Composant photovoltaïque innovant à base d’hétérojonction GaP/Si
Auteur / Autrice : | Thomas Quinci |
Direction : | Alain Le Corre |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences des matériaux |
Date : | Soutenance le 02/07/2015 |
Etablissement(s) : | Rennes, INSA |
Ecole(s) doctorale(s) : | École doctorale Sciences de la matière (Rennes ; 1996-2016) |
Partenaire(s) de recherche : | Laboratoire : Fonctions Optiques pour les Technologies de l’informatiON (Lannion ; 2000-....) |
: Université européenne de Bretagne (2007-2016) | |
Jury : | Président / Présidente : Jean-Paul Kleider |
Examinateurs / Examinatrices : Alain Le Corre, Jean-Paul Kleider, Ramon Alcubilla-Gonzalez, Jean-Christophe Harmand, Thierry Baron, Delfina Muñoz, Antoine Letoublon | |
Rapporteurs / Rapporteuses : Ramon Alcubilla-Gonzalez, Jean-Christophe Harmand |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
L’objectif de ce travail de thèse a été d’étudier une alternative à la cellule photovoltaïque à hétérojonction classique de silicium amorphe/cristallin avec un matériau (GaP) qui permettrait une amélioration de rendement grâce à ses propriétés optiques et électriques. L’étude du potentiel des hétérojonctions GaP/Si pour des applications PV nous a amené à étudier chacun des aspects critiques inhérents à leur réalisation. La préparation chimique de la surface des substrats et les mécanismes qui contrôlent la structuration de la surface de Si(100) ont été étudiés afin d’obtenir une surface de silicium mono-domaine (à marches diatomiques) et faiblement rugueuse par homoépitaxie (dépôts par UHV-CVD). Cette étude a été complétée par l’étude de l’influence de la préparation de surface (préparation chimique et homoépitaxie) du substrat sur la qualité cristalline du GaP déposé en deux étapes par MEE et MBE. La croissance de GaP par MEE a par la suite été effectuée sur des substrats de Si(100) ayant uniquement subi une préparation chimique de surface. Les paramètres de la séquence de croissances MEE ont été étudiés et ajustés afin d’optimiser la phase de nucléation du GaP. La qualité structurale des dépôts a été évaluée par des caractérisations par AFM et DRX. Les couches minces de faibles épaisseurs (20nm) présentent une faible rugosité de surface équivalente à une homoépitaxie et une fraction volumique de MTs inférieure à la limite de détection. La croissance MEE permet d’assurer une nucléation 2D. Cependant les caractérisations par TEM et STM révèlent la présence de parois d’antiphase. En parallèle, la simulation de structures HET GaP/Si (effectuée grâce au programme AFORS-HET) et la réalisation de diodes et de démonstrateurs cellules GaP/Si ont permis de démontrer les optimisations apportées par l’utilisation d’un émetteur de GaP. Ces composants ont été étudiés par caractérisations optiques et électriques. Nous avons constaté une limitation des performances due à la présence de pièges à l’interface et dans le volume. Ces différentes études ont donc permis d’identifier les verrous technologiques à lever pour exploiter pleinement les cellules à hétérojonctions GaP sur silicium afin d’obtenir des hauts rendements photovoltaïques.