ijmnp

T
ijmn)(veLi +αvLi − ṗLdi)

=
NL∑
i=1

NF (i)∑
j=1

ΩT
Li(veLi +αvLi − ṗLdi)

(4.126)

where
ΩLi = peLi +

∑
ij∈Nij

β′ijmnpijmn (4.127)

The equation (4.126) suggests that we choose

αvLi = −k1ΩLi + ṗLdi (4.128)
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4.5. Controller 4 - Leader-follower with limited sensing

To design the intermediate control input FLi, considering the following Lyapunov function

V2a = V1a +
1

2

NL∑
i=1

NF (i)∑
j=1

vei
Tvei (4.129)

Differentiating both sides of (4.129) gives

V̇2a =
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

LiΩLi + vTei(ge3 − J1LiFLi − α̇vLi + ΩLi + dvLi)
]

=
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

LiΩLi + veLi
T (ge3 − Ĵ1LiFLi − α̇vLi + ΩLi + d̂vLi)

]
+
NL∑
i=1

NF (i)∑
j=1

[
vTeLi(−J̃1LiFLi + d̃vLi)

]
(4.130)

which suggests that we choose:

FLi = (k2veLi + ge3 − α̇vLi + ΩLi + d̂vLi)/Ĵ1Li (4.131)

where Ĵ1Li and d̂vLi are estimations of J1Li and dvLi, respectively. The update laws for these
estimations and are chosen as follows

˙̂
J1Li = proj(γ1vv

T
eLiFLi)

˙̂
dvLi = γ2vveLi

(4.132)

For the follower group, the design process is similar as above. The intermediate control force
FF_Lij is constructed by considering the following Lyapunov function

V1b =
1

2

NL∑
i=1

NF (i)∑
j=1

pTeF_LijpeF_Lij +
∑
ij∈Nij

βijmn

 (4.133)

Differentiating both sides of (4.133) gives

V̇1b =
NL∑
i=1

NF (i)∑
j=1

[
pTeF_LijṗeF_Lij +

∑
ij∈Nij

β′ijmnα̇ijmn

]

=
NL∑
i=1

NF (i)∑
j=1

[
pTeF_LijṗeF_Lij +

∑
ij∈Nij

β′ijmnp
T
ijmnṗijmn

] (4.134)

Noting that ṗijmn = (ṗij − ṗF_Ldij) − (ṗmn − ṗF_Ldmn) = veF_Lij − veF_Lmn, we can write
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(4.134) as follows

V̇1b =
NL∑
i=1

NF (i)∑
j=1

(pTeF_Lij +
∑

ij∈Nij
β′ijmnp

T
ijmn)(veF_Lij +αvF_Lij − ṗF_Ldij)

=
NL∑
i=1

NF (i)∑
j=1

ΩT
F_Lij(veF_Lij +αvF_Lij − ṗF_Ldij)

(4.135)

where
ΩF_Lij = peF_Lij +

∑
ij∈Nij

β′ijmnpijmn (4.136)

The equation (4.135) suggests that we choose

αvF_Lij = −k1ΩF_Lij + ṗF_Ldi (4.137)

To design the intermediate control input FF_Lij , considering the following Lyapunov function

V2b = V1b +
1

2

NL∑
i=1

NF (i)∑
j=1

veF_Lij
TveF_Lij (4.138)

Differentiating both sides of (4.138) gives

V̇2b =
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

F_LijΩF_Lij + vTeF_Lij(ge3 − J1F_LijFF_Lij − α̇vF_Lij + ΩF_Lij + dvF_Lij)
]

=
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

F_LijΩF_Lij + veF_Lij
T (ge3 − Ĵ1F_LijFF_Lij − α̇vF_Lij + ΩF_Lij + d̂vF_Lij)

]
+
NL∑
i=1

NF (i)∑
j=1

[
vTeF_Lij(−J̃1F_LijFF_Lij + d̃vF_Lij)

]
(4.139)

which suggests that we choose:

FF_Lij = (k2veF _Lij + ge3 − α̇vF_Lij + ΩF_Lij + d̂vF_Lij)/Ĵ1F_Lij (4.140)

where Ĵ1F_Lij and d̂vF_Lij are estimations of J1F_Lij and dvF_Lij , respectively. The update laws
for these estimations and are chosen as follows

˙̂
J1F_Lij = proj(γ1vv

T
eF_LijFF_Lij)

˙̂dvF_Lij = γ2vveF_Lij

(4.141)

We assume that the intermediate control input FLi forces the leader quadrotor Li tracking the
predefined path pLdi and heading angle ψdi is in the ideal case where the heading angle error
is equal zero. Similarly, the intermediate control input FF_Lij forces the follower quadrotor
F_Lij tracking the leader position pF_Ldij and heading angle ψLdi is also having no error with
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4.5. Controller 4 - Leader-follower with limited sensing

the heading tracking. Applying Lemma 2.3 for these intermediate control inputs, we obtain the
thrust TFi, QLdi, TF_Lij and QF_Ldij as follows:

TLi = ‖FLi‖

QLdi =


C
αφLi
2 C αθLi

2 C
αψLi
2 + S

αφLi
2 S αθLi2 S

αψLi
2

S
αφLi
2 C αθLi

2 C
αψLi
2 − C αφLi

2 S αθLi2 S
αψLi
2

C
αφLi
2 S αθLi2 C

αψLi
2 + S

αφLi
2 C αθLi

2 S
αψLi
2

C
αφLi
2 C αθLi

2 S
αψLi
2 − S αφLi2 S αθLi2 C

αψLi
2


(4.142)

where
αψLi = ψd,

αθLi = arctan
(
CαψLiFLi1+SαψLiFLi2

FLi3

)
,

αφLi = arcsin
(
SαψLiFLi1−CαψLiFLi2

TLi

)
,

(4.143)

The reference angular velocity of quadrotor Li is calculated as follows

ωLdi =


1 0 −SαθLi

0 CαφLi SαφLiCαθLi

0 −SαφLi CαφLiCαθLi



α̇φLi

α̇θLi

α̇ψLi

 (4.144)

where ωLdi is the body reference angular velocity; S(·) and C(·) stand for sin(·), cos(·), respec-
tively.

TF_Lij =
∥∥FF_Lij

∥∥

QF_Ldi =


C
αφF _Lij

2 C
αθF _Lij

2 C
αψF _Lij

2 + S
αφF _Lij

2 S
αθF _Lij

2 S
αψF _Lij

2

S
αφF _Lij

2 C
αθF _Lij

2 C
αψF _Lij

2 − C αφF _Lij
2 S

αθF _Lij
2 S

αψF _Lij
2

C
αφF _Lij

2 S
αθF _Lij

2 C
αψF _Lij

2 + S
αφF _Lij

2 C
αθF _Lij

2 S
αψF _Lij

2

C
αφF _Lij

2 C
αθF _Lij

2 S
αψF _Lij

2 − S αφF _Lij
2 S

αθF _Lij
2 C

αψF _Lij
2


(4.145)

where
αψF_Lij = ψd,

αθF_Lij = arctan
(
CαψF _LijFF _Lij1+SαψF _LijFF _Lij2

FF _Lij3

)
,

αφF_Lij = arcsin
(
SαψF _LijFF _Lij1−CαψF _LijFF _Lij2

TF _Lij

)
,

(4.146)

97



Chapter 4. Fomation control design for a group of quadrotors

The reference angular velocity of quadrotor F_Lij is calculated as follows

ωF_Ldi =


1 0 −SαθF_Lij

0 CαφF_Lij SαφF_LijCαθF_Lij

0 −SαφF_Lij CαφF_LijCαθF_Lij



α̇φF_Lij

α̇θF_Lij

α̇ψF_Lij

 (4.147)

where ωF_Ldi is the body reference angular velocity; S(·) and C(·) stand for sin(·), cos(·), re-
spectively.

Step 2

In this step, The unit-quaternion vector QLdi and QF_Ldij obtained from (4.142) and (4.145)
are used as the references for designing the torque inputs, τLi and τF_Lij . We define the tracking
errors as follows

QeLi = Q−1Ldi �QLi,

ωeLi = ωLi −αωLi

QeF_Lij = Q−1F_Ldij �QF_Lij ,

ωeF_Lij = ωF_Lij −αωF_Lij

(4.148)

where αωLi is a virtual control of ωLi and αωF_Lij is a virtual control of ωF_Lij . QeLi =

[ηeLi q
T
eLi]

T , ωeLi, QeF_Lij = [ηeF_Lij q
T
eF_Lij ]

T and ωeF_Lij are attitude tracking and angular
velocity error vectors, respectively.

Differentiating both sides of (4.148) yields

q̇eLi = GLi(ωeLi +αωLi − ωLdi)

ω̇eLi = J−1Li τLi − J
−1
Li S(ωLi)JLiωLi + dωLi − α̇ωLi

q̇eF_Lij = GF_Lij(ωeF_Lij +αωF_Lij − ωLdi)

ω̇eF_Lij = J−1F_LijτF_Lij − J−1F_LijS(ωF_Lij)JF_LijωF_Lij + dωF_Lij − α̇ωF_Lij

(4.149)

where GLi = 1
2 (ηeLiI3×3 + S(qeLi)) and ωLdi can be obtained by using equation (4.144).

GF_Lij = 1
2

(
ηeF_LijI3×3 + S(qeF_Lij)

)
and ωF_Ldij can be obtained by using equation (4.147).

