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Thèse

présentée et soutenue à Evry le 9 janvier 2015
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Attention, ce mémoire contient des informations confidentielles susceptibles de faire
l’objet d’une demande de brevet. En aucun cas, les informations contenues dans ce mémoire
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à garder ces informations confidentielles) et sous aucune forme que ce soit, ii) être utilisées
notamment dans le but de commercialiser, directement ou indirectement ou par personne
interposeée, quelque produit, méthode ou service qui aurait quelque similarité avec le
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Summary

Carcinogenesis is a consequence of the unceasing activation of cell proliferation. In
normal cells, mitogenic stimuli are processed by a complex network of protein interactions
and enzymatic reactions, often referred to as pathways, which can eventually trigger the
activation of new genes to engage the cell into mitosis. During developmental or wound
healing processes, this complex regulation of cellular phenotypes results in a tight control
of the number and behavior of cells and therefore contributes to the maintenance of a
functional and healthy tissue architecture.

Based on genomic, transcriptomic and proteomic profiles of bladder tumors and
transcriptomes of normal urothelial cells at various states of proliferation and di↵erentiation,
I devised novel methodologies to characterize the pathways driving bladder cancer.

I first developed a set of tools to identify and visualize sample and subtype-specific
transcriptional programs through the inference of a co-regulatory network and the
prediction of transcription factor activity. These methods were embedded in a Bioconductor
package entitled CoRegNet (bioconductor.org). The measure of transcriptional activity
is based on the influence of a transcription factor on the expression of its target genes
and was used to characterize the most active regulators of each bladder cancer subtypes.
The integration of genomic profiles highlighted two altered transcription factors with
driver roles in luminal-like and basal-like bladder cancer, one of which was experimentally
validated.

The use of CoRegNet to model the contribution of regulatory programs of normal
proliferation and di↵erentiation in bladder cancers underlined a strong preservation of
normal networks during tumorigenesis. Furthermore, a regulator of normal proliferation
was found to be constitutively activated by genetic alterations and its influence on bladder
cancer cell proliferation was experimentally validated. In addition, a master regulator of
urothelial di↵erentiation was found to have a loss of activity in nearly all tumors. This was
then associated to the discovery of frequent inactivating mutations and further analysis
uncovered a major role in di↵erentiated tumors.

In order to characterize signaling pathways from proteomic pull-down assays, I then
designed a novel algorithm to grow a densely connected network from a set of proteins
and a repository of protein interactions. The proposed algorithm was made available as
a Cytoscape application named Pepper for Protein Complex Expansion using Protein-
Protein interaction networks (apps.cytoscape.org).

Finally, using both a proteomic pull-down assay of the bladder cancer oncogene FGFR3
and a transcriptomic profiling of its downstream regulated genes, I applied Pepper to
characterize the full FGFR3 signaling pathway from its protein partners to the downstream
transcriptional regulators. In particular, this uncovered a regulatory link between FGFR3
and the tumor suppressor TP53.

http://www.bioconductor.org/packages/release/bioc/html/CoRegNet.html
http://apps.cytoscape.org/apps/pepper


ii

Résumé en Français

La carcinogénèse est une conséquence de la continuelle activation de la prolifération
cellulaire. Dans les cellules normales, les signaux mitogéniques sont traités par un
réseau complexe d’interactions protéiques et de réactions enzymatiques, appelées voies de
signalisation. Dans certains cas, le signal peut induire l’activation de nouveaux gènes et
ainsi déclencher la mitose. Lors du développement ou de la cicatrisation, cette régulation
du phénotype cellulaire contrôle étroitement le nombre et le comportement des cellules
contribuant ainsi au maintien d’un tissu fonctionnel sain.

A partir de profils génomiques, transcriptomiques et protéomiques de tumeurs de la
vessie ainsi que des transcriptomes de cellules urothéliales normales dans di↵érents états
de prolifération et de di↵érenciation, j’ai mis au point de nouvelles méthodologies pour
caractériser les voies de signalisation et de régulation responsables des cancers de la vessie.

