L’effet des éléments mineurs (Mg,Ag,Zn) sur la germination et la précipitation de la phase T1 dans des alliages AlCuLi
Auteur / Autrice : | Eva Maria Gumbmann |
Direction : | Alexis Deschamps, Frédéric De Geuser |
Type : | Thèse de doctorat |
Discipline(s) : | Matériaux, mécanique, génie civil, électrochimie |
Date : | Soutenance le 09/11/2015 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....) |
Partenaire(s) de recherche : | Laboratoire : Science et ingénierie des matériaux et procédés (Grenoble) |
Jury : | Président / Présidente : Anna Fraczkiewicz |
Examinateurs / Examinatrices : Alexis Deschamps, Frédéric De Geuser, Thierry Epicier | |
Rapporteur / Rapporteuse : Aude Simar, Myriam Dumont |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Les alliages Al-Cu-Li sont particulièrement attractifs pour les applications aéronautiques du fait de leur faible densité, haute limite d'élasticité et bonne ténacité. Ils reçoivent une attention particulièrement importante actuellement, depuis le développement de la troisième génération qui contient des concentrations relativement élevées pour le cuivre et relativement basses pour le Li. Ces nouveaux alliages sont caractérisés par une dureté élevée, une bonne résistance à la fatigue et une bonne stabilité thermique. La phase principale de durcissement est la phase T1 – Al2CuLi qui se présente sous la forme de plaquettes d'environ 1 nm d'épaisseur et 50 nm de diamètre, situées sur les plans {111} de la matrice avec une structure hexagonale. La germination efficace de cette phase durcissante entre en compétition avec d'autres précipités des sous-systèmes constituant ces alliages (comme Al-Cu et Al-Li), et nécessite des conditions particulières, en particulier la présence de dislocations (introduites par pré-déformation) et d'éléments d'alliage mineurs (Mg, Ag, Zn). Bien qu'il soit connu depuis longtemps que l'addition de ces éléments favorise la cinétique de précipitation dans ces alliages et le durcissement associé, leurs mécanismes d'action sont encore très mal compris.Dans ce contexte, l'objectif de la thèse est d'évaluer systématiquement l'effet des additions mineures de Mg, Ag et Zn sur la germination, la cinétique de précipitation et le durcissement correspondant. La caractérisation détaillée de la microstructure est utilisée pour comprendre les mécanismes de modification de la microstructure par les éléments mineurs. Les mesures de la diffusion des rayons X à petits angles et la DSC fournissent respectivement la cinétique de précipitation et la séquence de formation des phases. La microscopie électronique en transmission, utilisée en mode conventionnel, en résolution atomique et en mode de cartographie chimique met en évidence la structure et la distribution spatiale des phases. La dureté donne accès au durcissement. Des matériaux à gradient de concentration ont été élaborés et caractérisés pour évaluer l'effet de la concentration des alliages sur la précipitation et le durcissement.Les résultats mettent en évidence que le Mg est l'élément le plus efficace pour accélérer la cinétique de précipitation et de durcissement. L'addition d'Ag et de Zn augmente également la cinétique de précipitation mais dans une moindre mesure. L'addition de Mg change la séquence de précipitation tout au long de la séquence de vieillissement. La différence principale liée à la présence de Mg pour les premiers stades de traitement thermique est observée par rapport à la précipitation sur les dislocations. Dans les alliages qui contiennent du Mg, les dislocations sont décorées par des phases précurseur contenant de Cu et Mg. Par contre dans les alliages sans Mg celles-ci sont associés à des zones GP qui évoluent ensuite en précipités θ'. Cette différence est attribuée à la germination favorable de T1 sur les phases précurseur de Cu/Mg dans les alliages contenant du Mg, et par la saturation des sites de germination hétérogène par θ' dans les alliages sans Mg.L'augmentation de dureté associée à l'addition d'Ag et Zn est attribuée à une fraction volumique plus élevé de la phase T1. Ag est ségrège à l'interface entre T1 et la matrice et Zn est incorporé dans la structure de T1. Ces résultats suggèrent que les additions de Zn et Ag stimulent la formation de T1.L'influence de la concentration en éléments d'addition mineurs a été caractérisée par une approche résolue en temps et en espace, sur les matériaux contenant un gradient en composition. Cela révèle que l'effet de l'addition de Mg sur la précipitation se produit à une valeur seuil de ~0.1% en poids, suggérant que cela est la concentration nécessaire pour germer des phases précurseur sur les dislocations dans les premiers stades de la précipitation.