Thèse soutenue

Etude de la fiabilité de mémoires PCRAM : analyse et optimisation de la stabilité des états programmés

FR  |  
EN
Auteur / Autrice : Sarra Souiki-Figuigui
Direction : Georges PananakakisVéronique Sousa
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 27/02/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'électronique et de technologie de l'information (Grenoble ; 1967-....) - Institut de microélectronique, électromagnétisme et photonique - Laboratoire d'hyperfréquences et de caractérisation (Grenoble)
Jury : Président / Présidente : Abdelkader Souifi
Examinateurs / Examinatrices : Gérard Ghibaudo
Rapporteurs / Rapporteuses : Damien Deleruyelle, Jean-Luc Battaglia

Résumé

FR  |  
EN

De nos jours, les nouvelles technologies ne cessent d'évoluer et de former une partie intégrante dans la vie quotidienne de chacun. Ces dernières profitent du développement de systèmes électroniques complexes qui nécessitent l'utilisation de composants mémoires de plus en plus performants et présentant de grandes capacités de stockage. Ainsi, dans cette course à la miniaturisation, la technologie Flash jusqu'ici prépondérante sur le marché des mémoires non volatiles laisse aujourd'hui entrevoir ses limites. En conséquence, différentes mémoires émergentes résistives sont développées et parmi celles-ci se trouvent les mémoires à changement de phase PCRAM qui présentent un grand intérêt dans le monde des mémoires non volatiles grâce à leur bonne capacité de réduction d'échelle ainsi que leur coût réduit par rapport aux mémoires Flash. Cependant, pour être compétitives face aux autres technologies et pour prétendre à des applications embarquées, elles doivent répondre à plusieurs challenges tels que réduire leur courant de programmation, augmenter leur vitesse de programmation et améliorer leur stabilité thermique. Pour cela, différentes voies sont explorées dans la littérature, notamment l'utilisation d'architectures innovantes ou de matériaux à changement de phase alternatifs. Dans cette thèse, nous nous sommes intéressés à l'investigation des mécanismes de défaillance qui affectent la stabilité thermique et temporelle des mémoires à changement de phase, plus précisément la rétention de l'état RESET et la stabilité des états programmés affectée par le phénomène de « drift ». Le développement de matériaux alternatifs utilisant une stoechiométrie optimisée ou incorporant un dopage nous permet d'obtenir des dispositifs performants d'un point de vue électrique et présentant des propriétés de rétention satisfaisant les spécifications des applications embarquées en particulier l'automobile. De plus, grâce au développement d'une nouvelle procédure de pré-codage, ces dispositifs permettent de conserver les données préprogrammées sur la puce mémoire au cours de l'étape de soudure de cette dernière sur le circuit électronique. Ils constituent une solution prometteuse pour les applications de cartes sécurisées. Enfin, nous avons proposé une procédure de programmation optimisée qui permet de diminuer l'effet du drift de la résistance de l'état SET observé pour les matériaux alternatifs. Ensuite, nous avons montré via des mesures de bruit à basses fréquences que cet effet est dû à la relaxation structurale des zones amorphes présentes dans ces matériaux actifs. De plus, nous avons mis en évidence pour la première fois la diminution du bruit normalisé de l'état SET ainsi que l'influence majeure des défauts d'interfaces sur le bruit à basses fréquences de cet état.