Thèse soutenue

Méthodologie de conception et de l'évaluation des technologies 3D haute densité

FR  |  
EN
Auteur / Autrice : Hossam Sarhan
Direction : Fabien Clermidy
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 23/11/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....)
Jury : Président / Présidente : Lorena Anghel
Examinateurs / Examinatrices : Fabien Clermidy, Sébastien Thuries, Sung Kyu Lim
Rapporteurs / Rapporteuses : Amara Amara, Jacques-Olivier Klein

Résumé

FR  |  
EN

L'impact des interconnections d'un circuit intégré sur les performances et la consommation est de plus en plus important à partir du nœud CMOS 28 nm et au-delà, ayant pour effet de minimiser de plus ne plus la loi de Moore. Cela a motivé l'intérêt des technologies d'empilement 3D pour réduire l'effet des interconnections sur les performances des circuits. Les technologies d'empilement 3D varient suivant différents procédés de fabrication d'où l'on mettra en avant la technologie Trough Silicon Via (TSV) – Collage Cuivre-Cuivre (Cu-Cu) et 3D Monolithique. TSV et Cu-Cu présentent des diamètres d'interconnexions 3D de l'ordre de 10 µm tandis que le diamètre d'une interconnexion 3D Monolithique est 0.1 µm, c'est-à-dire cent fois plus petit. Un tel diamètre d'interconnexion créée de nouveaux challenge en terme de conception de circuit intégré numérique. Dans ce contexte, notre objectif est de proposer des méthodologies de conception de circuits 3D innovantes afin d'utiliser au mieux la densité d'intégration possible et d'évaluer efficacement les gains en performance, surface et consommation potentiels de ces différentes technologies d'empilement par rapport à la conception de circuit 2D.Trois contributions principales constituent cette thèse : La densité d'intégration offerte par les technologies d'empilement étudiées laisse le possibilité de revoir la topologie des cellules de bases en les concevant directement en 3D. C'est ce qui a été fait dans l'approche Cellule sur Buffer (Cell-on-Buffer – CoB), en empilant la fonction logique de base d'une cellule sur l'étage d'amplification. Les simulations montrent des gains substantiels par rapport aux circuits 2D. On a imaginé par la suite désaligner les niveaux d'alimentation de chaque tranche afin de créer une technique de Multi-VDD adaptée à l'empilement 3D pour réduire encore plus la consommation des circuits 3D.Dans un deuxième temps, le partitionnement grain fin des cellules a été étudié. En effet au niveau VLSI, quand on conçoit un circuit de plusieurs milliers voir million de cellules standard en 3D, se pose la question de l'attribution de telle ou telle cellule sur la tranche haute ou basse du circuit 3D afin d'accroitre au mieux les performances et consommation du circuit 3D. Une méthodologie de partitionnement physique est introduite pour cela.Enfin un environnement d'évaluation des performances et consommation des technologies 3D est présenté avec pour objectif de rapidement tester les gains possibles de telle ou telle technologie 3D tout en donnant des directives quant à l'impact des certains paramètres technologiques 3D sur les performances et consommation.