To obtain the control input τLi and τF_Lij , we consider the following Lyapunov function:

V3 =

NL∑
i=1

NF (i)∑
j=1

[
1

2
qTeLiqeLi +

1

2
qTeF_LijqeF_Lij

]
(4.150)
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The time derivative of V3 along solutions (4.149) is given by

V̇3 =
NL∑
i=1

NF (i)∑
j=1

qTeLiGLi(ωeLi +αωLi − ωLdi)

+
NL∑
i=1

NF (i)∑
j=1

qTeF_LijGF_Lij(ωeF_Lij +αωF_Lij − ωF_Ldij)

(4.151)

which suggests that we choose

αωLi = −k3GT
LiqeLi + ωLdi

αωF_Lij = −k3GT
F_LijqeF_Lij + ωF_Ldi

(4.152)

To design the control input torque, τLi and τF_Lij , considering the following Lyapunov candidate

V4 = V3 +
NL∑
i=1

NF (i)∑
j=1

[
ωTeLiωeLi + ωTeF_LijωeF_Lij

]
(4.153)

The time derivative of (4.153) is given

V̇4 =
NL∑
i=1

NF (i)∑
j=1

[
−k3qTeLiGLiG

T
LiqeLi − k3qTeF_LijGF _LijGT

F_LijqeF_Lij

]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeLi

(
J−1Li τLi − J

−1
Li S(ωLi)JLiωLi + dωLi − α̇ωLi +GLiqeLi

)]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeF_Lij

(
J−1F_LijτF_Lij − J−1F_LijS(ωF_Lij)JF_LijωF_Lij

)]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeF_Lij

(
dωF_Lij − α̇ωF_Lij +GF_LijqeF_Lij

)]
=

NL∑
i=1

NF (i)∑
j=1

[
−k3qTeLiGLiG

T
LiqeLi − k3qTeF_LijGF _LijGT

F_LijqeF_Lij

]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeLi

(
Ĵ
−1
Li τLi − J−1Li S(ωLi)JLiωLi + d̂ωLi − α̇ωLi +GLiqeLi

)]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeLi

(
J̃
−1
Li τLi + d̃ωLi

)]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeF_Lij

(
Ĵ
−1
F_LijτF_Lij − J−1F_LijS(ωF_Lij)JF_LijωF_Lij

)]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeF_Lij

(
d̂ωF_Lij − α̇ωF_Lij +GF_LijqeF_Lij

)]
+
NL∑
i=1

NF (i)∑
j=1

[
ωTeF_Lij

(
J̃
−1
F_LijτF_Lij + d̃ωF_Lij

)]

(4.154)
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which suggests that we choose the control input torques as follows

τLi = ĴLi

(
−k4ωeLi + α̇ωLi −GLiqeLi + J−1Li S(ωLi)JLiωLi − d̂ωLi

)
τF_Lij = ĴF_Lij

(
−k4ωeF_Lij + α̇ωF_Lij −GF_LijqeF_Lij

)
+ĴF_Lij

(
J−1F_LijS(ωF_Lij)JF_LijωF_Lij − d̂ωF_Lij

) (4.155)

where ĴLi, d̂ωLi, ĴF_Lij , and d̂ωF_Lij are estimations of JLi, dωLi, JF_Lij , and dωF_Lij , respec-
tively. The update laws for these estimations are chosen as follows

˙̂J
−1
Li = proj(ĴLi(γ1ωω

T
eLiFLi))

˙̂
dωLi = γ2ωωeLi

˙̂J
−1
F_Lij = proj(ĴF_Lij(γ1ωω

T
eF_LijFF_Lij))

˙̂
dωF_Lij = γ2ωωeF_Lij

(4.156)

Substituting update laws, controls and virtual controls from (4.128), (4.131), (4.132), (4.152)
(4.156) and (4.155) into (4.123), and (4.149), we have the following closed loop system:

ṗeLi = veLi − k1ΩLi

v̇eLi = −k2veLi −ΩLi − J̃1LiFLi + d̃vLi

q̇eLi = GLi(−k3GT
LiqeLi + ωeLi)

ω̇eLi = −k4ωeLi −GLiqeLi + J̃−1Li τ̃Li + d̃ωLi
˙̃J1Li = − ˙̂

J1Li = −proj(γ1vvTeLiFLi)
˙̃
dvLi = − ˙̂

dvLi = −γ2vveLi
˙̃J
−1
Li = − ˙̂J

−1
Li = −proj(ĴLi(γ1ωωTeLiFLi))

˙̃
dωLi = − ˙̂

dωLi = −γ2ωωeLi
ṗeF_Lij = veF_Lij − k1ΩF_Lij

v̇eF_Lij = −k2veF_Lij −ΩF _Lij − J̃1F_LijFF_Lij + d̃vF_Lij

q̇eF_Lij = GF_Lij(−k3GT
F_LijqeF_Lij + ωeF_Lij)

ω̇eF_Lij = −k4ωeF_Lij −GF_LijqeF_Lij + J̃−1F_Lij τ̃F_Lij + d̃ωF_Lij
˙̃J1F_Lij = − ˙̂

J1F_Lij = −proj(γ1vvTeF_LijFF_Lij)
˙̃dvF_Lij = − ˙̂dvF_Lij = −γ2vveF_Lij

˙̃J
−1
F_Lij = − ˙̂J

−1
F_Lij = −proj(ĴF_Lij(γ1ωω

T
eF_LijFF_Lij))

˙̃dωF_Lij = − ˙̂dωF_Lij = −γ2ωωeLi

(4.157)

The control design has been completed. We summarize the results in the following theorem.

Theorem 4.4. Under Assumption 4.5, the formation control and update laws consisting of (4.131),
(4.132), (4.156) and (4.155) for the quadrotor i achieve the Formation Control Objective 4.4, there
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4.5. Controller 4 - Leader-follower with limited sensing

is no collision between all the quadrotors, the position pLi, heading angle ψLi of the leader quadro-
tor Li, the position pF_Lij and heading angle ψF_Lij of the follower quadrotor F_Lij globally
asymptotically track their reference trajectories pLdi, ψLdi, pF_Ldij , and ψF_Ldij , respectively.

lim
t→∞

(pLi(t)− pLdi(t)) = 0,

lim
t→∞

(ψLi(t)− ψdi(t)) = 0

lim
t→∞

(
pF_Lij(t)− pF_Ldij(t)

)
= 0,

lim
t→∞

(
ψF_Lij(t)− ψLi(t)

)
= 0

‖pij − pmn‖ ≥ αSijmn

(4.158)

and the closed loop system (4.157) is forward complete.

Proof. See Appendix B.6.

4.5.3 Simulation Results

In this section, we illustrate the effectiveness of the proposed formation control design through
a numerical simulation. The parameters of quadrotor ij for the simulation are taken from
[EInE12] as following: mij=0.35 kg, g = 9.81 kgm2, lij = 0.15m, IXij = 15.67 × 10−3 kgm2,
IYij = 15.67× 10−3 kgm2; IZij = 28.34× 10−3 kgm2, Ktij = 192.32× 10−7Ns2, Kdij = 4.003×
10−7Nms2.

The initial conditions are taken as

pij(0) = [(i− 1) ∗R1 (j − 1) ∗R1 0]T ;vi(0) = [0 0 0]T

Qi(0) = [1 0 0 0]T ;ωi(0) = [0 0 0]T
(4.159)

where R1 = 1.5m, at the first time, all quadrotors are distributed on land in column. The initial
distance between quadrotors are satisfied (4.120).

The simulation is taken in two cases. The first case illustrates a formation control for a leader
and 12 followers and the second case presents a formation of multiple leaders and followers.
The disturbances in the first case is chosen as

mi = m01 + sin(0.5 ∗ s)

Ji = J0i(1 + sin(0.5 ∗ s))

dvi = [.5 + .2sin(s); 1 + 0.2cos(2s); 1.5 + .2sin(3s)]T ;

dωi = [.1 + .2sin(.5s); .3 + 0.2cos(s); 1.5 + .2sin(2.5s)]T ;

(4.160)

In the first case, NL = 1, NF1 = 13, the reference path and formation of the leader and follower

101



Chapter 4. Fomation control design for a group of quadrotors

are chosen as follows

LLdLi = [0 0 0]T ,

LF_Ldij = [Rf.sin((j − 1).2.pi/(NF (i))) R0.cos((j − 1).2.pi/(NF (i))) 0.5.(i− 1)]T ,

s = 0.5.t,

pd = [10.cos(0.1.s) 10.sin(0.1.s) 5]T ,

ψd = 0.1.t,
(4.161)

with R0 = 1.5m, Rf = 1m. With these initial values, all the quadrotor is distributed on an
ellipse shape. The leader quadrotor track the predefined path pd and there are no collision
among quadrotors at the initial time. These initial reference satisfies assumption 4.5.

In the second case, NL = 4, NF = [4 5 6 7]T , the reference path and formation of the leader and
follower are chosen as follows

LLdLi = [RL0.sin((i− 1).2.pi/(NL)) RL0.cos((i− 1).2.pi/(NL)) 0];T ,

LF_Ld1j = [Rf.sin((j − 1).2.pi/(NF (1)− 1)) R0.cos((j − 1).2.pi/(NF (1)− 1)) 0.5.(1− 1)]T ,

LF_Ld2j = [0 R0.sin((2− 1).2.pi/(NF (2)− 1)) R0.cos((j − 1).2.pi/(NF (2)− 1)) +R0]T ,

LF_Ld3j = [Rf.sin((j − 1).2.pi/(NF (3)− 1)) R0.cos((j − 1).2.pi/(NF (3)− 1)) 0.5.(i− 1)]T ,

LF_Ld4j = [Rf.sin((j − 1).2.pi/(NF (4)− 1)) R0.cos((j − 1).2.pi/(NF (4)− 1)) 0]T ,

s = 0.5.t,

pd = [10.cos(0.1.s) 10.sin(0.1.s) 5]T ,

ψd = 0.1.t,
(4.162)

with R0 = 1.5m, Rf = 1m, RL0 = 5m. With these initial values, the formation of the leaders
are distributed on a circle shape with radius RL0. The formation shape of the followers are
listed as follows: group 1: an ellipse, group 2: a circle on yoz plane, group 3 and 4: an ellipse.
These initial reference satisfies condition (4.120).

