Simulations instationnaires multi-composants dédiées à l'impact de la chambre de combustion sur la turbine des turbines à gaz aéronautiques
Auteur / Autrice : | Charlie Koupper |
Direction : | Laurent Gicquel |
Type : | Thèse de doctorat |
Discipline(s) : | Dynamique des fluides |
Date : | Soutenance le 11/05/2015 |
Etablissement(s) : | Toulouse, INPT |
Ecole(s) doctorale(s) : | École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Centre Européen de Recherche et Formation Avancées en Calcul Scientifique (Toulouse) |
Mots clés
Résumé
De nos jours, seules les turbines à gaz sont à même de propulser les larges aéronefs (avions ou hélicoptères). Depuis les premiers prototypes construits dans les années 40, l’efficacité et la puissance de ces moteurs n’ont cessé de s’améliorer. Chaque composant atteint de tels niveaux de performance que seules une rupture technologique ou un investissement conséquent peuvent permettre de repousser les limites d’efficacité d’une turbine à gaz. Une solution alternative peut être trouvée en constatant qu’un moteur est un système intégré complexe dans lequel tous les composants interagissent entre eux, affectant les performances de chaque module en comparaison de leur fonctionnement isolé. Avec la compacité croissante des turbines à gaz, ces interactions entre modules du moteur sont clairement renforcées et leur étude constitue une potentielle source de gain en termes de performance globale du moteur. Dans ce contexte, l’interface du moteur la plus critique est aujourd’hui la connexion entre la chambre de combustion et la turbine, qui présente les niveaux de pression, température et contraintes les plus élevés du moteur. L’objectif de cette thèse est d’améliorer la caractérisation actuelle de l’interface chambre- turbine afin de juger les méthodes de développement de cette interface et de concourir à l’amélioration des performances de la turbine et sa durée de vie. Pour ainsi faire, un nouveau simulateur de chambre non réactif, représentatif des architectures de chambres pauvres récentes, est développé dans le contexte du projet européen FACTOR (FP7). L’écoulement dans le module est analysé d’une part via le recours massif aux Simulations aux Grandes Echelles (LES), et d’autre part par une caractérisation expérimentale sur une version trisecteur du module, installée à l’Université de Florence (Italie). En tirant profit des complémentarités entre approche numérique et expérimentale, une base de données exhaustive est construite pour qualifier les simulations avancées et caractériser les quantités physiques à l’interface entre la chambre et la turbine. Des diagnostics avancés et des procédures de validation s’appuyant sur les riches données temporelles sont proposés dans l’objectif d’améliorer les processus de design de l’interface chambre-turbine. Par exemple, il est montré qu’il est parfois possible et nécessaire d’aller au-delà d’une simple analyse des moyennes et variances pour qualifier les prédictions à cette interface. Pour approfondir l’étude de l’interaction chambre-turbine, des simulations LES comprenant à la fois le simulateur de chambre et une paire de stators de la turbine haute pression sont réalisées. Ces prédictions purement numériques mettent en évidence l’effet potentiel induit par la présence des stators ainsi que l’influence du calage angulaire par rapport aux injecteurs. Ce dernier ensemble de simulations souligne la difficulté de proprement appréhender l’interface chambre-turbine, mais confirme qu’il peut être simulé par une approche LES à l’avenir..