Thèse soutenue

Rôle du stress oxydant et des cassures de l’ADN dans l’émergence néoplasique post-sénescence

FR  |  
EN
Auteur / Autrice : Joe Nassour
Direction : Corinne Abbadie
Type : Thèse de doctorat
Discipline(s) : Biologie cellulaire (Médecine)
Date : Soutenance le 28/09/2015
Etablissement(s) : Lille 2
Ecole(s) doctorale(s) : École doctorale Biologie-Santé (Lille)
Partenaire(s) de recherche : Laboratoire : Institut de biologie (Lille) - Institut de biologie de Lille - IBL / IBLI
Jury : Examinateurs / Examinatrices : Corinne Abbadie

Résumé

FR  |  
EN

La sénescence est un état d’arrêt prolifératif mis en place par les cellules en réponse à des dommages à l’ADN. Elle est considérée comme un mécanisme de protection qui s’oppose à l’initiation et au développement d’un cancer. Or, les mécanismes de sénescence et la capacité des cellules à s’échapper de cet état et à générer des cellules transformées semblent varier selon les types cellulaires. Chez les kératinocytes humains normaux de peau (NHEKs), la sénescence est transitoire et débouche pour la plupart des cellules sur une mort par autophagie et, pour environ une sur dix mille, sur une émergence néoplasique post-sénescence. Les cellules émergentes présentent des caractères de transformation et accumulent des mutations et des délétions. Cet échappement néoplasique de la sénescence n’est jamais observé dans les fibroblastes normaux de peau (NHDFs) qui, au contraire, une fois en sénescence sont bloqués irréversiblement dans le cycle cellulaire.J’ai participé dans un premier temps à l’étude du rôle de l’autophagie dans la balance échappement néoplasique et mort des NHEKs sénescents. Nous avons pu démontrer que les progéniteurs de cellules néoplasiques ont une activité autophagique modérée plus faible que ceux qui subissent la mort. Ainsi, ils échappent à la mort par autophagie tout en gardant un niveau d’activité autophagique de ménage suffisant pour éliminer leurs composés altérés par le stress oxydant et être capable de ré-entrer en mitose.J’ai ensuite cherché à caractériser les dommages oxydants mutagènes impliqués dans l’échappement néoplasique. Ma stratégie a été d’analyser de façon comparative les NHEKs par rapport aux NHDFs, puisque les uns mais non les autres développent une émergence néoplasique. J’ai ainsi pu constater que le taux de cassures augmente à la sénescence dans les deux types cellulaires, mais que ces cassures sont de nature différente, uniquement des SSBs (Single Strand Breaks) pour les NHEKs et principalement des DSBs (Double Strand Breaks) pour les NHDFs. L’accumulation de DSBs à la sénescence des NHDFs s’accompagne d’une induction robuste de la voie DDR (DNA Damage Response), d’une activation la voie p53-p21 et d’un arrêt stable dans le cycle cellulaire. Dans le cas des NHEKs, l’augmentation du taux de SSBs est la conséquence de l’augmentation du niveau de stress oxydant et de la perte de l’expression et de l’activité de la PARP1. Ceci contribue à une agglomération aberrante de XRCC1 au niveau des cassures engendrant une induction de la voie p38MAPK - p16INK4a et un arrêt dans le cycle cellulaire caractéristique de la sénescence. D’une manière paradoxale, l’échappement néoplasique de la sénescence dépend également de cette accumulation de SSBs non réparés. Ainsi, la nature des dommages à l’ADN influence le devenir des cellules sénescentes. Les DSBs renforcent la stabilité de l’arrêt du cycle cellulaire alors que les SSBs promeuvent l’acquisition de mutations et l’échappement néoplasique.