The control gains are chosen as |aij | = 0.4m, |bij | = 10m, δ = 1m, k1 = 3, k2 = 2, k3 = 1 and
k4 = 1. The disturbance for the second case is chosen as follows

mi = m01 + sin(0.5 ∗ s)

Ji = J0i(1 + sin(0.5 ∗ s))

dvi = [.5 + .2sin(s+ rand); 1 + 0.2cos(2s+ rand); 1.5 + .2sin(3s+ rand)]T ;

dωi = [.1 + .2sin(.5s+ rand); .3 + 0.2cos(s+ rand); 1.5 + .2sin(2.5s+ rand)]T ;

(4.163)
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The estimations of unknown parameters for quadrotor 1.1 are plotted on the Figure 4.75, Fig-
ure 4.88, Figure 4.73, Figure 4.86, Figure 4.74 and Figure 4.87. The formation results are shown
on the Figure 4.63 and the Figure 4.76. From the Figure 4.68 and the Figure 4.81, one can see
that there are no collision between all the quadrotors. The tracking errors in both two cases are
convergent to the origin as shown in the Figure 4.64, 4.65, 4.66, 4.69, 4.70, and 4.77, 4.78,
4.79 4.82, 4.83. Torque and thrust force are illustrated in Figure 4.67 and Figure 4.80.
Case 1: Formation of a leader quadrotor and 12 follower quadrotors distributed on an ellipse
shape while tracking a circle trajectory.
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Figure 4.63: The formation of a leader and 12 followere quadrotors.
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Figure 4.64: Position tracking errors on x axis.
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Figure 4.65: Position tracking errors on y axis.
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Figure 4.66: Position tracking errors on z axis.
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Figure 4.67: Attitude tracking errors.
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Figure 4.68: The minimum distance among quadrotors.
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Figure 4.69: Linear velocity tracking errors.
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Figure 4.70: Angular velocity tracking errors.
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Figure 4.71: Thrust forces of the leader and followers.
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Figure 4.72: Torques of the leader and followers.
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Figure 4.73: Disturbances and estimations of dv of the leader quadrotor 1
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Figure 4.74: Disturbances and estimations of do of the leader quadrotor 1
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Figure 4.75: Uncertainty and estimation of mass of the leader quadrotor 1

Case 2: Leader follower formation of multiple leaders and followers where the leader formation
distributes on a circle shape and track a circle trajectory.
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Figure 4.76: The formation of leader and follower quadrotors.
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Figure 4.77: Position tracking errors on x axis.
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Figure 4.78: Position tracking errors on y axis.
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Figure 4.79: Position tracking errors on z axis.
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Figure 4.80: Attitude tracking errors.
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Figure 4.81: The minimum distance among quadrotors.
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Figure 4.82: Linear velocity tracking errors.
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Figure 4.83: Angular velocity tracking errors.
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Figure 4.84: Thrust forces of leaders and followers.
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Figure 4.85: Torques of leaders and followers.
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Figure 4.86: Disturbances and estimations of dv of the leader quadrotor 1

111



Chapter 4. Fomation control design for a group of quadrotors

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

1

1.5

2

Time [s]

d
ω
1
a
n
d
d̂
ω
1

Figure 4.87: Disturbances and estimations of do of the leader quadrotor 1
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Figure 4.88: Uncertainty and estimation of mass of the leader quadrotor 1

4.5.4 Conclusion

An adaptive controller for leader-follower formation was presented. Uncertainty and external
disturbances are solved by employing adaptive backstepping method. The simulation results
demonstrated that the proposed controller works well with changing of unknown parameters
and external disturbances. The avoidance function also performs well in both two cases, avoid-
ing collision and keeping all the quadrotors in the sensing range. This avoidance function will
be used in the next section for avoiding obstacles and collision.

4.6 Controller 5 - Formation of second order system

In the previous section, an adaptive controller for formation of leader-follower has been shown.
The obstacle avoidance function uses the position information of quadrotors in the sensing range
as the inputs for the avoidance function to avoid collision and keep all the quadrotors in the
sensing range. However, all the formation form is fixed. In this section, a global controller
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for a second order system is developed with the assumption that in the sensing range, the
minimum distance to obstacles can be measured. It can be seen from previous section, the
dynamics system of a quadrotor is usually separated into two subsystems, the translational
subsystem and the rotational subsystem. After the intermediate control input force is calculated,
the transformation coordinates via Lemma 2.3 generate the reference unit quaternion as the
reference for the second subsystem. The second subsystem is a fully actuated system then it
can be directly applied existing control design method to develop the control input for this
subsystem. Second order system has the form of the translational subsystem so that it is chosen
to expand the leader-follower formation in the case that the formation can be fixed, rotated
around the formation center, expanded and moved along the reference formation.

4.6.1 Control objective

The dynamics of the second order system is written as in (4.164)

ṗij = vij

v̇ij = Fij
(4.164)

where ij ∈ N, N is the set of all vehicles in the group. All the other symbols in (4.164) are
defined as in Section 2.1.

Before starting the formation control objective we impose the following assumption on the ref-
erence trajectories, communication and initial conditions between the vehicles in the group

Assumption 4.6.

1. Let us define the formation of a group of quadrotors and the initial position of the leader
quadrotor as follows

LLdLi = [xLdLi yLdLi zLdLi]
T

pLi(t) = [xi1(t) yi1(t) zi1(t)]
T

(4.165)

where LLdi defines the formation shape of the leader vehicles and pLi is position vector of the
leader vehicles and it is defined as the first vehicle in each group. The follower dynamics then
is defined as follows

LF_Ldij = [xF_Ldij yF_Ldij zF_Ldij ]
T

pF_Lij(t) = [xF_Lij(t) yF_Lij(t) zF_Lij(t)]
T

(4.166)

whereLF_Ldij defines the formation shape of the follower quadrotors and pF_Lij(t) is position
vector of follower quadrotors in the pLi group.

2. The reference position trajectory pd(t) = [xd(t) yd(t) zd(t)]
T and the heading angle ψd are the

based path for the leader vehicles to track. The reference trajectory, the formation of leader
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and follower are satisfied as follows∥∥∥p(k)di ∥∥∥ ≤ ε0kd, ∥∥∥ψ(k)
di

∥∥∥ ≤ δ0kd,∥∥∥L(k)
LdLi

∥∥∥ ≤ ε1kd, ∥∥∥L(k)
F_Ldij

∥∥∥ ≤ ε2kd, (4.167)

3. Let us define
pijmn = pij − pmn

αijmn = 1
2p

T
ijmnpijmn

(4.168)

where ij ∈ Nmn, Nmn is the set of all vehicles and obstacles in the sensing range except the
vehicle ij.

To avoid collision and keep all the vehicles in the sensing range, the collision avoidance func-
tion is chosen as follows

βijmn = kβ
1−h(αijmn,αSijmn,αSijmn+δ)−h(αijmn,αRijmn−δ,αRijmn)

αijmn
(4.169)

where δ is a positive constant defined the working zone of the obstacle avoidance function.

Remark 4.6. In the Assumption 4.6, property (1) is the definition for formation shape of the leaders
and followers. Property (2) implies that the reference trajectory and formation are smooth. Property
(3) illustrates a definition of an obstacle avoidance which guarantees capacity of communication
and no collision among the vehicles.

Control Objective 4.5. Under the Assumption 4.6, first we design control input FLi such that the
Leader position vector pLi(t) globally track the reference trajectory pLdi(t) = pd + LLdLi. Then
for each vehicle in the group, design control for the followers to track their references formed by
vector pF_Ldij(t) = pLi +LF_Ldij . In more detail, for each vehicle F_Lij, design the control inputs
FF_Lij such that the position vector pF_Lij(t) of the follower vehicle F_Lij track their reference
trajectories pF_Ldij(t) while avoid collision with all other vehicles, obstacles and keep them in the
sensing range. Specifically, we design the control inputs FLi and FF_Lij such that

lim
t→∞

(pLi(t)− pLdi(t)) = 0,

lim
t→∞

(ψLi(t)− ψdi(t)) = 0

lim
t→∞

(
pF_Lij(t)− pF_Ldij(t)

)
= 0,

lim
t→∞

(
ψF_Lij(t)− ψLi(t)

)
= 0

‖pij − pmn‖ ≥ αSijmn

(4.170)

for all ij ∈ N, ij 6= mn and t ≥ t0 ≥ 0, the control design needs to keep all other states of the
vehicle dynamics bounded for all initial conditions.
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4.6.2 Control Design

To design control for the leader-follower formation satisfying the control objective 4.5, in first
step, the controller for the leader tracking the predefined path is designed. After that the refer-
ence formation of followers is formed then the control inputs FLi and FF_Lij are constructed.

We define the tracking errors as follows:

peLi = pLi − pLdi,

veLi = vLi −αvLi,

peF_Lij = pF_Lij − pF_Ldij ,

veF_Lij = vF_Lij −αvF_Lij ,

(4.171)

where αvLi is a virtual control of leader velocity vLi and αvF_Lij is a virtual control of follower
velocity vF_Lij .

