Thèse soutenue

Motifs de changement de forme contrôlés par des architectures de gonflement

FR  |  
EN
Auteur / Autrice : Sébastien Turcaud
Direction : Yves BréchetPeter Fratzl
Type : Thèse de doctorat
Discipline(s) : Matériaux, mécanique, génie civil, électrochimie
Date : Soutenance le 06/02/2015
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Science et ingénierie des matériaux et procédés (Grenoble) - Max Planck Institute of Colloids and Interfaces
Jury : Président / Présidente : Denis Favier
Examinateurs / Examinatrices : Yves Bréchet, Peter Fratzl, Claudia Fleck, John Dunlop
Rapporteurs / Rapporteuses : Samuel Forest, Benoît Roman

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La nature fournit une source d'inspiration intarissable pour les ingénieurs, soit en exhibant de nouvelles solutions à des problèmes d'ingénierie existants ou en les mettant au défi de développer des systèmes possédant de nouvelles fonctionnalités. Les progrès récents dans la caractérisation et la modélisation des systèmes naturels révèlent de nouveaux principes de conception, qui peuvent être de plus en plus imité par les ingénieurs grâce aux progrès dans la production et la modélisation de matériaux synthétiques. Dans cette thèse, nous sommes inspirés par des actuateurs biologiques (par exemple la pomme de pin) qui changent de forme en présence d'un stimulus externe variable en raison de leur architecture matérielle. Notre objectif est d'explorer l'espace de conception du morphing d'objets solides contrôlées par une distribution imposée des déformations inélastiques (eigenstrain). Nous nous concentrons sur des objets allongés ou minces pour lesquels une dimension est soit prédominante ou négligeable devant les deux autres (tiges et feuilles) et nous nous limitons au cadre de l'élasticité linéaire. Les motifs de changement de forme correspondent généralement à de grandes transformations, ce qui requiert de considérer une dépendance non-linéaire entre les déformations et les déplacements. L'utilisation de méthodes numériques permet de prédire ces motifs de morphing. Nous avons examiné la relaxation de ressorts, la minimisation d'énergie et les éléments finis. Ces motifs ont également été illustrés à l'aide des méthodes expérimentales telles que la pré-déformation, la dilatation thermique et le gonflement. Dans le contexte des tiges, deux morphers fondamentaux sont étudiés qui démontre la flexion et la torsion: flexeurs et torseurs. L'architecture d'eigenstrain standard du bilame à symétrie miroir peut être lissée afin de réduire la contrainte interfaciale d'un flexeur et modifiée afin de produire des flexeurs à gradient longitudinal ou hélicoïdaux. En assemblant des flexeurs en forme de nid d'abeille, la déflection relativement petite est amplifiée géométriquement et produit de relativement grands déplacements. Des simulations aux éléments finis démontre que l'architecture d'eigenstrain à symétrie de révolution proposée pour les torseurs induit une instabilité extension-torsion, laquelle est analysée en utilisant une approche énergétique. De même que pour les flexeurs, la torsion peut être variée longitudinalement en introduisant un gradient de propriétés le long du torseur. En combinant flexeurs et torseurs, une configuration arbitraire d'une tige peut être obtenue. Dans le contexte de feuilles, nous nous concentrons sur le morphing contrôlé par la diffusion, où l'eigenstrain est appliquée progressivement au lieu de instantanément, motivé par des résultats expérimentaux sur de bi-couches en polymères qui gonflent différemment en fonction de la température. Cela démontre l'enroulement selon le long côté de formes rectangulaires (au lieu de roulement côté court des flexeurs) et révèle un processus de morphing complexe en plusieurs étapes dans le cas de formes étoilés, où les bords rides et s'enroulent et l'étoile initialement plate prend un configuration trois-dimensionnelle (par exemple pyramidale). Grâce aux progrès récents dans la conception de nouveaux matériaux, les morphers présentés dans cette thèse peuvent être utilisés dans une pluralité de domaines, y compris la conception de structures macroscopiques en Architecture.