Thèse soutenue

Développement d'un modèle statistique non stationnaire et régional pour les précipitations extrêmes simulées par un modèle numérique de climat

FR  |  
EN
Auteur / Autrice : Jonathan Jalbert
Direction : Anne-Catherine Favre PuginJean-François AngersClaude Bélisle
Type : Thèse de doctorat
Discipline(s) : Océan, atmosphère, hydrologie
Date : Soutenance le 30/10/2015
Etablissement(s) : Université Grenoble Alpes (ComUE) en cotutelle avec Université Laval (Québec, Canada)
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble, Isère, France ; 1992-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'étude des transferts en hydrologie et environnement (Grenoble, Isère, France ; 1992-2016)
Jury : Président / Présidente : Robert Guénette
Examinateurs / Examinatrices : Stéphane Girard
Rapporteur / Rapporteuse : Thierry Duchesne, Philippe Naveau

Résumé

FR  |  
EN

Les inondations constituent le risque naturel prédominant dans le monde et les dégâts qu'elles causent sont les plus importants parmi les catastrophes naturelles. Un des principaux facteurs expliquant les inondations sont les précipitations extrêmes. En raison des changements climatiques, l'occurrence et l'intensité de ces dernières risquent fort probablement de s'accroître. Par conséquent, le risque d'inondation pourrait vraisemblablement s'intensifier. Les impacts de l'évolution des précipitations extrêmes sont désormais un enjeu important pour la sécurité du public et pour la pérennité des infrastructures. Les stratégies de gestion du risque d'inondation dans le climat futur sont essentiellement basées sur les simulations provenant des modèles numériques de climat. Un modèle numérique de climat procure notamment une série chronologique des précipitations pour chacun des points de grille composant son domaine spatial de simulation. Les séries chronologiques simulées peuvent être journalières ou infra-journalières et elles s'étendent sur toute la période de simulation, typiquement entre 1961 et 2100. La continuité spatiale des processus physiques simulés induit une cohérence spatiale parmi les séries chronologiques. Autrement dit, les séries chronologiques provenant de points de grille avoisinants partagent souvent des caractéristiques semblables. De façon générale, la théorie des valeurs extrêmes est appliquée à ces séries chronologiques simulées pour estimer les quantiles correspondants à un certain niveau de risque. La plupart du temps, la variance d'estimation est considérable en raison du nombre limité de précipitations extrêmes disponibles et celle-ci peut jouer un rôle déterminant dans l'élaboration des stratégies de gestion du risque. Par conséquent, un modèle statistique permettant d'estimer de façon précise les quantiles de précipitations extrêmes simulées par un modèle numérique de climat a été développé dans cette thèse. Le modèle développé est spécialement adapté aux données générées par un modèle de climat. En particulier, il exploite l'information contenue dans les séries journalières continues pour améliorer l'estimation des quantiles non stationnaires et ce, sans effectuer d'hypothèse contraignante sur la nature de la non-stationnarité. Le modèle exploite également l'information contenue dans la cohérence spatiale des précipitations extrêmes. Celle-ci est modélisée par un modèle hiérarchique bayésien où les lois a priori des paramètres sont des processus spatiaux, en l'occurrence des champs de Markov gaussiens. L'application du modèle développé à une simulation générée par le Modèle régional canadien du climat a permis de réduire considérablement la variance d'estimation des quantiles en Amérique du Nord.