Differentiating both sides of (4.171) along (4.164), the error dynamics are expressed as

ṗeLi = veLi +αvLi − ṗLdi,

v̇eLi = FLi − α̇vLi

ṗF_Lij = veF_Lij +αvF_Lij − ṗF_Lij ,

v̇eF_Lij = FF_Lij − α̇vF_Lij

(4.172)

where FLi is the control input of the leader Li and FF_Lij is the control input of the follower
F_Lij. In order to design these control inputs achieving the Formation control objective 4.5, we
consider the following potential function:

V1a =
1

2

NL∑
i=1

NF (i)∑
j=1

pTeLipeLi +
∑
ij∈Nij

βijmn

 (4.173)

where Nij is the set containing all the vehicles and obstacles in the sensing range. NL is the
number of leaders, and NF (i) is the number of followers in the group i. βijmn is taken from
(4.169) where αijmn is calculated from (4.168).

Differentiating both sides of (4.173) gives

V̇1a =
NL∑
i=1

NF (i)∑
j=1

[
pTeLiṗeLi +

∑
ij∈Nij

β′ijmnα̇ijmn

]

=
NL∑
i=1

NF (i)∑
j=1

[
pTeLiṗeLi +

∑
ij∈Nij

β′ijmnp
T
ijmnṗijmn

] (4.174)

Noting that ṗijmn = (ṗij − ṗLdij) − (ṗmn − ṗLdmn) = veLij − veLmn, we can write (4.174) as
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follows

V̇1a =
NL∑
i=1

NF (i)∑
j=1

(pTeLi +
∑

ij∈Nij
β′ijmnp

T
ijmn)(veLi +αvLi − ṗLdi)

=
NL∑
i=1

NF (i)∑
j=1

ΩT
Li(veLi +αvLi − ṗLdi)

(4.175)

where
ΩLi = peLi +

∑
ij∈Nij

β′ijmnpijmn (4.176)

The equation (4.175) suggests that we choose

αvLi = −k1ΩLi + ṗLdi (4.177)

To design the control input FLi, considering the following Lyapunov function

V2a = V1a +
1

2

NL∑
i=1

NF (i)∑
j=1

vei
Tvei (4.178)

Differentiating both sides of (4.178) gives

V̇2a =
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

LiΩLi + vTei(FLi − α̇vLi + ΩLi)
]

(4.179)

which suggests that we choose:

FLi = −k2veLi + α̇vLi −ΩLi (4.180)

For the follower group, the design process is similar as above. The control force FF_Lij is
constructed by considering the following Lyapunov function

V1b =
1

2

NL∑
i=1

NF (i)∑
j=1

pTeF_LijpeF_Lij +
∑
ij∈Nij

βijmn

 (4.181)

Differentiating both sides of (4.181) gives

V̇1b =
NL∑
i=1

NF (i)∑
j=1

[
pTeF_LijṗeF_Lij +

∑
ij∈Nij

β′ijmnα̇ijmn

]

=
NL∑
i=1

NF (i)∑
j=1

[
pTeF_LijṗeF_Lij +

∑
ij∈Nij

β′ijmnp
T
ijmnṗijmn

] (4.182)

Noting that ṗijmn = (ṗij − ṗF_Ldij) − (ṗmn − ṗF_Ldmn) = veF_Lij − veF_Lmn, we can write
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(4.182) as follows

V̇1b =
NL∑
i=1

NF (i)∑
j=1

(pTeF_Lij +
∑

ij∈Nij
β′ijmnp

T
ijmn)(veF_Lij +αvF_Lij − ṗF_Ldij)

=
NL∑
i=1

NF (i)∑
j=1

ΩT
F_Lij(veF_Lij +αvF_Lij − ṗF_Ldij)

(4.183)

where
ΩF_Lij = peF_Lij +

∑
ij∈Nij

β′ijmnpijmn (4.184)

The equation (4.183) suggests that we choose

αvF_Lij = −k1ΩF_Lij + ṗF_Ldi (4.185)

To design the control input FF_Lij , considering the following Lyapunov function

V2b = V1b +
1

2

NL∑
i=1

NF (i)∑
j=1

veF_Lij
TveF_Lij (4.186)

Differentiating both sides of (4.186) gives

V̇2b =
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

F_LijΩF_Lij + vTeF_Lij(FF_Lij − α̇vF_Lij + ΩF_Lij)
]

(4.187)

which suggests that we choose:

FF_Lij = (−k2veF _Lij + α̇vF_Lij −ΩF_Lij) (4.188)

Substituting control inputs (4.180) and (4.188) into (4.172), we have the following closed loop
system:

ṗeLi = veLi − k1ΩLi

v̇eLi = −k2veLi −ΩLi

ṗeF_Lij = veF_Lij − k1ΩF_Lij

v̇eF_Lij = −k2veF_Lij −ΩF _Lij

(4.189)

The control design has been completed. We summarize the results in the following theorem.

Theorem 4.5. Under Assumption 4.6, the formation control laws consisting of (4.180) and (4.188)
for the vehicle ij achieve the Formation Control Objective 4.5, there is no collision between all the
vehicles, the position pLi, and heading angle ψLi of the leader vehicle Li and the position pF_Lij ,
and heading angle ψF_Lij of the follower vehicle F_Lij globally asymptotically track their reference
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trajectories pLdi, ψLdi, pF_Ldij , and ψF_Ldij , respectively.

lim
t→∞

(pLi(t)− pLdi(t)) = 0,

lim
t→∞

(ψLi(t)− ψdi(t)) = 0

lim
t→∞

(
pF_Lij(t)− pF_Ldij(t)

)
= 0,

lim
t→∞

(
ψF_Lij(t)− ψLi(t)

)
= 0

‖pij − pmn‖ ≥ αSijmn

(4.190)

and the closed loop system (4.189) is forward complete.

Proof. See Appendix B.7.

4.6.3 Simulation Results

In this section, we illustrate the effectiveness of the proposed formation control design through
a numerical simulation. The number of leader NL = 4 and NF (i) = [4; 4; 4; 4]. The simulation
is taken in seven cases with and without obstacles.

The initial conditions are taken as

pij(0) = [(i− 1) ∗R1 (j − 1) ∗R1 0]T ;

vij(0) = [0 0 0]T
(4.191)

The reference path and formation of the leader and follower are chosen as follows

LdL1(:, i) = LLdLi = [RL0.sin((i− 1).2.pi/(NL));RL0.cos((i− 1).2.pi/(NL)); 0],

LF_Ldij = [R0.sin((j − 1).2.pi/(NF (i)− 1));R0.cos((j − 1).2.pi/(NF (i)− 1)); 0],

s = 0.02.t,

pd1 = [15; 2; 4]

pd2 = [10.cos(0.1.s); 10.sin(0.1.s); 5],

pd3 = [10.cos(0.1.s); 10.sin(0.1.s); 5 + s],

(4.192)

where R1 = 1.5m, R0 = 3m, at the first time, all vehicles are distributed on land in columns.
The reference paths are a target point (pd1), a circle (pd2) and a helix (pd3).

The control gains are chosen as |aij | = 0.3m, |bij | = 10m, δ = .5m, k1 = 2, k2 = 5. Simulation
results are plotted in seven cases.

Case 1: The leaders are arranged on a rectangle and the followers are positioned on a triangle.
The leader tracks a goal point pd1. The position of the leaders and followers in the formation
is shown in the Figure 4.89. As can be seen from the Figure 4.90(a), 4.90(b), 4.91(a) and
Figure 4.91(b) that all the position tracking errors are converged to the origin. The minimum
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distance at 2s is about to safe area but there is no collision among vehicles.

Case 2: The leaders are arranged on a rectangle and the followers are positioned on a triangle
and they rotate around their leader position. The position of leaders and followers is shown
in Figure 4.92. From Figure 4.93(a), Figure 4.93(b), Figure 4.94(a) and Figure 4.94(b), one
can see that all the position tracking errors are converged to the origin and there is no collision
among vehicles.

Case 3: The rotation of the leaders around the reference point is added. The formation shape
of leaders and followers arranged on a rectangle and triangle as in the case 2. The position of
leaders and followers is shown in Figure 4.95. It can be seen from the Figure 4.96(a), Figure
4.96(b), and Figure 4.97(a) that all the position tracking errors are converged to the zero. The
minimum distance among vehicles is greater than the safe radius as shown in Figure 4.97(b).

Case 4: Both leaders and followers rotate around their references. The leader formation is
rotated around the reference point and the follower formation is rotated around its leader. The
simulation of position of leaders and followers is plotted in Figure 4.98. The position tracking
errors are plotted in Figure 4.99(a), Figure 4.99(b), and Figure 4.100(a). It is easy to see that all
the position tracking errors are converged to the origin. The minimum distance among vehicles
is greater than safe radius and there is no collision among them.

Case 5: The leader-follower formation tracking a helix path is added. Both leaders and fol-
lowers rotate around their references. The leader formation is rotated around the reference
point and the follower formation is rotated around its leader. The position of leaders and fol-
lowers are plotted in Figure 4.101. The position tracking errors are plotted in Figure 4.102(a),
Figure 4.102(b), and Figure 4.103(a). It can be seen from these figures that all the position
tracking errors are converged to the zero. The minimum distance among vehicles is plotted in
Figure 4.103(b). One can see that there is no collision among vehicles.

Case 6: The obstacles are added. The construction of these obstacles is generated randomly.
These obstacles are arranged on a square with 6 rows and 6 columns. The distances between
them is 2.5m. The radius and height of obstacles are rand(1) and rand(6). The leader-follower
formation are distributed at a reference point. Both leaders and followers rotate around their
references. The position of leaders, followers and obstacles are plotted in Figure 4.105. The
position tracking errors on x, y , z axis are plotted in Figure 4.104(a), Figure 4.104(b), and
Figure 4.106(a). It can be seen from these figures that all the tracking errors tend to converge
to zero. Some tracking errors are not converged to zero because at that time, the vehicles
are closed to other vehicles or obstacles. It means that the obstacle avoidance function works
effectively. This can be seen via Figure 4.106(b) that there is no collision among vehicles and
obstacles.