Dans un premier temps, j’ai développé des outils pour l’identification et la visualisation
des programmes transcriptionnels spécifiques à une tumeur ou à un sous-type tumoral et
ce, par l’inférence d’un réseau de co-régulation et la prédiction de l’activité des facteurs de
transcription. Ces méthodes sont disponibles dans un package Bioconductor, CoRegNet
(bioconductor.org). La mesure de l’activité transcriptionnelle est basée sur l’influence
d’un facteur de transcription sur l’expression de ses gènes cibles. Cette mesure a été
utilisée pour identifier les régulateurs les plus actifs de chaque sous-type de cancer de la
vessie. L’intégration de profils génomiques a mis en avant deux facteurs de transcription
génétiquement altérés et ayant des rôles oncogènes dans les tumeurs luminales et basales.
L’un d’entre eux a été validé expérimentalement dans ce travail.

L’utilisation de CoRegNet a mis en évidence une large utilisation dans les tumeurs,
des réseaux normaux de la di↵érenciation et de la prolifération des cellules normales. Un
régulateur de la prolifération normale est identifié comme étant activé de façon constitutive
par des altérations génétiques dans les tumeurs. Son impact sur la prolifération des cellules
tumorales de la vessie a été expérimentalement validé. Par ailleurs, il a été constaté que
l’un des régulateurs de la di↵érenciation urothéliale présentant une baisse d’activité dans
la quasi-totalité des tumeurs, est fréquemment muté. De plus amples analyses ont mis en
avant son rôle majeur dans les tumeurs di↵érenciées.

Dans le but de caractériser les voies de signalisation à partir de données protéomiques
d’expériences d’immunoprécipitations, j’ai développé un nouvel algorithme visant à
construire un réseau dense à partir d’une liste de protéines d’intérêt et d’un ensemble
d’interactions protéiques connues. L’algorithme est proposé sous la forme d’une application
Cytoscape et s’intitule Pepper: Protein Complex Expansion using Protein-Protein
interaction networks (apps.cytoscape.org)

Enfin, en utilisant à la fois le profil protéomique d’une expérience d’immunoprécipitation
de FGFR3 ainsi que le profil transcriptomique des gènes qu’il régule en aval, j’ai

http://www.bioconductor.org/packages/release/bioc/html/CoRegNet.html
http://apps.cytoscape.org/apps/pepper
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appliqué Pepper pour caractériser la voie de signalisation de FGFR3 depuis ses
partenaires protéiques jusqu’aux facteurs de transcription en aval. Enfin, ce travail
a plus particulierement permis d’identifier un lien de régulation entre FGFR3 et le gène
suppresseur de tumeurs TP53.
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permis de prendre part à des projets de recherche passionants.
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Preamble

”Tumors appear to the host in the guise of [...] an unending series of wounds that
continually initiate healing but never heal completely” (Dvorak, 1986). Harold Dvorak’s
catchy description of tumors as wounds that do no heal was originally based on an analysis
of the tissue surrounding solid tumors and wounds. Decades of research in the biochemistry
of signal transduction revealed that this might also be true at the molecular level of the
internal regulatory circuitry. I fact, the parallel of tumor growth with normal processes
goes beyond wound healing and is relevant to any mechanism involving tissue regeneration
and cellular proliferation such as those found in developmental processes.

In appearance, the aberrant proliferative phenotype of cancer cells suggests that they
entirely reprogram the control over their own growth and division. The continuous
attempt to map the control circuitry of cellular division, migration or death revealed
that these circuits, often referred to as pathways, are nearly identical in both cancer and
normal/healthy cells during developmental and healing processes. Thereon, in addition to
the refinement of pathway maps, the focus is to be made on finding the small alterations
of the control machinery that lead to malignant transformation.

Pathways controlling cellular processes are composed of chains of reactions between
proteins, metabolites, mRNA and DNA species. These reactions are usually simply defined
as interactions, corresponding in fact to a wide variety molecular processes including
enzymatic reactions, protein and mRNA degradations, the formation of complexes and
various processes altering the steric conformation of one or several of the interacting
molecules. The simplification of these reactions into interactions involving pairs of molecules
results in the possibility to apprehend a set of complex reactions as a biological network.
Networks are used to model the set of interactions involving usually one or two types
of molecules (e.g. protein-protein, protein-DNA, protein-RNA) at the level of an entire
cellular system. The benefit of using network models relies on the availability of a wide
variety of algorithmic tools to analyze these abstract representations of the control of
cellular functions.

Throughout my PhD, I focused on di↵erent strategies to uncover the molecular networks
of proliferation and di↵erentiation in normal and cancerous cells of the urinary bladder. The
use of large-scale networks, either regulatory networks reconstructed from transcriptomic
data or based on repositories of protein interactions, gave me the opportunity to analyze
transcriptomic, genomic and proteomic profiles of particular normal and malignant cellular
conditions. This integration of both network models and molecular profiles resulted in the
discovery of novel mechanisms underlying the neo-plastic transformation of urothelial cells.

