Thèse soutenue

Analyse temps-frequence et traitement des signaux RSO à haute résolution spatiale pour la surveillance des grands ouvrages d'art

FR  |  
EN
Auteur / Autrice : Andrei Anghel
Direction : Cornel-Eugen IoanaGabriel VasileSilviu Ciochină
Type : Thèse de doctorat
Discipline(s) : Signal, image, paroles, télécoms
Date : Soutenance le 08/10/2015
Etablissement(s) : Université Grenoble Alpes (ComUE) en cotutelle avec Universitatea politehnica (Bucarest)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Grenoble Images parole signal automatique (2007-....)
Jury : Président / Présidente : Ljubis̆a Stanković
Examinateurs / Examinatrices : Cornel-Eugen Ioana, Gabriel Vasile, Silviu Ciochină, Remus Cacoveanu, Marc Lesturgie
Rapporteurs / Rapporteuses : Hugh Griffiths, Laurent Polidori

Résumé

FR  |  
EN  |  
RO

Cette thèse s'articule autour de deux axes de recherche. Le premier axe aborde les aspects méthodologiques liés au traitement temps-fréquence des signaux issus d'un radar FMCW (à onde continue modulée en fréquence) dans le contexte de la mesure des déplacements fins. Le second axe est dédié à la conception et à la validation d'une chaîne de traitement des images RSO (radar à synthèse d'ouverture) satellitaire. Lorsqu'un maillage 3D de la structure envisagée est disponible, les traitements proposés sont validés par l'intercomparaison avec les techniques conventionnelles d'auscultation des grands ouvrages d'art.D'une part, nous étudions la correction de la non-linéarité d'un radar FMCW en bande X, à courte portée, conçu pour la mesure des déplacements millimétriques. La caractéristique de commande non linéaire de l'oscillateur à large bande, entraine une perte de résolution à la réception. Afin de pallier cet inconvénient, nous avons développé deux méthodes basées sur le ré-échantillonnage temporel (time warping) dans le cas des signaux à large bande non-stationnaires. La première approche estime la loi de fréquence instantanée non linéaire à l'aide de la fonction d'ambiguïté d'ordre supérieur, tandis que la deuxième approche exploite la mesure de concentration spectrale du signal de battement dans un algorithme d'autofocus radial.D'autre part, nous proposons un cadre méthodologique général pour la détection et le pistage des centres de diffusion dans les images RSO pour la surveillance des grands ouvrages d'art. La méthode est basée sur la ré-focalisation de chaque image radar sur le maillage 3D de l'infrastructure étudiée afin d'identifier les diffuseurs pertinents par tomographie 4D (distance – azimut – élévation – vitesse de déformation). L'algorithme de ré-focalisation est parfaitement compatible avec les images RSO acquises dans les différents modes (« stripmap », « spotlight » et « sliding spotlight ») : dé-focalisation en azimut suivie par rétroprojection modifiée (conditionnée par la structure temps-fréquence du signal) sur l'ensemble donné des points. Dans la pile d'images ré-focalisées, les centres de diffusion sont détectés par tomographie 4D : test de conformité à l'hypothèse d'élévation zéro dans le plan élévation – vitesse de déformation. La vitesse moyenne correspond au maximum à l'élévation zéro, tandis que la série temporelle des déplacements est obtenue par double différence de phase des amplitudes complexes pour chaque diffuseur pertinent.Nous présentons également les campagnes in situ effectuées au barrage de Puylaurent (et glissement de Chastel) : les relevés GPS, topographiques et LIDAR sol employées au calcul des maillages 3D. La comparaison entre les déplacements mesurés in situ et les résultats obtenus par l'exploitation conjointe de la télédétection RSO satellitaires et les maillages 3D valident la chaîne de traitement proposée.