Case 7: The obstacles are added and the construction of these obstacles is generated randomly.
These obstacle’s properties are chosen the same as case 6. The leader-follower formation tracks
a circle path. Both leaders and followers rotate around their references. The position of leaders,
followers and obstacles is plotted in Figure 4.107. The position tracking errors on x, y, z axis
are plotted in Figure 4.104(a), Figure 4.104(b), and Figure 4.106(a). It can be seen from these
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figures that all the tracking errors tend to converge to zero. Some tracking errors are still not
converged to zero because at that time, the vehicles are closed to the other vehicles or obstacles.
The minimum distance among vehicles and obstacles is greater than the safe radius. This can
be seen via Figure 4.109(b) and there is no collision among vehicles and obstacles.
The simulation are plotted as follows:
Case 1: Leader follower formation of multiple leaders and followers where the leader formation
distributes on a square shape and the follower formation arranges on a triangle. The goal point
for the leader formation is pd1.
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Figure 4.89: The leader-follower formation of of four leaders and three followers in each group
distributed around a goal point
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(a) Position tracking errors on x axis.

0 5 10 15
−15

−10

−5

0

5

10

15

Time [s]

y 
er

ro
rs

 [m
]

(b) Position tracking errors on y axis.

Figure 4.90: Position tracking errors on x and y axis.
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(a) Position tracking errors on z axis.
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(b) Minimum distance among quadrotors.

Figure 4.91: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.

Case 2: Leader follower formation of multiple leaders and followers where the leader formation
distributes on a square shape and the follower formation arranges on a triangle. The goal point
for the leader formation is pd1. The followers rotate around their leaders.
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Figure 4.92: The leader-follower formation of of four leaders and three followers in each group
distributed around a goal point
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(a) Position tracking errors on x axis.
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(b) Position tracking errors on y axis.

Figure 4.93: Position tracking errors on x and y axis.
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(a) Position tracking errors on z axis.
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Figure 4.94: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.

Case 3: Leader follower formation of multiple leaders and followers where the leader formation
distributes on a square shape and the follower formation arranges on a triangle. The goal point
for the leader formation is pd1. The leaders rotate around their reference point.
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Figure 4.95: The leader-follower formation of of four leaders and three followers in each group
distributed around a goal point

123



Chapter 4. Fomation control design for a group of quadrotors

0 5 10 15
−15

−10

−5

0

5

10

15

Time [s]

x 
er

ro
rs

 [m
]

(a) Position tracking errors on x axis

0 5 10 15
−15

−10

−5

0

5

10

15

Time [s]

y 
er

ro
rs

 [m
]

(b) Position tracking errors on y axis.

Figure 4.96: Position tracking errors on x and y axis.
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(a) Position tracking errors on z axis.
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Figure 4.97: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.

Case 4: Leader follower formation of multiple leaders and followers where the leader formation
distributes on a square shape and the follower formation arranges on a triangle. The goal point
for the leader formation is pd1. Both leaders and followers rotate around their references.
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Figure 4.98: The leader-follower formation of of four leaders and three followers in each group
distributed around a point
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Figure 4.99: Position tracking errors on x and y axis.
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Figure 4.100: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.

Case 5: Leader follower formation of multiple leaders and followers where the leader formation
distributes on a square shape and the follower formation arranges on a triangle. The reference
path pd3 for the leaders is a helix. Both leaders and followers rotate around their references.
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Figure 4.101: The leader-follower formation of of four leaders and three followers in each group
distributed around their references
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(b) Position tracking errors on y axis.

Figure 4.102: Position tracking errors on x and y axis.
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(a) Position tracking errors on z axis.
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Figure 4.103: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.
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Case 6: Leader follower formation with obstacles. The reference path pd2 for the leaders is a
circle. Both leaders and followers rotate around their references.
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(b) Position tracking errors on y axis.

Figure 4.104: Position tracking errors on x and y axis.
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Figure 4.105: The leader-follower formation with obstacles
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(a) Position tracking errors on z axis.
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Figure 4.106: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.

Case 7: Leader follower formation of multiple leaders and followers with obstacles. The refer-
ence path pd2 for the leaders is a circle. Both leaders and followers rotate around their refer-
ences.
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Figure 4.107: The leader-follower formation with obstacles.
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(b) Position tracking errors on y axis.

Figure 4.108: Position tracking errors on x and y axis.
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Figure 4.109: Position tracking errors on z axis and the minimum distance among quadrotors in
the formation.

4.6.4 Conclusion

A leader-follower formation controller for second order system has been constructed. Seven
cases of changing formation shape have been tested via simulations. Five first cases, obstacles
are not included but the change of formation shape such as moving of follower around its
leader or moving of leader and follower around its reference is simulated. In the last two cases,
obstacles are added. The simulation results demonstrate that all the tracking errors converge to
the origin and there is no collision among vehicles and obstacles.
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4.7 Conclusion

Five formation controllers have been presented. For first third controllers, the virtual structure
to form for the formation of quadrotors is developed. The first controller is an expansion of
control for one quadrotor to multiple ones. In this controller, a transformation coordinate using
conversion between quaternions and Euler angles is applied so that controller is developed for
two subsystems, the translational and rotational subsystem. In addition to, the collision avoid-
ance function constructing from a pairwise collision avoidance function is also embedded. The
simulation results show that all the states converge to the origin and there is no collision among
quadrotors in the formation. The second controller is being expanded by assuming that the
linear velocity is unmeasured and the disturbance of the environment is added. By employing
two observers, one for estimating the linear velocity and one for observing the environment
disturbance, the formation controller is constructed. It is shown that the disturbance observer
error converges to a ball centered at the origin and the velocity observer error also stabilizes to
the zero. In the case the derivative of disturbance is equal zero, the disturbance error exponen-
tially converges to zero. The simulation results illustrate that all the observer errors converge
to zero. There is no collision among quadrotors and all the states stabilize to the origin. In
the third controller, adaptive backstepping control design technique is employed. In comparing
with the second controller, the estimations in this section do not reach to the real values. Instead
of these, the tracking errors are eliminated by using the combination of the estimations and a
energy function as presenting in the third controller. However, the third controller is dealt with
the uncertainty in the quadrotor dynamics.

For the last two controllers, the fourth controller continuously uses the adaptive backstepping
control design technique to develop a controller for a formation of leader-follower quadrotors
and the fifth controller only concerns with the second order system. This second order system
somehow has the form of the translational subsystem of a quadrotor dynamics. In the fourth
controller, by using the leader-follower cooperation, an adaptive formation controller of leader-
follower quadrotors has been developed. The update laws using the projection operator are
constructed to avoid the finite escape time in the controller. A new collision avoidance function
based on a smooth step function is also proposed and embedded. This function works quite
well in both two cases: avoiding collision among quadrotors in the formation and keeping
them in the sensing range. It can be seen that the fourth controller is a combination of virtual
structure and leader-follower approach. The leaders usually track a moving object of virtual or
actual vehicle and the followers cooperate tasks around the leaders. In the fourth controller, the
leaders asymptotically track a predefined reference trajectory like the virtual structure approach,
and the followers link with their leaders and form formation shapes. These formation shapes
can be changed such as moving around a point, moving along a trajectory or expanding the
whole group. Some tests in these cases are introduced in the fifth controller. The fifth controller
is designed for a formation of leader-follower vehicles in the form of second order system.
Seven cases have been tested with and without obstacles. For first five cases, the change of

131



Chapter 4. Fomation control design for a group of quadrotors

formation shape is tested without obstacles. In the last two cases, the obstacles are included in
the simulations. The simulation results show that the new collision avoidance function illustrates
the effectiveness in avoidance of collision and obstacles.
The core of all the controllers is the thrust and attitude extraction algorithm. This algorithm
transforms an underactuated system into two fully actuated systems which can directly apply
any control design techniques to develop the controller for this kind of vehicles. This algorithm
can be also applied for the vehicles on land or underwater.
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Chapter 5. Thesis summary and future work

This chapter provides a summary of the work in the thesis and discusses some future research
areas.