In order to present the results of my studies, I will first describe cellular pathways
by outlining the way extracellular signals are transduced from cell surface receptors to
the nucleus and the e↵ect these have on the regulation of genes. I will also discuss the

1



various forms of genetic alterations, their impact on the deregulations of cellular circuitry
and the means by which these aberrations can lead to neo-plastic transformation. Then,
I will describe the set of techniques used to profile molecular species of tumor cells, to
identify the interactions between them and finally the current methods to uncover the
cancer-driving pathways based on these datasets. In a last introductory section, I will
summarize the current knowledge of the carcinogenesis of the urinary bladder.

2



Introduction

3





Chapter I
Cell behavior, signaling and transcription

In a complex multicellular organism, cells can engage into a broad variety of phenotypes
and behaviors. The commitment of specific cell populations to a particular phenotype
during development or the modification of their behavior in response to the environment
is tightly controlled in time and space. This control of cell population maintains tissue
architecture and activity by replacing missing cells, removing unneeded ones and forcing
cells into particular functioning, di↵erentiation, states. Therefore, the control of cell
behavior is not defined at the level of individual cells but rather coordinated by the
crowd to ensure coherence inside the population of a tissue and to a higher level, of an
individual. Indeed, the decision of proliferating cannot be taken by an individual cell but
by a consensus of the cell neighborhood in response to a need for cell renewal, following
tissue damage for instance. Carcinogenesis is in some way an individual cell making
the unconscious decision to divide and proliferate (Nowell, 1976). This population-based
regulation of cell behavior relies on messages being broadcasted between cells. Cell-to-cell
communication is essential to the cooperation of cells. Letting mechanical forces aside,
this communication is mainly mediated by molecules (often proteins) emitted by a specific
cell population and received by another (and sometimes by the same). The transmission of
a single molecule can trigger major changes in the cells receiving the signal. For instance,
in the presence of a growth factor, a population of cells can undergo a rapid transition
from a quiescent to a fast proliferative state. Such high impact of extracellular signals
on the state of cells implies a complex signal processing machinery with the potential to
greatly modify the cells’ phenotype. More importantly, the signal needs to be processed
so that only the expected cellular processes, if any, are engaged. Decision making being
an important component of signal transduction, the process starting from the reception of
the signal to the modification of the cells phenotype is often compared to a circuit. In this
metaphor, the signal is first received at the surface membrane of the cell, processed in the
cytoplasm and finally conveyed to the nucleus where the signal becomes a modification of
the set of expressed genes, the transcriptome.

5
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I.1 Cell surface receptors and signal transduction

Cell-to-cell communication is mostly mediated by small proteins secreted outside of the
signal-emitting cells. Whether the signal is received by the secreting cell (autocrine
signaling) or neighboring cells (paracrine signaling), the delivery of the message requires
the presence of a receptor specific to the emitted signal often present at the surface of
the receiving cell. Growth factors (Witsch, Sela, and Yarden, 2010) represent a family of
secreted proteins that convey signals for cellular proliferation and have important roles in
major processes such as wound healing and development (Barrientos et al., 2008). These
proteins act as ligands of their cognate receptors that import the signal inside the cell.
A particular type of receptor transduces the growth signal through a tyrosine kinase
domain, a mechanism that is illustrated in figure I.1. The mode of action of the growth
factor/receptor tyrosine kinase (RTK) mainly relies on the dimerization of the receptor,
whether it is through the formation of homodimers or heterodimers with another RTK.

Figure I.1: Signal reception and Growth factor receptors. In the absence of ligand, the growth
factor receptors are present at the membrane in the form of monomers. Binding of corresponding
ligand stabilizes a dimer linking the two tyrosine kinase intracellular domains leading to their
transphosphorylation. (adapted from Weinberg, 2013)

Several other families of membrane proteins function as receptor for extracellular
signaling. For instance, the transforming growth factor-� family of ligands and receptors
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have extremely diverse role depending on the initial cellular state. The notch juxtacrine
signaling system functions by detecting ligands immobilized at the surface of the signal-
emitting cell. The Wnt/Frizzled, Hedhgehog/Patched, integrins or Cytokine receptors
represent some of the numerous other signaling systems each of which have di↵erent roles
and e↵ects.

