Thèse soutenue

Contributions à l'étude de la réponse moléculaire à l'hypoxie : Modélisation mathématique et expérimentations sur cellules FUCCI
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Baptiste Bedessem
Direction : Angélique Stéphanou
Type : Thèse de doctorat
Discipline(s) : Modèles, méthodes et algorithmes en biologie, santé et environnement
Date : Soutenance le 23/10/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale ingénierie pour la santé, la cognition, l'environnement (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Techniques de l’ingénierie médicale et de la complexité - Informatique, mathématiques et applications (Grenoble)
Jury : Président / Présidente : Xavier Ronot
Examinateurs / Examinatrices : Annabelle Ballesta
Rapporteurs / Rapporteuses : Carine Michiels, Olivier Saut

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Les effets biologiques de l'hypoxie sont très étudiés aujourd'hui, principalement en raison du rôle crucial que jouent les conditions d'oxygénation dans le développement des cancers.Depuis plusieurs années, une littérature foisonnante tente ainsi de décrire les multiples aspects de la réponse moléculaire, cellulaire et physiologique à l'hypoxie. La complexité des voies de signalisation impliquées et la diversité de leurs effets cellulaires rendent la tâche délicate. Cet état de fait se reflète dans la pluralité des méthodes utilisées, depuis les simulations numériques jusqu'aux approches expérimentales.Dans cette thèse, j'ai abordé ce sujet sur la base de deux outils: la modélisation mathématique et une démarche expérimentale utilisant les cellules HeLa-FUCCI. Cette lignée cellulaire récemment développée est en effet un instrument de choix encore peu exploité. Par une construction génétique liant des protéines du cycle cellulaire à un fluorophore, elle rend possible l'étude, en continue, de la dynamique du cycle en microscopie de fluorescence. Nous avons ainsi pu analyser plusieurs aspects de la réponse cellulaire à l'hypoxie, dans un contexte tumoral.Dans un premier temps, nous avons cherché à caractériser mathématiquement les liens tissés entre le cycle cellulaire et les voies de signalisation de l'hypoxie, centrées sur le facteur de transcription HiF-1. Ce modèle propose un explication simple à l'arrêt du cycle observé notamment dans les cellules tumorales en conditions hypoxiques. Nous avons ainsi montré que l'induction de chimiorésistance pouvait se concevoir comme une entrée facilitée en quiescence des cellules cancéreuses. Dans le but de valider ces observations, nous avons ensuite cherché à quantifier expérimentalement la dynamique de la prolifération cellulaire en utilisant les cellules HeLa-FUCCI. Comme il est apparu que les fluorophores qu'elles portent sont sensibles au manque d'oxygène, nous avons testé différentes molécules couramment utilisées pour induire HiF-1 et mimer l'hypoxie (DFO et CoCl2). De cette étude ont émergé des résultats originaux quant à la dynamique de blocage du cycle des cellules HeLa en présence de chélateurs du fer.Si les conditions hypoxiques ne sont pas favorables à l'utilisation des cellules FUCCI, nous avons pu en revanche montrer qu'elles étaient tout à fait adaptées à l'étude de la dynamique du cycle cellulaire en condition de réoxygénation. De manière intéressante, nous avons alors pu observer un ralentissement significatif de la phase S après retour à la normoxie. Afin d'apporter un éclairage théorique à cette observation, nous avons proposé un modèle mathématique de la dynamique de régulation de HiF-1 en conditions d'oxygène fluctuantes, basé sur le couple HiF-1/pVHL, dont les relations sont pensées dans un cadre compartimenté (noyau/cytoplasme). Ce modèle simple reproduit fidèlement les caractéristiques principales de la réponse cellulaire à l'hypoxie. En outre, en simulant les conséquences d'une réoxygénation brutale, nous avons observé la genèse de fortes instabilités du niveau intracellulaire de HiF-1. Enfin, nous avons mené une étude expérimentale de la compartimentation de HiF-1. L'outil FUCCI permet en effet d'observer simultanément l'avancement du cycle (en microscopie de fluorescence), et la localisation intra-cellulaire de HiF-1(par immunomarquage). Nous avons pu montrer que la variabilité de la localisation de HiF-1α n'était pas due à la progression dans le cycle. Elle est donc certainement liée soit à des différences génétiques inter-cellulaire, soit à une stochasticité de la régulation de HiF-1.