5.1 Thesis summary

The thesis consists of five chapters and two appendices. The first chapter presents an overview
of formation control, formation control for VTOL UAVs, and control of a single VTOL UAV. In
the chapter 2, the basic equations of a quadrotor and of multiple quadrotors in the form of
Euler angles and quaternions have been described. Some mathematical tools using for develop-
ing the controllers in the chapter 3 and chapter 4 are also presented. The chapter 3 illustrates
two controllers for an underactuted quadrotor. The first controller describing in Euler angles
is designed. The drawback of Euler angle model is that there is singularity in the dynamics at
the θ = π/2. The thrust and attitude extraction algorithm in this controller is main idea to
develop the global controller for single quadrotor and for formation of quadrotors in this the-
sis. The drawback in the Euler angles is overcome by using quaternions. The second controller
employs the unit-quaternion in describing dynamics and uses adaptive backstepping control de-
sign technique to eliminate the affect of disturbance and uncertainty acting on the quadrotor.
A new thrust and attitude extraction algorithm which transforms an underactuated system into
two separated fully actuated subsystems is generated. This algorithm ensures that the control
design process is easier and more simple. After this algorithm is applied, a thrust to force the
quadrotor achieve the translational target and a reference attitude for the second subsystem are
created. This algorithm is also embedded in formation controllers in the next chapter. Chap-
ter 4 indicates five formation controllers divided into two group, the virtual structure (Section
4.2, 4.3, and 4.4) and the leader-follower group (Section 4.5, and 4.6). In both two group,
the collision avoidance function based on pairwise smooth step function is embedded in the
controllers. In the first group, virtual structure approach is applied to design the cooperation
tasks for all quadrotors in the group tracking their references. All the equations of motion of
quadrotor in Chapter 4 use quaternions for modeling. The first formation controller is designed
for twelve quadrotors distributed on a circle shape while tracking their references. The collision
avoidance function uses only the pushing force to put the other quadrotors far away. The sim-
ulation results show that this function works quite effectively and there is no collision among
quadrotors in the formation. The new thrust and attitude extraction algorithm is also embedded
in this controller. Moving to the second controller, the assumption, that the linear velocity and
disturbance are unmeasured, is used. This controller uses two observers, one for linear velocity
and one for disturbance to provide necessary signals for the controller. It is shown that all the
observer values reach to the real ones. It is also shown that all the states are converged to the
origin and there is no collision among quadrotors in the formation. The third controller is dealt
with the uncertainty in the dynamics and the affect of environment disturbance. The adaptive
backstepping technique is used. Unlike the previous controller, the estimations do not reach the
real values. These values, obtained via control update laws, combine with a energy function to
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eliminate the affect of uncertainty and disturbance on the quadrotors. The simulation results
shows that this controller work well with the affect of uncertainty in the dynamics and environ-
ment disturbance. In the second group, leader-follower approach for formation of quadrotors
is developed. The fourth controller continuously uses the adaptive backstepping control design
technique to design control inputs. In this controller, the leader tracks a reference path like the
virtual structure approach and the followers follow their leader and form their formation. The
collision avoidance function in this controller is embedded with the pulling and pushing force
so that the quadrotor in the formation can avoid collision among them and keep them in the
sensing range. It can be seen from the simulation results that all the tracking errors converge
to the zero under the affect of uncertainty and disturbance. The minimum distance satisfies
the safe condition. There is no collision among quadrotors in the formation. In all above four
controllers, the formation shape is fixed . To examine with the change of formation shape, the
fifth controller for second order system is developed. Leader-follower formation is continuously
applied. The change of formation shape of leaders and followers is simulated. The obstacles is
also added in the simulation. The simulation results show that the collision avoidance function
works quite effectively and there is no collision among vehicles and obstacles. The last two
appendices present some proofs of lemma and theorem in this thesis.

5.2 Future work

The following issues are recommended for future works:

• Output-feedback control: Since the adaptive controllers in Chapter 3 and 4 use the state-
feedback form to deal with the uncertainties and disturbances of the vehicle, it can be fur-
ther exploited with adaptive control algorithms in the output-feedback form where some
of the system states are not measured.

• Collision avoidance function: Although the collision avoidance function using in this the-
sis allows the vehicles in the formation avoid collision among them and with obstacles,
somehow when the density of the vehicles and obstacles is increased, the position control
objective may not be achieved. Expanding to the case when all the vehicles is connected,
all the information can be exchange among connected vehicles. Then, the sensing range is
expanded to the whole formation from which a more effective collision avoidance function
may be created.

• An area which is not discussed in this thesis is the communication delay problem. This
issue has been discussed in many research publications and it is one of issues in nonlinear
time-delay systems. Observation and control for nonlinear time-delay systems are still
open problems.

• Experimental work: Theory and practice are interrelated. It is of great practical interest
to validate the controllers proposed in this thesis and to compare with existing ones in
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experiments. The parameters of vehicle such as position and velocity, and the parameters
of location or distance from the obstacles to the vehicle, size and movement speed of
obstacles relative with the vehicle position are the main data needing to be determined.
These values can be provided by sensors installed on/out of vehicles such as GPS, RADAR,
Laser units, IMU,... Increase the accurate data to provide precise information about the
position and velocity of the vehicle by using some kind of sensors is an interesting area.
For example, using the vision-based sensors combining with GPS determines the current
position of the vehicle while the GPS data is unavailable.
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A.1 Proof Of Lemma 2.2

To prove this Lemma, the conversion between quaternions and Euler angles is used. First we
rewrite the the translational dynamics of a quadrotor in the Euler angles and quaternions as
follows

ṗ = v

v̇ = ge3 − 1
mTR

T
Q(Q)e3

(A.1)

ṗ = v

v̇ = ge3 − 1
mTR

T
η (αQ)e3

(A.2)

where RT
Q(Q) is a transformation in the unit-quaternion form. RT

η (αQ) is a transformation
matrix, which is related through the functions of Euler angles. αQ = [αφ αθ αψ]T is an orien-
tation vector in the earth-fixed frame where αφ, αθ and αψ are the roll, pitch and yaw angles,
respectively. The transformation matrix in Euler angles is given by

Rη(αQ) =

 CαθCαψ −CαφSαψ + SαφSαθCαψ

CαθSαψ CαφCαψ + SαφSαθSαψ

−Sαθ SαφCαθ

SαφSαψ + CαφSαθCαψ

−SαφCαψ + CαφSαθSαψ

CαφCαθ


(A.3)

It is easy to see that the difference between the translational dynamics (A.2) and the transla-
tional dynamics (A.1) is the transformation matrix RT

η (αQ) and RT
Q(Q). Thus the intermediate

control force F = TRT
Q(Q)e3 of (A.1) is also described as F = TRT

η (αQ)e3. Assuming that
this control force achieves the translational control objective and ideally satisfies the heading
reference angle ψd in which αψ is equal ψd.

Since RT
η (αQ)Rη(αQ) = I3×3 and

Te3 = mRη(αQ)F , (A.4)

we have
T = m ‖F ‖ , (A.5)

The reference attitude Qd is obtained through two steps, In the first step, the roll and pitch of
the Euler angle vector αQ is calculated via the yaw angle αψ. In the next step, the attitude
reference Qd is obtained by using the conversion between quaternions and Euler angles. first
we expand the term Rη(αQ) by using (A.4) and e3 = [0 0 1]T as follows.
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A.2. Proof of Lemma 2.3

CαθCαψF1 + CαθSαψF2 − SαθF3 = 0

[−CαφSαψ + SαφSαθCαψ]F1 + [CαφCαψ

+SαφSαθSαψ]F2 + SαφCαθF3 = 0

[SαφSαψ + CαφSαθCαψ]F1 + [−SαφCαψ
+CαφSαθSαψ]F2 + CαφCαθF3 = T

(A.6)

We choose αψ = ψd and calculate αφ and αθ depending on it. From the first equation of (A.6)
we have

αθ = arctan

(
CαψF1 + SαψF2

F3

)
(A.7)

By multiplying the second equation of (A.6) with −cos(αφ) and the third equation of (A.6) with
sin(αφ) then adding them together, we obtain

αφ = arcsin

(
SαψF1 − CαψF2

T

)
(A.8)

Now we can use the conversion between quaternions and Euler angles to obtain the reference
unit-quaternion vector Qd as follows

T = m ‖F ‖

Qd =


C
αφ
2 C

αθ
2 C

αψ
2 + S

αφ
2 S

αθ
2 S

αψ
2

S
αφ
2 C

αθ
2 C

αψ
2 − C

αφ
2 S

αθ
2 S

αψ
2

C
αφ
2 S

αθ
2 C

αψ
2 + S

αφ
2 C

αθ
2 S

αψ
2

C
αφ
2 C

αθ
2 S

αψ
2 − S

αφ
2 S

αθ
2 C

αψ
2

 (A.9)

A.2 Proof of Lemma 2.3

We first rewrite the tracking errors of nonlinear system (2.21) as follows

x1e = x1 − xd,
x2e = x2 − α2

(A.10)

Differentiating both sides of (A.10) and using the control and update laws (2.22), we obtain the
closed loop as follows

ẋ1e = −k1x1e + x2e,

ẋ2e = −k2x2e − x1e + θ̃1u+ θ̃2ϕ(x)
(A.11)

To prove that closed loop system (A.11) is globally asymptotically stable at the origin, we con-
sider the following function

V = 1
2x

2
1e + 1

2x
2
2e + 1

2γ1
θ̃21 + 1

2γ2
θ̃22 (A.12)
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The first time derivative of V along solution of closed loop system (A.11) satisfies

V̇ = −k1x21e − k2x22e + θ̃1

(
x2eu+

˙̃
θ1
γ1

)
+ θ̃2

(
x2eϕ(x) +

˙̃
θ2
γ2

)
(A.13)

we use
˙̂
θ1 = − ˙̃

θ1 = proj(γ1x2eu)
˙̂
θ2 = − ˙̃

θ2 = γ2x2eϕ(x)
(A.14)

Using (A.14) and projection operator’s properties in (2.20) , the solution (A.13) can be rewritten
as

V̇ ≤ −k1x21e − k2x22e + θ̃1

(
x2eu− γ1x2eu

γ1

)
+ θ̃2

(
x2eϕ(x)− γ2x2eϕ(x)

γ2

)
≤ −k1x21e − k2x22e < 0 ∀(x1e, x2e) 6= (0, 0)

(A.15)

which shows that the tracking error system (A.11) globally asymptotically converges to zero at
origin.