While proteins and small molecules are the most studied cell-to-cell communication
mediators, the secretion and reception of small non-coding RNA has also been described. In
particular, cells can secrete small vesicles, exosomes, which contain non-coding RNA that
can be internalized by another cell (or same cell in autocrine secretion). The regulatory
function of the exosome-secreted RNA will directly alter the transcriptome of the targeted
cell and in some cases alter its phenotype (Zhou et al., 2014). Other cases of secreted
microRNA acting as ligand of specific membrane protein receptors have been reported
(Fabbri et al., 2012).

Cellular signaling is meant to modify cellular phenotype and control cell behavior. The
acquisition of a new cell state implies new cellular functions, which in turn entails the
production and activation of new proteins to perform the required processes. New proteins
can be synthesized by stabilizing or initiating the translation of pre-existing messenger
RNA (mRNA). However, signal transduction usually involves transcriptional regulation
and de novo synthesis of mRNA as a final step. Three types of signaling pathways can
link the reception of the signal at the membrane to the nuclear transcriptional response,
each of which are schematically represented in figure I.2. These three mechanisms are
more thoroughly described hereafter to show the complexity of these cascades and the
numerous cross-talk possibilities.

The first of these depicted strategy is often described as a signaling cascade and
illustrates well the complexity of the processing of extra-cellular signals. The most widely
studied of these pathways is the Mitogen-Activated Protein Kinase Pathway MAPK which
involves three successive kinase reaction (see figure I.3). The MAPK pathway is one of the
major signaling cascades activated by the reception of a growth factor signal (Dhillon et al.,
2007). Following an RTK ligand binding, the recruitment of the Grb2 protein and the
guanine nucleotide exchange factor SOS activates the RAS protein. This central signaling
protein constantly switches from an inactive to an active state by binding either a GDP
or a GTP. Once RAS is associated to a GTP and active, it can tether RAF, a MAPKKK
(mitogen-activated protein kinase kinase kinase), to the cell membrane and activate it
thereby triggering the MAPK signaling cascade. The RAF MAPKKK phosphorylates
MEK, a MAPKK, which in turns phosphorylates ERK a MAPK which can proceed to the
activation, through a final phosphorylation reaction, of transcription regulators enabling
their transcriptional activity directly in the nucleus. Three types of MAPK cascade exist
in Humans (Dhillon et al., 2007). Moreover, the activation of RAS can trigger several
other signaling pathways, the Ral pathway controlling modification of the cytoskeleton and
the Phosphatidylinositol 3-kinase (PI3K) including the activation of Akt/mTOR and the
inactivation of the GSK-3� signal repressor. The activation of an RTK following ligand
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Figure I.2: Signal transduction mechanisms. a. ligand/receptor binding triggers a signaling
cascade leading to the activation of transcriptional regulators. b. Ligand binding releases a
transcription factor that is then translocated to the nucleus. c. the intracellular domain of the
receptor is cleaved upon ligand binding. The cleaved part of the receptor is imported in the nucleus
and activates transcriptional regulators. (from Watson, Baker, and Bell, 2014)

binding is only one of the events that can activate RAS. For instance, integrins can also
activate the MAPK and the PI3K pathways.

The second signal transduction mechanism linking signal reception to transcriptional
response requires the activation and translocation of the Transcription Factor (TF) from
the cytoplasm to the nucleus. In the case of the Jak-STAT pathway, following the
activation of cytokine receptors the jak tyrosine kinase transphosphorylates each other
and recruit STAT proteins. The STATs are then phosphorylated and form a dimer, which
is translocated to the nucleus where the dimer acts as a TF, which can regulate the
expression of key genes. The TGF-� acts in a similar way by activating SMAD proteins
forming Smad complexes, which are imported in the nucleus and regulate genes involved
in major cellular processes such as proliferation and di↵erentiation. In the case of the
Wnt/�-Catenin pathway, the activation of the Frizzled and Dishevelled following the
binding of Wnt inactivates GSK-3� otherwise sequestering the �-Catenin protein. Once
released, �-Catenin is imported in the nucleus where it activates a set of transcription
factors thereby regulating the expression of a broad number of genes.

