Dimensionnement d’un actionneur pour organe de pilotage à entraînement direct avec redondance passive magnétique - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Design of an active flight control direct drive actuator with a passive magnetic redundancy

Dimensionnement d’un actionneur pour organe de pilotage à entraînement direct avec redondance passive magnétique

Jean-François Allias
  • Fonction : Auteur
  • PersonId : 1293702
  • IdRef : 190995890

Résumé

This thesis manuscript titles "Dimensionnement d’un actionneur pour organe de pilotage à entraînement direct avec redondance passive magnétique ", which means " Design of an active flight control direct drive actuator with a passive magnetic redundancy ", is seen against an ANR project named TEMOP for, " TEchnologie Mécatronique pour Organe de Pilotage ", and is in connection with the UTC Aerospace industry in Figeac in France. The objective of this thesis is to develop a solution of electrical machine, which permits to create an active force feed-back for an aircraft side-stick, in order to improve the haptic sensations of the pilot. This machine have to be enough powerful to create high forces per unit of mass. We also need to respect the overall dimensions and to decrease the heating as much as possible. A precise set of specifications, redacted by UTC Aerospace, gives the constraints and impose to have a triple redundancy on each axis of pitch and roll. We chose to develop a duplex active redundancy with an added simplex passive actuator. Our full system have 6 machines : 4 are actives and 2 are passives. Our thesis is divided in two main parts. The first part of the manuscript deals with the design of the active machine called DARM for " Double Airgap Rotative Machine ". It is a synchronous permanent magnet machine, with a Halbach pattern, with two airgaps and a non-entire arc. The design method is based on an analytical optimization process under a set of non-linear constraints. Each of them are traduced mathematically and an electromagnetic 2D model is developed, in order to give the theoretical torque reached, in function of the variables of the problem. This model has been validated with FEM simulations with the ANSYS and JMAG softwares. An optimization is realized to give the dimensions of the DARM. Then, in order to verify the temperatures, we developed a global thermal model, based on an equivalent electric circuit. It permits to verify that the temperatures reached in the structure, are under the limits given by the set of specifications. This model is verified by FEM simulations using ANSYS. Finally, we will validate our models with experimental measures. However, a chapter is dedicated to the design of the passive actuator. We imagined an innovative system, which have two different utilities. The first one is a function of spring, the second is a function of shock absorber. The spring is based on the repulsion phenomenon between two magnets. The shock absorber is created with a system of Eddy currents breaker. The design method is divided in two. In the first time, we design the spring with a parametric optimization using the FEMM software coupled to the MATLAB software. When the dimensions of the spring are known, we design the shock absorber with an analytical optimization process which use an electromagnetic torque model developed in this part. A prototype has been built in order to verify the models.
Ce manuscrit de thèse, intitulé " Dimensionnement d’un actionneur pour organe de pilotage à entraînement direct avec redondance passive magnétique ", s’inscrit dans un projet ANR du nom de TEMOP pour, TEchnologie Mécatronique pour Organe de Pilotage, en lien avec la société UTC Aerospace de Figeac. L’objectif de cette thèse est de développer une solution de machine électrique permettant de générer le retour d’effort actif d’un mini-manche latéral d’aéronef, dans le but d’améliorer les sensations haptiques des pilotes. Cette machine doit être assez performantes pour générer des efforts massiques importants, tout en tenant dans un encombrement réduit et en limitant l’échauffement. Un cahier des charges précis rédigé par l’industriel donne les contraintes à respecter et impose une redondance triplex sur chaque axe de tangage et de roulis. Nous avons opté pour une solution comportant un duplex actif associé à un simplex passif. Sur chaque axe, deux machines électriques actives seront montées en parallèle et une solution à retour d’effort passif magnétique a été développée. Pour ce faire, nous avons divisé notre thèse en deux parties distinctes. La première partie du manuscrit traite du dimensionnement de la machine active appelée DARM pour Double Airgap Rotative Machine. Il s’agit d’une machine synchrone à aimants permanents en configuration Halbach, comportant deux entrefers et à débattement limité. La stratégie de dimensionnement est basée sur une optimisation locale et analytique sous contraintes non-linéaires. La première partie développe les contraintes sous forme analytiques. Puis, un modèle magnétique est créé de manière à connaître le couple que la structure développe en fonction des différentes variables d’optimisation. Ce modèle a été validé par éléments finis grâce aux logiciels ANSYS et JMAG. Une optimisation permet d’aboutir aux dimensions de l’actionneur satisfaisant au cahier des charges. Puis, dans le but de vérifier les températures atteintes dans chaque zones, un modèle thermique global, utilisant des résistances thermiques équivalentes a été établi et validé par simulations. Ainsi, on vérifie que la structure optimisée n’atteint pas des températures critiques. Enfin, nous validerons nos calculs par des mesures expérimentales. Un chapitre du manuscrit est dédié au dimensionnement de la partie passive. Nous avons imaginé un système innovant qui couple une fonction de ressort et d’amortisseur. La fonction de ressort s’appuie sur le phénomène de répulsion entre deux aimants permanents, alors que la fonction d’amortisseur est créée par un système de freinage passif par courants de Foucault. La stratégie de dimensionnement est divisée en deux partie. Les dimensions du système de ressort sont préalablement choisies grâce à une optimisation paramétrique locale couplant le logiciel MATLAB au logiciel de simulations par éléments finis FEMM. Lorsque ces dimensions sont fixées, le système d’amortisseur est dimensionné par une optimisation locale analytique où la fonction objectif a pour vocation de maximiser le couple de freinage. Nous nous sommes donc entachés à développer un modèle qui permet de calculer ce couple. Sur cette base, un prototype a été élaboré, sur lequel des mesures expérimentales ont permis de valider le concept.
Fichier principal
Vignette du fichier
ALLIAS_Jean-Francois2.pdf (6.58 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04239102 , version 1 (12-10-2023)

Identifiants

  • HAL Id : tel-04239102 , version 1

Citer

Jean-François Allias. Dimensionnement d’un actionneur pour organe de pilotage à entraînement direct avec redondance passive magnétique. Systèmes embarqués. Institut National Polytechnique de Toulouse - INPT, 2015. Français. ⟨NNT : 2015INPT0119⟩. ⟨tel-04239102⟩
32 Consultations
12 Téléchargements

Partager

Gmail Facebook X LinkedIn More