A.3 Proof of Lemma 4.1

The proof of the disturbance observer can be seen in [DS10]. For more convenient , the distur-
bance observer is re-described. Let us first calculate the derivative of d̂i(t) as follows:

˙̂
di = żi +K0iĠ

−1
2i (x1i)x2i +K0iG

−1
2i (x1i)ẋ2i

= −K0izi −K0i(Ġ
−1
2i (x1i)x2i +G−12i (x1i)F2i(x1i,x2i,ui) +K0iG

−1
2i (x1i)x2i)

+K0iĠ
−1
2i (x1i)x2i +K0iG

−1
2i (x1i)ẋ2i

= K0i(di − d̂i) = K0id̃i

(A.16)

Since d̃i = di − d̂i , using (A.16), we have:

˙̃di = ḋi − ˙̂di = −K0id̃i + ḋi (A.17)

Consider the Lyapunov function candidate

Ṽi =
1

2
d̃Ti d̃i (A.18)

whose first time derivative along the solutions of (A.17) satisfies

˙̃Vi = −d̃Ti K0id̃i + d̃Ti ḋi (A.19)

Noting that (
d̃i − 1

2δ ḋi

)2
≥ 0

⇔ d̃Ti d̃i −
d̃Ti ḋ
δ + 1

4δ2
ḋTi ḋi ≥ 0

⇔ d̃Ti ḋi ≤ δd̃Ti d̃+ 1
4δ ḋ

T
i ḋi

(A.20)
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Assume that ḋi ≤ Cd
˙̃V i ≤ −d̃Ti (λmin(K0i)− δ) d̃i + 1

4δ ḋ
T
i ḋi

≤ −2 (λmin(K0i)− δ) Ṽi + 1
4δC

2
d

(A.21)

where λmin(K0i) is the minimum eigenvalue of the matrix K0i ; δ is a positive constant such
that λmin(K0i)− δ is strictly positive; From (A.21), it is seen that Ṽi exponentially converges to
a ball centered the origin with the radius RṼi =

C2
d

8δ(λmin(K0i)−δ) as long as the solutions x1i(t)

and x2i(t) exist. The existence of the solutions x1i(t) and x2i(t) is to be guaranteed by the
design of the control input ui. This in turn means that the disturbance error d̃i(t) exponentially
converges to a ball centered at the origin with the radius Rd̃i =

√
1

4δ(λmin(K0i)−δ)Cd . Since
λmin(K0i) can be chosen arbitrarily large by choosing the matrix K0i, the radius Rd̃i can be
made arbitrarily small. In the case Cd = 0, the radius Rd̃i = 0 meaning that the disturbance
error d̃i(t) exponentially converges to zero.
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Appendix B. Proof for Theorems

B.1 Proof Of Theorem 3.1

It can be seen from (3.14) and (3.30) that V̇2 ≤ 0 and V̇4 ≤ 0. With the initial condition
in Assumption 3.1, This implies that V2(t0) and V4(t0) are bounded. Thus, V2(t) and V4(t)

are also bounded. Boundedness of V2(t) and V4(t) for all t ≥ t0 ≥ 0 imply that of pe, ve,
ηe, and ωe. Therefore the closed-loop system (3.31) is forward complete. It also implies that
(ψ(t)− ψd(t)) = 0 and lim

t→∞
(p(t)− pd(t)) = 0. This ends the proof.

B.2 Proof Of Theorem 3.2

To prove Theorem 3.2, we consider the following function

V = 1
2p

T
e pe + 1

2v
T
e ve +

J̃T1 J̃1
2γv1

+ d̃Tv d̃v
2γv2

+ 1
2q

T
e qe + 1

2ω
T
e ωe +

J̃T2 J̃2
2γω1

+ d̃Tω d̃ω
2γω2

(B.1)

using control and update laws in (3.38) and (3.44), and smooth saturation function and projec-
tion operator properties, the first derivative of V satisfies

V ≤ −k1pTe pe − k2vTe ve
+J̃T1

(
(J̃T1 )−1vTe Ĵ1Fd)−

γv1(ĴT1 )−1(vTe Ĵ1Fd)
γv1

)
+d̃Tv

(
ve − γv2ve

γv2

)
−k3qTe qe − k4ωTe ωe
+J̃T2

(
(J̃T2 )−1ωTe Ĵ2τ )− γω1(ĴT2 )−1(ωTe Ĵ2τ )

γω1

)
+d̃Tω

(
ωe − γω2ωe

γω2

)
≤ −k1pTe pe − k2vTe ve − k3qTe qe − k4ωTe ωe
< 0 ∀(pe,ve, qe,ωe) 6= (0, 0, 0, 0).

(B.2)

With the initial condition in Assumption 3.1, V (t0) is bounded. Thus, V (t) is also bounded.
Boundedness of V (t) for all t ≥ t0 ≥ 0 implies that of pe, ve, qe, and ωe. Therefore the closed-
loop system (3.45) is forward complete. Since lim

t→∞
qe = 0 implies that (ψ(t)− ψd(t)) = 0; It

also shows that lim
t→∞

(p(t)− pd(t)) = 0. This ends the proof.

B.3 Proof Of Theorem 4.1

From the Lyapunov candidates (4.20) and (4.31), we first consider the following Lyapunov
function

V = V2 + V4 (B.3)
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B.4. Proof Of Theorem 4.2

Differentiating both sides of (B.3) and substituting with (4.21) and (4.32), yields,

V̇ =
N∑
i=1

(
−k1ΩT

i Ωi − k2vTeivei − k3qTeiGiG
T
i qei − k4ωTeiωei

)
,

< 0 ∀(Ωi,vei, qei,ωei) 6= (0, 0, 0, 0).

(B.4)

With the initial condition in Assumption 4.2, V (t0) is bounded. Thus, V (t) is also bounded.
Boundedness of V (t) for all t ≥ t0 ≥ 0 implies that of Ωi, pei, vei, qei, and ωei. Therefore the
closed-loop system (4.33) is forward complete. Since lim

t→∞
qei = 0 implies that (ψi(t)− ψd(t)) =

0; It also shows that lim
t→∞

(pi(t)− pdi(t)) = 0. This ends the proof.

B.4 Proof Of Theorem 4.2

The convergence of the linear velocity observer and disturbance observer has been proved as in
Section 4.3.2.1 and Lemma A.3. Let we consider the following following Lyapunov function

V = V2 + V4 (B.5)

Differentiating both sides of (B.5) and substituting with (4.63) and (4.74), yields,

V̇ =
N∑
i=1

(
−k1ΩT

i Ωi − k2vTeivei − k3qTeiGiG
T
i qei − k4ωTeiωei

)
,

< 0 ∀(Ωi,vei, qei,ωei) 6= (0, 0, 0, 0).

(B.6)

With the initial condition in Assumption 4.3, V (t0) is bounded. Thus, V (t) is also bounded.
Boundedness of V (t) for all t ≥ t0 ≥ 0 implies that of Ωi, pei, vei, qei, and ωei. Therefore the
closed-loop system (4.75) is forward complete. Since lim

t→∞
qei = 0 implies that (ψi(t)− ψd(t)) =

0; It also shows that lim
t→∞

(pi(t)− pdi(t)) = 0. This ends the proof.

B.5 Proof Of Theorem 4.3

Let we consider the following following Lyapunov function

V = V2 + V4 +
N∑
i=1

[
J̃T1iJ̃1i
2γv1

+
d̃Tvid̃vi
2γv2

+
J̃T2iJ̃2i
2γω1

+
d̃Tωid̃ωi
2γω2

]
(B.7)

where V2 and V4 is taken from (4.94) and (4.106). Differentiating both sides of (B.7) and
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substituting (4.96) , (4.108) and using control update laws (4.97), (4.109), yields

V̇ =
N∑
i=1

(
−k1ΩT

i Ωi − k2vTeivei − k3qTeiGiG
T
i qei − k4ωTeiωei

)
,

+
N∑
i=1

(
J̃T1i

(
(J̃T1i)

−1(vTeiĴ1iFi)−
γv1(ĴT1i)

−1(vTe1Ĵ1iFi)
γv1

)
+ d̃Tvi

(
vei − γv2vei

γv2

))
+

N∑
i=1

(
J̃T2i

(
(J̃T2i)

−1(ωTeiĴ2iτi)−
γω1(ĴT2i)

−1(ωTeiĴ2iτi)
γω1

)
+ d̃Tωi

(
ωei − γω2ωei

γω2

))
=

N∑
i=1

(
−k1ΩT

i Ωi − k2vTeivei − k3qTeiGiG
T
i qei − k4ωTeiωei

)
,

< 0, ∀(Ωi,vei, qei,ωei) 6= (0, 0, 0, 0).

(B.8)

With the initial condition in Assumption 4.4, V (t0) is bounded. Thus, V (t) is also bounded.
Boundedness of V (t) for all t ≥ t0 ≥ 0 implies that of Ωi, pei, vei, qei, and ωei. Therefore the
closed-loop system (4.110) is forward complete. Since lim

t→∞
qei = 0 implies that (ψi(t)− ψd(t)) =

0; It also shows that lim
t→∞

(pi(t)− pdi(t)) = 0. This ends the proof.

B.6 Proof Of Theorem 4.4

First we take the following Lyapunov function

V = V2a + 1
2γ1v

J̃T1LiJ̃1Li + 1
2γ2v

d̃TvLid̃vLi

+V2b + 1
2γ1v

J̃T1Fij J̃1Fij + 1
2γ2v

d̃TvFijd̃vF ij

+V4 + 1
2γ1ω

(J̃
−1
Li )T (J̃

−1
Li ) + 1

2γ2ω
d̃TωLid̃ωLi

+ 1
2γ1ω

(J̃
−1
Fij)

T (J̃
−1
Fij) + 1

2γ2ω
d̃TωFijd̃ωFij

(B.9)

Noting that
˙̃J1(·) = − ˙̂

J1(·),
˙̃dv(·) = − ˙̂dv(·),

( ˙̃J
−1
(·) ) = −( ˙̂J

−1
(·) ),

˙̃
dω(·) = − ˙̂

dω(·)

(B.10)

where (·) stands for Li and Fij.