Nuclear translocation of transcription factor is a crucial step in signal transduction. A
Nuclear Localization Signal (NLS), a short sequence of amino acids, often determines the
possibility for protein to be imported in the nucleus. The actual import of the protein can
either be regulated by post-translational modification inside the NLS (e.g. phosphorylation)
or by masking the amino acid sequence to the nuclear import mechanism. For instance,
the NF-B transcription factor is associated in the cytoplasm with IB, which masks the
NLS thereby sequestering NF-B and preventing its nuclear translocation. In response to
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F I G U R E 19-24 Two signal transduction pathways from mammalian cells. Shown are the
STATandRaspathways. (a) A cytokine is shownbinding its receptor, bringing together two receptor
chains. Each chain has a kinase called a JAK attached to its intracellular domain. Bringing the chains
together (probably accompanied bya conformational change triggered by cytokine binding) leads
to phosphorylation of the receptor chains by the JAK kinases (which also phosphorylate each other,
stimulating their kinase activity). The sites phosphorylated in the receptor chain are then recognized
by cytoplasmic proteins called STATs. Each STAT has a so-called SH2 domain. These domains are
found in many proteins involved in signal transduction. They recognize phosphorylated Tyr resi-
dues in certain sequence contexts, and this is the basis of specificity in this pathway. That is, the par-
ticular STAT recruited to a given receptor determines which genes will subsequently be activated.
Once recruited to the receptor, that STAT itself gets phosphorylated by the JAK kinase. This
allows two STATproteins to formadimer (the SH2domain on each STAT recognizing the phosphor-
ylated site on the other). The dimer moves to the nucleus, where it binds specific sites on DNA (dif-
ferent for different STATs) and activates transcription of nearby genes. (b) The Ras pathway leading
into the downstream MAPK pathway. A growth factor (such as epidermal growth factor) binds its
receptor, bringing together the chains, which, as in the STAT case, then phosphorylate each
other. This phosphorylation recruits an adaptor protein called Grb2, which has an SH2 domain
that recognizes a phosphorylated tyrosine residue in the activated receptor. The other end of
Grb2 binds SOS, a guanine nucleotide exchange factor (Ras GEF). SOS, in turn, binds the Ras
protein, which is attached to the inside face of the cell membrane. Ras is a small GTPase, a
protein that adopts one conformation when bound to GTP and another when bound to GDP; in-
teraction with SOS triggers Ras to exchange its bound GDP for a GTP and hence undergo a confor-
mational change. In this new conformation, Ras activates a kinase at the top of the so-calledMAPK
cascade. The first kinase in this pathway is called a MAPK kinase kinase (MAPKKK) (Raf); once acti-
vated by Ras, this phosphorylates serine and threonine residues in the next kinase (a MAPK kinase
[MAPKK], called Mek). This activates Mek, which, in turn, phosphorylates and activates the MAPK
(Erk). This MAPK then phosphorylates several substrates, including transcriptional activators (e.g.,
Jun) that regulate a number of specific genes, including interferon-b (Fig. 19-18).

Figure I.3: Growth factor and MAPK signaling pathways. The dimerization of RTK induces its
activation. SOS and GRB2 are then recruited to activate RAS, which in turn fires a MAP kinase
cascade. A MAP kinase which is able to phoshorylate another MAP kinase is therefore a MAP
kinase kinase. Thus, the three successive phosphorylation steps involve a MAPKKK, MAPKK
and finally a MAPK. The most downstream MAP kinase then activates a transcription factor,
which can enter the nucleus and regulate gene expression. (from Watson, Baker, and Bell, 2014)

diverse signals, the activation of IKK initiates the degradation of IB thus unmasking the
NLS of NF-B, which is then imported to the nucleus where it becomes transcriptionally
active (Ganchi et al., 1992).

The last and less common signal transduction strategy relies on the cleavage of the
activated membrane receptor and transfer of the cytoplasmic part of the cleaved protein
to the nucleus. This mechanism takes place in the Notch pathway in which ligand binding
leads to a proteolytic cleavage of the receptor (Schroeter, Kisslinger, and Kopan, 1998).
The cytoplasmic fragment is translocated to the nucleus where it associates with and
activates a transcription factor complex (reviewed in Kovall, 2008).

An additional mechanism relying on the direct di↵usion of signaling molecules to
directly regulate the activity of a specific class of transcription factors called nuclear
receptor is also discussed in section I.3.

