Thèse soutenue

Synchronisation d'un oscillateur à transfert de spin à une source de courant RF : mécanismes et caractérisation à température ambiante

FR  |  
EN
Auteur / Autrice : Christophe Dieudonné
Direction : Ursula Ebels
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 06/07/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble, Isère, France ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Spintronique et technologie des composants (Grenoble ; 2002-....) - Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....)
Jury : Président / Présidente : Alain Marty
Examinateurs / Examinatrices : Marie-Claire Cyrille, Joo-Von Kim
Rapporteur / Rapporteuse : Vincent Cros, Nicolas Vukadinovic

Résumé

FR  |  
EN

Les oscillateurs à transfert de spin (STO) sont des oscillateurs nanométriques (~100nm) prometteurs pour les applications radiofréquence. Ils reposent sur la précession de l'aimantation d'une couche magnétique mince induite par transfert de spin (STT). Un dispositif STO basé sur jonction tunnel magnétique (MTJ) fournira typiquement un signal électrique de l'ordre d'une dizaine de GHz et d'une puissance de plusieurs nW. Comparés aux oscillateurs contrôlés en tension (VCO) utilisés actuellement pour la génération de microondes, les STO ont l'avantage d'être hautement accordables en fréquence. Malgré cela, les critères requis en termes de qualité de signal ne sont pas encore remplis par les STO pour être compétitifs.Deux approches existent pour améliorer la qualité du signal de sortie : (i) optimisation de l'empilement magnétique d'un dispositif STO unique et (ii) synchronisation de plusieurs STOs. C'est la deuxième approche qui a été retenue dans le cadre de cette thèse : ici nous nous intéressons à la synchronisation électrique d'un STO à une source de courant RF stabilisée, dit « injection-locking ». Le cas d'un STO à aimantation homogène, de type précession dans le plan (IPP) est étudié.En particulier, la synchronisation d'un STO à 2f, c'est-à-dire lorsque la fréquence du courant injecté est proche du double de la fréquence de génération du STO, est favorisée par rapport à la synchronisation à f. Les résultats expérimentaux obtenus par plusieurs groupes montrent à la fois une gamme de synchronisation et une réduction de largeur de raie plus prononcées à 2f qu'à f.Ce comportement singulier est examiné dans un premier temps par une étude analytique de la dynamique de l'aimantation couplée aux simulations numériques macrospin dans le but d'identifier les mécanismes de synchronisation qui prennent effet au sein du système.En effet, les modèles actuels (formalisme auto-oscillateur KTS) décrivent la synchronisation d'un STO à un courant RF sans faire de distinction entre la synchronisation à f et 2f, et les prédictions qui en découlent s'avèrent être insuffisantes pour la synchronisation à 2f. Pour combler à cela, nous mettons en évidence par extension du formalisme existant les clés du processus de synchronisation à 2f : l'ajustement de fréquence par ajustement de l'amplitude d'oscillation via la non-linéarité, ainsi que la modification du terme d'anti-damping se faisant par l'intermédiaire de la différence de phase.La caractérisation expérimentale du régime synchronisé pour un STO basé sur jonction tunnel magnétique est également détaillée dans le manuscrit. Grâce aux techniques de mesures en domaine temporel et fréquentiel développées spécialement, les grandeurs caractéristiques (gamme de synchronisation et différence de phase) du système sont extraites et comparées aux prédictions théoriques. Enfin, les effets de l'injection du courant RF sur la cohérence du signal de sortie sont discutés.