Differentiating both sides of (B.9), and using the results of (B.10), (4.130), (4.139) and (2.20)
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, yields

V̇ ≤
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

LiΩLi − k2veLiTveLi
]

+
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

FijΩFij − k2veF ijTveF ij
]

+
NL∑
i=1

NF (i)∑
j=1

[
−k3qTeLiGLiG

T
LiqeLi − k3qTeF ijGF ijG

T
FijqeF ij

]
+
NL∑
i=1

NF (i)∑
j=1

[
−k4ωTeLiωeLi − k4ωTeF ijωeF ij

]
< 0, ∀(ΩLi,veLi, qeLi,ωeLi) 6= (0, 0, 0, 0) and ∀(ΩFij ,veF ij , qeF ij ,ωeF ij) 6= (0, 0, 0, 0).

(B.11)
meaning that

V (t) ≤ V (t0) (B.12)

With the initial condition (2) in Assumption 4.5, V (t0) is bounded. Thus, V (t) is also bounded.
Boundedness of V (t) for all t ≥ t0 ≥ 0 implies that of ΩLi,ΩFij , veLi, veF ij , qeLi, qeF ij , ωeLi,
and ωeF ij . Therefore the closed-loop system (4.157) is forward complete. Since lim

t→∞
qeLi = 0

implies that (ψLi(t)− ψd(t)) = 0 and lim
t→∞

qeF ij = 0 implies that lim
t→∞

(ψFij(t)− ψLi(t)) = 0; It
also shows that lim

t→∞
(pLi(t)− pLdi(t)) = 0 and lim

t→∞
(ψFij(t)− ψLi(t)) = 0. This concludes the

proof.

B.7 Proof Of Theorem 4.5

First we substitute the intermediate controls from (4.180) and (4.188) into (4.179) and (4.187)
then we obtain

V̇2a =
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

LiΩLi − k2vTeLiveLi
]
,

< 0, ∀(ΩLi,veLi) 6= (0, 0)

V̇2b =
NL∑
i=1

NF (i)∑
j=1

[
−k1ΩT

F_LijΩF_Lij − k2vTeF_LijveF_Lij

]
< 0, ∀(ΩF_Lij ,veF_Lij) 6= (0, 0)

(B.13)

this implies that
V2a(t) ≤ V2a(t0),
V2b(t) ≤ V2b(t0)

(B.14)

With the initial condition in Assumption 4.6, V2a(t0) and V2b(t0) are bounded. Thus, V2a(t) and
V2b(t) are also bounded. Boundedness of V2a(t) and V2b(t) for all t ≥ t0 ≥ 0 implies that of ΩLi,
ΩFij , veLi, and veF ij . Therefore the closed-loop system (4.189) is forward complete. It also
shows that lim

t→∞
(pLi(t)− pLdi(t)) = 0 and lim

t→∞
(pFij(t)− pLi(t)) = 0. This concludes the proof.
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Appendix C. Publication list

International Conferences

• Nguyen Dang Hao, Boutayeb Mohamed and Hugues Rafaralahy, "Trajectory-tracking con-
trol design for an under-actuated quadrotor", the 13th European Control Conference (ECC)
from the 24th to the 27th of June 2014 in Strasbourg, France.

• Nguyen Dang Hao, Boutayeb Mohamed and Hugues Rafaralahy, "Distributed controllers
for multi-agent dynamical systems", SIAM (Society for Industrial and Applied Mathemat-
ics) Conference (10th EASIAM 2014) Thailand.

• Nguyen Dang Hao, Boutayeb Mohamed and Hugues Rafaralahy, "Global path tracking con-
trol for multiple quadrotors", The 2nd World Conference on Complex Systems (WCCS14),
Agadir, Morocco.

• Nguyen Dang Hao, Boutayeb Mohamed and Hugues Rafaralahy, "Adaptive control for
leader-follower formation of quadrotors", 3rd Workshop on Research, Education and De-
velopment of Unmanned Aerial Systems, Cancun, Mexico, November 2015.

• Nguyen Dang Hao, Boutayeb Mohamed and Hugues Rafaralahy, "Formation of leader-
follower quadrotors in cluttered environment", The 2016 American Control Conference,
July 2016, Boston, MA, USA. Submitted.

Preparing papers

• Nguyen Dang Hao, Boutayeb Mohamed and Hugues Rafaralahy, "Formation control of mul-
tiple quadrotors with limited sensing in cluttered environment", SIAM Journal on Control
and Optimization (SICON). Preparing.
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Commande de vol en formation d’une flotte de véhicules sous-actionnés
Nguyen Dang Hao

Résumé

Le contrôle de vol en formation se rapporte au contrôle de la trajectoire de plusieurs véhicules pour
accomplir une tâche commune. La motivation du contrôle du vol en formation réside dans le fait que
l’utilisation de plusieurs drones permet de réaliser des tâches plus complexes et que ne peut accomplir un
drone unique. Les stratégies de commande de flotte de véhicules peuvent être classées en trois groupes
principaux : la stratégie de vol type meneur-suiveur, celle basée sur comportement et l’approche utilisant
un meneur virtuel. Chaque groupe se compose de différents véhicules et on suppose que les vehicules
communiquent entre eux pour échanger des informations. Le contrôle de position pour des quadrirotors
sous-actionnés ou des UAV VTOL a retenu l’intérêt de plusieurs chercheurs de la communauté scien-
tifique. En raison de la nature sous-actionnée des UAV VTOL, l’attitude du système doit être utilisée
afin de commander la position et la vitesse. En effet, la prise en compte des perturbations externes, des
incertitudes sur la dynamique du système ainsi que l’objectif d’obtenir des résultats globaux rendent la
synthèse de lois de commande plus difficile. Nous proposons, dans ce travail, un algorithme permettant
l’extraction de l’attitude et une nouvelle formulation de la poussée pour la commande d’un drone. Cet
algorithme utilise cette formulation de la force de poussée pour atteindre les objectifs en translation et
utilise le vecteur quaternion unitaire comme consigne du sous-système en rotation. Cet algorithme est
ensuite étendu au cas de la commande de vol en formation. Cinq contrôleurs de vol en formation sont
développés et séparés dans deux groupes : l’approche structure virtuelle et l’approche meneur-suiveur.
Les trois premiers contrôleurs de vol en formation utilisent l’approche structure virtuelle. La vitesse, les
perturbations et les incertitudes de modèle dans la dynamique sont estimées par le biais d’un observateur
et la technique de commande "backstepping" adaptative. La synthèse des deux derniers contrôleurs de
vol en formation de vol est obtenue en utilisant l’approche meneur-suiveur. La formation utilisant cette
approche pour des quadrirotors et pour le système du second degré est construite. Le changement de la
configuration de la formation de vol est également simulé pour ces deux derniers contrôleurs de vol en
formation. Dans chacun des cinq contrôleurs de vol en formation, la fonction d’évitement de collision
construite à partir d’une fonction indicielle "lisse" est incluse. Cette fonction produit une force de poussée
quand un quadrirotor évolue près des autres et d’une force de traction quand un quadrirotor évolue hors
de la zone de détection. Les résultats de simulation prouvent que cette fonction d’évitement de collision
fonctionne tout à fait correctement et qu’aucune collision entre les quadrirotors ni avec les obstacles ne
se produit. En résumé, l’utilisation de la poussée, de l’algorithme d’extraction d’attitude et de la fonction
d’évitement de collision, rend la synthèse des lois de commande plus facile et les résultats obtenus pour
le vol en formation sont globaux.
Mots clés : quadrirotor, commande de vol en formation, systèmes non linéaires, véhicules sous-actionnés,
drones



Formation control for a group of underactuated vehicles
Nguyen Dang Hao

Abstract

Formation control relates with the motion control of multiple vehicles to accomplish a common task.
The motivation of formation control is because of the advantages achieved by using a formation of ve-
hicles instead of a single one. Cooperative control approach can be cataloged into three main groups:
leader-follower, behavior-based and virtual structure. Each group consists of individual vehicles and the
communication allows the information be exchanged among vehicles. Position control for underactuated
quadrotors or VTOL UAVs has been focused in several group in the research community. Due to the un-
deractuated nature of VTOL UAVs, the system attitude must be used in order to control the position and
velocity of the system. Moreover, the effect of external disturbance, uncertainty of the dynamics and the
requirement of achieving the global results make the control design process more difficult. Developing
from a global controller for a single quadrotor, a new thrust and attitude extraction algorithm is proposed.
This algorithm allows transferring an intermediate control force to a thrust force to achieve the transla-
tional objective and an unit quaternion vector as a reference for the rotational subsystem. This algorithm
is also embedded in the formation controller. Five formation controllers are developed and separated
into two groups, virtual structure and leader-follower approach. The first three formation controllers are
constructed by using the virtual structure approach. The unmeasured linear velocity, disturbance and
uncertainty in the dynamics are solved by employing observer design and adaptive backstepping control
design technique. The last two formation controllers are built by using the leader-follower approach.
The leader follower formation for quadrotors and for second order system are constructed. The changing
of formation shape in working time also is simulated in these last two formation controllers. In all five
formation controllers, collision avoidance function constructed from a smooth step function is embed-
ded. This function generates a pushing force when a quadrotor goes close to the others and a pulling
force when a quadrotor travels out of the sensing range. The simulation results show that this collision
avoidance function works quite effectively and there is no collision among quadrotors and obstacles. It
can be summarized that by using the thrust and attitude extraction algorithm and the collision avoidance
function, the control design process becomes easier and all the formation controllers achieve the global
results.
Keywords: quadrotor, formation control, nonlinear systems, underactuated vehicles, UAV.
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