I.2 DNA binding and Transcriptional activation

Independently of the ligand, the receptor or the signal transduction mechanism, nearly
all signaling pathways eventually lead to the nucleus and to transcriptional regulation.
This is the process by which a given gene is transcribed by the large protein complexes
of the basal transcription machinery. Transcriptional activation is in essence the process
by which the mediator complex, general transcription factors and eventually the RNA
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polymerase II are recruited to the promoter of a gene. In eukaryotes, the accessibility
state of the chromatin at the level of the gene promoter is critical to the initiation of
its transcription (Li, Carey, and Workman, 2007). The chromatin state is determined by
several factors: post-translational modification of histone tails, CpG DNA methylation
and the action of epigenetic regulators in the form of proteins and non-coding RNAs.
The interaction between transcriptional activators and chromatin modifiers is crucial to
transcriptional activation as illustrated in figure I.4.

Figure I.4: Activator directed chromatin remodeling. An activator protein is shown to bind to
an activating element upstream of the promoter of its target gene in a region of high chromatin
density. The activator then recruits a protein complex to increase the distance between nucleosome
making the promoter DNA element accessible to the transcriptional machinery. Post-translational
modification (for instance acetylation), interaction with chromatin-remodeling complex or non-
coding RNA are examples of events which can alter the structure of the chromatin. (adapted
from Watson, Baker, and Bell, 2014)

Once the chromatin is accessible, activating transcription factor complexes are able
to bind the enhancing elements in the promoter of their target genes. These DNA
regulating elements are typically bound by several TF acting synergistically to activate
the transcription of the gene downstream (Panne, 2008). TF synergy, sometimes termed
cooperativity, resumes in the fact that the e↵ect of two TF regulating a target gene in
coordination is much greater than the sum of the e↵ect of each of these TF taken separately.
This combinatorial control of gene regulation is critical to the integration and processing
of cellular signaling. Combinatorial regulation can process several simultaneous signaling
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pathways by integrating the activating, and in some cases repressing, action of each of the
pathways in the regulation of each gene. Moreover, it makes the response to a stimulus
highly dependent on the cellular context by combining the signal-responding TF with the
lineage-specific TF. As an example, let two genes A and B be activated by cell-type specific
TFs respectively ↵ and �, both acting synergistically with a stimulated TF ". In this case,
the transcriptional response to an "-activating stimulus will depend on whether the cell
receiving the signal expresses ↵, in which case it will activate gene A, � in which case it
will activate B or both lineage specific TF ↵ and � which will result in the activation of
both A and B.

The combinatorial regulation is evidently much more complex for real human gene and
is often exemplified using the human �-interferon enhanceosome for which the structure is
presented in figure I.5. This DNA response element requires the coordinate binding of
three di↵erent transcription activator complex: the Activating Complex 1 (AP1) composed
of CJUN and ATF2, the interferon response factors which respond to interferon stimulus
and finally the NF-B complex composed of two subunits. In this example, the cooperation
of these activating complexes is not done by direct protein interaction but rather through
their binding to close DNA element and through their interaction with general coactivators
CREB-binding protein or P300. Preliminarily to the assembly of the final activating
complex, the architectural protein HMGA1 binds to the enhancer element and alters the
shape of the double-stranded DNA fiber so that it can be bound simultaneously by so
many protein complexes (Panne, 2008).

Conclusion
The virus-inducible IFN-b enhancer is one of the
best-understood eukaryotic transcriptional regulatory
elements. The enhanceosome structure shows that
association of the eight transcription factors form a com-
posite surface for recognition of the entire enhancer
sequence, explaining why the enhancer is evolutionary
conserved and why virtually every nucleotide matters
for enhancer activity. It is likely that other highly con-
served enhancer sequences may have similar structural
and functional properties. The enhancer functions as a
unit of regulation and the structural properties reflect this
requirement. One striking feature of the structure is the
absence of major protein–protein interaction surfaces
between the DNA-binding domains. The transcription
factors bind cooperatively because the binding sites
overlap, creating mutually compatible DNA interaction
surfaces. But such local DNA conformational comple-
mentarity is probably not sufficient to explain the
strong in vivo synergistic properties of IFN-b regulation.
Each of the transcription factors can interact through
their activation domains with the coactivator CBP or its
closely related paralog p300 and it is likely that multi-
valent interactions with these coactivators further
stabilize the enhanceosome assembly [26,27]. That is
signal integration probably occurs both by cooperative
DNA binding and multivalent chelating of the cofactors
CBP/p300.

