Développement de deux techniques de charactérisation thermique des matériaux : La microscopie thermique à sonde locale (SThM) et la méthode 2ω
Auteur / Autrice : | Ali Assy |
Direction : | Séverine Gomès, Rodolphe Vaillon |
Type : | Thèse de doctorat |
Discipline(s) : | Thermique et énergétique |
Date : | Soutenance le 03/02/2015 |
Etablissement(s) : | Lyon, INSA |
Ecole(s) doctorale(s) : | École doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....) |
Partenaire(s) de recherche : | Laboratoire : CETHIL - Centre d'Energétique et de Thermique de Lyon (Villeurbanne, Rhône) - Centre de Thermique de Lyon / CETHIL |
Jury : | Président / Présidente : Sebastian Volz |
Examinateurs / Examinatrices : Séverine Gomès, Rodolphe Vaillon, Sebastian Volz, Oleg Kolosov, Jonathan Weaver, Olivier Bourgeois, Stéphane Lefèvre, Nathalie Trannoy | |
Rapporteur / Rapporteuse : Oleg Kolosov, Jonathan Weaver |
Mots clés
Mots clés contrôlés
Résumé
Deux techniques de caractérisation thermique des matériaux et d’analyse du transfert de chaleur aux micro- et nano- échelles ont été étudiées et sont présentées dans ce mémoire. La première technique est la microscopie thermique à sonde locale (SThM). La pointe d’un microscope à force atomique intègre un élément résistif. Utilisée en mode contact, cette pointe, chauffée par effet joule, permet l'excitation thermique localisée de l’échantillon. La détermination des propriétés thermiques de l’échantillon nécessite l'analyse de la réponse de cette pointe avec un modèle du système sonde-échantillon et de son environnement. Un état de l'art général des études réalisées en SThM permet de poser les questions scientifiques actuellement traitées dans le domaine. Une attention particulière est accordée à l'interaction thermique sonde-échantillon. L’étude ici présentée tient compte des propriétés thermiques, de la rugosité et de la mouillabilité de la surface de différents échantillons. Une nouvelle méthodologie est établie pour la spécification du transfert de chaleur échangée par conduction thermique au travers du ménisque de l'eau formé au contact sonde-échantillon. Cette méthodologie est basée sur l'analyse de la dépendance à la température de la sonde des courbes de force-distance obtenues à l'air ambiant. Elle est appliquée à trois sondes de taille, forme et constitution différentes: la sonde Wollaston, la sonde KNT et une sonde en silicium dopé. Quels que soient la sonde et l'échantillon, la contribution du ménisque d’eau à l'interaction est montrée être inférieure à celle de l'air. La conductance thermique au contact solide-solide est déterminée pour différents échantillons. Cela a permis d’identifier le coefficient de transmission de phonons dans le cas de la sonde KNT et des échantillons non-métalliques. La conduction thermique via l’air dépend fortement de la conductivité thermique de l'échantillon. La sensibilité à la conductivité thermique pour les sondes Wollaston et KNT est part ailleurs montrée fortement réduite pour les matériaux de conductivité thermique supérieure à 10 et quelques W.m-1.K-1 respectivement. La seconde technique développée est une méthode d’analyse thermique moins locale nécessitant l’instrumentation de la surface de l’échantillon avec un réseau de sondes résistives filiformes. L’un des fils du réseau, chauffé par un courant alternatif à la fréquence f, a le rôle de source excitatrice continue et à la fréquence 2f de l’échantillon. Un modèle analytique 2D, basé sur le principe des ondes thermiques et développé pour identifier les propriétés thermiques d’échantillons anisotropes est présenté. Des simulations par éléments finis et avec ce modèle ont été utilisées pour dimensionner le montage expérimental et valider la méthode sur un échantillon de silicium pur. Les résultats obtenus à des températures de l’échantillon variant de l’ambiante à 500 K corroborent ceux de la littérature.