Thèse soutenue

Applications de la modélisation mathématique à l'optimisation des traitements chimiothérapiques des gliomes de bas-grade

FR  |  
EN
Auteur / Autrice : Pauline Mazzocco
Direction : Benjamin RibbaFrançois DucrayAdeline Leclercq-Samson
Type : Thèse de doctorat
Discipline(s) : Mathématiques Appliquées
Date : Soutenance le 30/09/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut national de recherche en informatique et en automatique (France). Centre de recherche de l'université Grenoble Alpes
Jury : Président / Présidente : Michel Tod
Examinateurs / Examinatrices : Benjamin Ribba, Laurent Pujo- Menjouet, Pascal Girard
Rapporteurs / Rapporteuses : Paolo Magni, Florence Hubert

Résumé

FR  |  
EN

Les gliomes des bas-grade sont des tumeurs cérébrales lentement évolutives, affectant principalement les jeunes adultes, qui peuvent rester des années sans symptôme. Les patients peuvent être opérés, ou traités par radiothérapie ou chimiothérapie, avec deux thérapies possibles : le PCV et le témozolomide (TMZ).Nous souhaitons montrer dans ces travaux de thèse que la modélisation mathématique, à travers l'approche de population, peut permettre l'amélioration des traitements en termes de durée et d'amplitude de décroissance pour les gliomes de bas-grade traités par chimiothérapie (PCV et TMZ).Dans un premier temps, nous nous concentrons sur la possibilité de modifier le protocole d'administration du PCV, au niveau de la population, afin de prolonger la durée de décroissance tumorale. Nous concluons qu'espacer les cycles de traitement permet de repousser de manière significative le moment de recroissance de la tumeur.Dans un second temps, nous étudions l'évolution des gliomes de bas-grade traités par TMZ. Sur la base des données de tailles tumorales de 77 patients, ainsi que d'informations génétiques, nous développons un modèle K-PD à effets mixtes permettant de décrire la dynamique tumorale avant, et suite au traitement. Nous évaluons ensuite les capacités du modèle à prédire la durée et l'amplitude de la réponse tumorale, à partir de mesures précoces de tailles de la tumeur ainsi que des informations génétiques. Ces prédictions pourraient être utilisées pour aider les cliniciens à déterminer si le traitement doit être prolongé ou non, pour un patient donné.Enfin, nous nous intéressons plus particulièrement au phénomène de résistance au traitement par TMZ. A partir des mêmes données de tailles tumorales que précédemment, nous construisons un modèle PK-PD à effets mixtes décrivant l'apparition des cellules résistantes au sein de la tumeur. Ce modèle reproduit plus précisément l'évolution du TMZ dans l'organisme et son impact sur la tumeur. Il est utilisé pour optimiser le protocole thérapeutique au niveau individuel. A l'aide d'un algorithme d'optimisation, nous déterminons l'intervalle entre chaque cycle et la dose à administrer afin de prolonger la durée de décroissance tumorale tout en limitant l'émergence de résistance. Les protocoles ainsi optimisés sont évalués à l'aide d'une approche stochastique, permettant de tester la robustesse du modèle et de l'optimisation.A travers les différents travaux de cette thèse, nous montrons l'utilité de la modélisation mathématique pour aider à l'amélioration des traitements chimiothérapiques pour les patients souffrant de gliomes de bas-grade. Nous croyons que ces résultats peuvent être transposés à d'autres types de cancers.