Utilisation de ressources dans une langue proche pour la reconnaissance automatique de la parole pour les langues peu dotées de Malaisie
Auteur / Autrice : | Sarah Flora Samson Juan |
Direction : | Laurent Besacier |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 09/07/2015 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de Grenoble (2007-....) |
Jury : | Président / Présidente : Georges Quénot |
Examinateurs / Examinatrices : Eric Castelli, François Pellegrino | |
Rapporteur / Rapporteuse : Yannick Estève, Denis Jouvet |
Mots clés
Résumé
Les langues en Malaisie meurent à un rythme alarmant. A l'heure actuelle, 15 langues sont en danger alors que deux langues se sont éteintes récemment. Une des méthodes pour sauvegarder les langues est de les documenter, mais c'est une tâche fastidieuse lorsque celle-ci est effectuée manuellement.Un système de reconnaissance automatique de la parole (RAP) serait utile pour accélérer le processus de documentation de ressources orales. Cependant, la construction des systèmes de RAP pour une langue cible nécessite une grande quantité de données d'apprentissage comme le suggèrent les techniques actuelles de l'état de l'art, fondées sur des approches empiriques. Par conséquent, il existe de nombreux défis à relever pour construire des systèmes de transcription pour les langues qui possèdent des quantités de données limitées.L'objectif principal de cette thèse est d'étudier les effets de l'utilisation de données de langues étroitement liées, pour construire un système de RAP pour les langues à faibles ressources en Malaisie. Des études antérieures ont montré que les méthodes inter-lingues et multilingues pourraient améliorer les performances des systèmes de RAP à faibles ressources. Dans cette thèse, nous essayons de répondre à plusieurs questions concernant ces approches: comment savons-nous si une langue est utile ou non dans un processus d'apprentissage trans-lingue ? Comment la relation entre la langue source et la langue cible influence les performances de la reconnaissance de la parole ? La simple mise en commun (pooling) des données d'une langue est-elle une approche optimale ?Notre cas d'étude est l'iban, une langue peu dotée de l'île de Bornéo. Nous étudions les effets de l'utilisation des données du malais, une langue locale dominante qui est proche de l'iban, pour développer un système de RAP pour l'iban, sous différentes contraintes de ressources. Nous proposons plusieurs approches pour adapter les données du malais afin obtenir des modèles de prononciation et des modèles acoustiques pour l'iban.Comme la contruction d'un dictionnaire de prononciation à partir de zéro nécessite des ressources humaines importantes, nous avons développé une approche semi-supervisée pour construire rapidement un dictionnaire de prononciation pour l'iban. Celui-ci est fondé sur des techniques d'amorçage, pour améliorer la correspondance entre les données du malais et de l'iban.Pour augmenter la performance des modèles acoustiques à faibles ressources, nous avons exploré deux techniques de modélisation : les modèles de mélanges gaussiens à sous-espaces (SGMM) et les réseaux de neurones profonds (DNN). Nous avons proposé, dans ce cadre, des méthodes de transfert translingue pour la modélisation acoustique permettant de tirer profit d'une grande quantité de langues “proches” de la langue cible d'intérêt. Les résultats montrent que l'utilisation de données du malais est bénéfique pour augmenter les performances des systèmes de RAP de l'iban. Par ailleurs, nous avons également adapté les modèles SGMM et DNN au cas spécifique de la transcription automatique de la parole non native (très présente en Malaisie). Nous avons proposé une approche fine de fusion pour obtenir un SGMM multi-accent optimal. En outre, nous avons développé un modèle DNN spécifique pour la parole accentuée. Les deux approches permettent des améliorations significatives de la précision du système de RAP. De notre étude, nous observons que les modèles SGMM et, de façon plus surprenante, les modèles DNN sont très performants sur des jeux de données d'apprentissage en quantité limités.