Thèse soutenue

Study of domain wall dynamics in the presence of large spin orbit coupling : chiral damping and magnetic origami

FR  |  
EN
Auteur / Autrice : Safeer Chenattukuzhiyil
Direction : Gilles Gaudin
Type : Thèse de doctorat
Discipline(s) : Nanophysique
Date : Soutenance le 27/10/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale physique (Grenoble, Isère, France ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Spintronique et technologie des composants (Grenoble ; 2002-....)
Jury : Président / Présidente : Stefania Pizzini
Examinateurs / Examinatrices : Ioan Mihai Miron, Teruo Ono, Aurélien Manchon
Rapporteurs / Rapporteuses : Bert Koopmans, Joerg Wunderlich

Résumé

FR  |  
EN

La dynamique des parois de domaine magnétiques (DW) soulève actuellement un très fort intérêt à la fois du point de vue fondamental mais aussi en lien avec ses applications dans des dispositifs logique et mémoire. Des dispositifs nouveaux basés sur les DW ont déjà été proposés, par exemple présentant des très fortes densités de stockage et des taux de transfert élevés pour un remplacement des disques durs. De plus dans les Mémoires Magnétiques à Accès Aléatoire (MRAM), identifiées comme l'une des solutions les plus prometteuses pour le remplacement des DRAM et SRAM, le retournement de l'aimantation implique une propagation des DW. Le contrôle de la dynamique des DW sous courant est longtemps resté un challenge, principalement à cause d'imperfections dans les matériaux utilisés. Des déplacements rapides et contrôlé des DW au moyen d'un courant ont été reportés il y a quelques années seulement dans des multicouches présentant une asymétrie d'inversion (SIA). Plus récemment un mécanisme a été proposé basé sur la présence de couple de spin orbite (SOT) et de l'interaction Dzyaloshinskii-Moriya (DMI), tout deux trouvant leur origine dans l'interaction spin-orbite et nécessitant une SIA.Mon objectif initial était de tester ce modèle dans deux systèmes présentant différents SIA. Dans des multicouches Pt/Co/Pt à faible SIA, j'ai étudié la propagation des DW sous courant et sous champ et j'ai mis en évidence l'existence d'un amortissement chiral. Ce phénomène nouveau, pendant de DMI pour les mécanismes dissipatifs, influence à la fois la dynamique sous courant et sous champ et doit être pris en compte pour avoir une description complète des mécanismes. Dans des multicouches Pt/Co/AlOx à fort SIA, j'ai étudié de nouvelles géométries pour lesquelles le mouvement de la paroi de domaine et la direction du courant ne sont pas colinéaires. J'ai mis en évidence un déplacement asymétrique des DW en fonction de cette non-colinéarité qui ne peut pas être expliquée avec un modèle simple DMI+SOT. En se basant sur ces résultats expérimentaux, j'ai introduit un nouveau concept de dispositifs, appelé « origami magnétique » : la forme du dispositif gouverne le mécanisme de retournement. Ce concept apporte une grande flexibilité dans la construction de mémoires magnétiques non volatiles, rapides et peu gourmandes en énergie : des fonctionnalités différentes peuvent être obtenues sur un même wafer simplement par la maîtrise de la forme des différents éléments. Je montre la preuve de concept de deux dispositifs.