The enhanceosome forms a very stable complex in vitro
and apparently also in vivo [28,29]. Chromatin immuno-
precipitation and live cell imaging experiments suggest
that transcription factor assemblies on some promoters are
very dynamic and transient with very short half lives in
vivo [30!!,31]. Are these discrepancies because of
inherent architectural differences among the various gene
regulatory elements? Other enhancers are much more
modular with a more flexible form of information proces-
sing, whereas the IFN-b enhanceosome is very compact
and operates as a functional unit. Experiments using live
cell imaging will be required to reveal the dynamics of
enhanceosome assembly in vivo.
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The �-interferon enhanceosome is thought not to be an isolated case of higher eukaryote
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regulation but rather an example of the regulatory complexity needed to control the
diversity of cellular states and behaviors. The required combination of TF for the regulation
of genes results in a tight control of the specificity in the transcriptional response following
an environmental stimulus.

Transcriptional activation of genes results in the synthesis of a single strand messenger
RNA from the DNA sequence template, which can eventually be translated to proteins.
Although the translation step is dropped out for functional non-coding RNA, each of these
steps describing the central dogma of molecular biology are regulated in the cell. The
maturation, localization, stability and translation of mRNAs require the association of
protein complexes and RNAs, which are regulated by the presence and activity of other
proteins. Moreover, non-coding RNAs have been found to play an important role in mRNA
maturation and more importantly in stability and translation. The most well described
process of mRNA regulation by non-coding RNA is undoubtedly microRNA. These 21
to 23 nucleotide-long RNA associate with the RNA-Induced Silencing Complex RISC to
target mRNA in a sequence specific manner. This micro-RNA/RISC/mRNA complex
either results in the degradation of the target mRNA or in the inhibition of its translation
(Esquela-Kerscher and Slack, 2006).

I.3 The particularity of Nuclear receptors

In order to sense and respond to signaling molecules in the form of protein ligands, a
complex signal transduction pathway is necessary to import the signal from the extra-
cellular space to the nucleus. As proteins cannot freely di↵use through cellular membranes,
several steps often composed of protein interactions and post-translational modifications
are usually necessary to convey the signal to the nucleus but also introduce as many
possibilities for regulating the transduction of the signal as they are steps in the pathway.
Cellular communications can also be carried by hydrophobic ligands with small molecular
weights capable of di↵using through lipid membranes. Molecules such as steroid hormones,
fatty acids or vitamin D can convey information without requiring complex signaling
cascade between the cell surface receptors and the transcriptional regulators in the nucleus.
Nuclear Receptor (NR) is a class of transcription factors able to bind these signaling
molecules as a ligand and become transcriptionally active. The ligand-activation of NR can
induce by its nuclear translocation, by post translational modifications or its dimerization
with another NR as shown in figure I.6. Activated nuclear receptors typically bind to
specific DNA response element and regulate their target gene in coordination with specific
co-activators.

Nuclear receptors provide a shorten path between a signaling molecule and the targeted
cell’s transcriptional response. The lack of intermediary signaling cascade reduces the
number of steps at which other signals can be integrated in the cell’s decision to alter its
phenotype. However, the actual transcriptional activation of genes remains dependent
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erated enormous interest in this class of NHRs leading to various
molecular, physiologic, and clinical insights. Evan D. Rosen and
Bruce M. Spiegelman provide a review on this topic entitled
“PPAR!: a Nuclear Regulator of Metabolism, Differentiation, and
Cell Growth.” As suggested by the title, although some discussion
of the other PPAR members, PPAR" and PPAR#, is provided, the
bulk of this paper focuses on the PPAR! receptor. Although poten-
tial endogenous ligands for this receptor have been proposed, de-
finitive evidence for an endogenously made ligand is still lacking.
Nevertheless, thiazoladinediones (TZDs), as well as other PPAR!
ligands, are used clinically as insulin-sensitizing agents, and these
pharmacologic ligands have provided a great deal of knowledge
about the biologic function of the PPAR! receptor. This receptor
clearly plays a critical role in adipogenesis, and the complex inter-
actions between PPAR! and other adipogenic transcription factors
such as CCAAT/enhancer-binding protein " are explored. Because
TZDs are clinically useful anti-diabetic insulin-sensitizing agents,
it is clear that PPAR! is an important factor in the overall regu-
lation of insulin action, and this area, including the tissue sites of
action and the potential PPAR! target genes that mediate insulin
sensitization, are reviewed. Although the effects of PPAR! ligands
in causing insulin sensitization are the most well known, two other
important areas of interest are reviewed, i.e. the roles of the PPAR!
receptor in atherosclerosis and oncogenesis. Evidence exists that
PPAR! receptors can modulate the formation of foam cells in ath-
erosclerotic plaques and that TZD treatment may be antiathero-
genic. Furthermore, because this receptor promotes differentiation,
it is proposed that it may inhibit oncogenic effects in various cell
types. Consistent with this, mutations and translocations of the
PPAR! receptor have been identified in human tumors, and this
emerging area of PPAR! biology is examined and put into perspec-
tive in the review by Rosen and Spiegelman.

