Thèse soutenue

Circuit de pilotage intégré pour transistor de puissance

FR  |  
EN
Auteur / Autrice : Duc Ngoc To
Direction : Yves LembeyeNicolas RougerJean-Daniel Arnould
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 02/04/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie électrique (Grenoble) - Centre de radiofréquences, optique et micro-nanoélectronique des Alpes (2007-....)
Jury : Président / Présidente : Bruno Allard
Examinateurs / Examinatrices : Ambroise Schellmanns
Rapporteurs / Rapporteuses : Bruno Allard, François Costa

Résumé

FR  |  
EN

Ces travaux de thèse s’inscrivent dans le cadre d’une collaboration entre les laboratoires G2ELAB et IMEP-LAHC en lien avec le projet BQR WiSiTUDe (Grenoble-INP). Le but de cette thèse concerne la conception, modélisation et caractérisation du gate driver intégré pour transistors de puissance à base d’un transformateur sans noyau pour le transfert isolé d'ordres de commutation. La thèse est composée de deux grandes parties : - Une partie de la conception, la modélisation et la caractérisation du transformateur intégré dans deux technologies CMOS 0.35 µm bulk et CMOS 0.18 µm SOI. - Une partie de la conception, la simulation et la mise en œuvre de deux circuits de commande intégrée dans ces deux technologies. Ainsi, l’aspect du système du convertisseur de puissance sera étudié en proposant une nouvelle conception couplée commande/puissance à faible charge. Les résultats de ce travail de thèse ont permis de valider les approches proposées. Deux modèles fiables (électrique 2D et électromagnétique 3D) du transformateur ont été établis et validés via une réalisation CMOS 0.35 µm standard. De plus, un driver CMOS bulk, intégrant l’ensemble du transformateur sans noyau avec plusieurs fonctions de pilotage de la commande rapprochée a été caractérisé et validé. Finalement, un gate driver générique a été conçu en technologie CMOS SOI, intégrant dans une seule puce les étages de commande éloignée, l’isolation galvanique et la commande rapprochée pour transistors de puissance. Ce gate driver présente nombre d’avantages en termes d’interconnexion, de la consommation de la surface de silicium, de la consommation énergétique du driver et de CEM. Les perspectives du travail de thèse sont multiples, à savoir d’une part l’assemblage 3D entre le gate driver et le composant de puissance et d’autre part les convertisseurs de multi-transistors.