Thèse soutenue

Biosenseurs reposant sur l'AMPK et le FRET pour l'analyse du métabolisme énergétique : AMPFret

FR  |  
EN
Auteur / Autrice : Martin Pelosse
Direction : Uwe Schlattner
Type : Thèse de doctorat
Discipline(s) : Sciences de la vie
Date : Soutenance le 19/06/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale chimie et science du vivant (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de bioénergétique fondamentale et appliquée (Grenoble)
Jury : Président / Présidente : Benoît Viollet
Examinateurs / Examinatrices : Imre Berger
Rapporteurs / Rapporteuses : Theo Wallimann, Pascual Sanz

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La protéine kinase activée par AMP (AMPK) est un senseur ubiquitaire du statut énergétique de la cellule eucaryote. Elle est exprimée sous la forme d'un complexe hétérotrimèrique comprenant les sous unités catalytique (α) et régulatrices (β et γ). Ce large complexe protéique (130kDa), fonctionne comme un hub central de la signalisation cellulaire, régulateur du métabolisme énergétique et au-delà. La (dé)régulation de l'AMPK est impliquée dans de nombreuses pathologies et l'AMPK apparait comme une cible de choix pour développer de nouveaux médicaments contre le diabète de type 2. Une fois activée, l'AMPK va restaurer l'homéostasie énergétique en diminuant le métabolisme demandeur d'énergie (anabolisme) et en stimulant le métabolisme produisant le l'énergie (catabolisme). In vivo, l'AMPK est activée par des mécanismes multiples et complexes permettant la fine régulation de son activité lors de différentes situations de stress métaboliques. Premièrement, l'activité de l'AMPK est modulée de manière systémique par phosphorylation et déphosphorylation de la sous unité α (par des kinases et phosphatases en amont respectivement). De plus, l'attachement d'AMP et d'ADP à la sous unité γ augmente la phosphorylation de l'AMPK. Deuxièmement, l'AMPK est activée de manière allostérique par l'AMP qui se lie à sous unité γ lors de chutes du ratio ATP/AMP. Tous ces mécanismes requièrent une communication entre les sous unités α et γ, mais un modèle consensus complet de l'activation de l'AMPK est toujours manquant. Se basant sur différentes études structurales, d'autres et nous-mêmes avons proposé un changement de conformation induit par AMP au sein de l'hétérotrimère AMPK. Afin de mieux élucider ce mécanisme, nous avons tiré profit de ces changements conformationels pour imaginer et créer un hétérotrimère d'AMPK permettant de suivre directement et en temps réel l'état de conformation de l'AMPK par FRET. Une limite importante lors du développement de complexes multiprotéiques est l'augmentation exponentielle de la quantité de travail liée à la modification et la combinaison de nombreux gènes hétérologues lors du remaniement de ces complexes protéiques et de leurs productions. Nous avons utilisé la technologie ACEMBL, qui exploite des techniques de recombinaisons homologues, pour faciliter la révision rapide et itérative de la production et de l'analyse fonctionnelle, après ingénierie, de complexes multi protéiques. Le senseur fluorescent génétiquement codé ainsi crée, et nommé AMPfret, a la propriété de rapporter les changements de conformation induits par les nucléotides ayant lieu au sein de l'AMPK. De plus, les changements de signal FRET corrèlent avec l'activation allostérique de l'AMPK. Le senseur répond à de faible concentrations en AMP (micromolaire) et a démontré la capacité exclusive qu'a l'ATP, et non l'ATP-Mg, à concurrencer l'AMP. De plus, son utilisation a permis une meilleure compréhension du rôle des sites CBS lors de l'activation allostérique. AMPfret peut aussi être considérer comme un outil de choix pour le criblage de molécules ciblant l'AMPK, et pour le monitoring de l'état énergétique intracellulaire.