Cholesterol and sterol homeostasis is another important regula-
tory system closely controlled by nuclear receptor function, and in
this series, Timothy L. Lu, Joyce J. Repa, and David J. Mangelsdorf
provide a review on this subject entitled “Orphan Nuclear Recep-

tors as eLiXiRs and FiXeRs of Sterol Metabolism” in which the two
major nuclear receptors, LXR and FXR, involved in this regulatory
system are reviewed. The role of the LXR nuclear receptor as a
cholesterol sensor is discussed, including recent information cover-
ing target genes such as SREBP-I and the ATP binding cassette
transporters, which facilitate efflux of cholesterol from cells. In the
enterocyte, increased function of these ATP binding cassette trans-
porters decreases cholesterol absorption from the gastrointestinal
tract, and in macrophages, impaired function of these proteins may
promote atherogenesis. The FXR bile acid sensor also plays a key
role in overall sterol metabolism by regulating transcription of an
array of genes involved in bile acid metabolism. The function of
these two nuclear receptors is highly integrated, creating a complex
but complementary physiologic network for controlling various fac-
ets of cholesterol and sterol metabolism across different tissues.
Because of the importance of cholesterol metabolism in the etiology
of atherosclerosis, this regulatory system offers a number of poten-
tial pharmaceutical targets for the development of new drugs to
control hypercholesterolemia and favorably impact the process of
atherosclerosis.

The final installment of this series covers another class of tran-
scriptional regulators termed “orphan receptors” belonging to this
large superfamily. The orphan nuclear receptors are proteins that
share a great deal of structural similarity to NHRs but do not have
physiologic ligands that have been identified. At such time that a
definitive ligand is identified, then that receptor would lose its
orphan status. It is now known that several of these orphan recep-
tors respond to xenobiotics in the environment that includes for-
eign chemicals such as environmental pollutants and prescription
drugs. In response to xenobiotic compounds, these receptors medi-
ate transcription of a variety of detoxifying enzymes that are mem-
bers of the supergene family of cytochrome P450 (CYP) molecules.
As Wen Xie and Ronald M. Evans point out in their review on this
topic entitled “Orphan Nuclear Receptors: the Exotics of Xenobiot-
ics,” this class of nuclear receptors represents the regulatory inter-
face between the human genome and the external environment.
This review discusses the major xenobiotic receptors, SXR, PXR,
and CAR and points out that by inducing various CYP family
members in response to specific xenobiotics, these receptors dictate
our ability to metabolize different pharmaceutical compounds. An
understanding of the function of these receptors should provide a
mechanistic basis for drug interactions in which one drug alters the
metabolism of another. Interestingly, the human SXR receptor and
its rodent PXR orthologue display differential sensitivity to various
xenobiotic agents, providing the basis for species specificity of
xenobiotic responses. These workers go on to discuss a humanized
mouse model expressing SXR, which should prove quite useful in
preclinical studies of metabolism and toxicology for candidate phar-
maceutical agents.

As is clear from the scope of these reviews, nuclear receptors
participate in the regulation of almost all biologic processes. Thus,
understanding the function of these receptors should be useful to a
broad array of basic and clinical scientists.

Because of their diverse biological effects, nuclear receptors have
become major pharmaceutical targets in a host of disease states.
Current pharmaceutical agents include natural hormonal ligands
or their analogs such as glucocorticoids, thyroid hormone, and
estrogens, as well as ligands for the PPAR" and -! receptors.
Undoubtedly, many more therapeutically useful pharmaceutical
agents are on the horizon and will be entering the clinic in the near
future.
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FIG. 1. Structure/function organization of nuclear receptors. The
six domains (A–F) of nuclear receptors comprise regions of conserved func-
tion and sequence. All of the nuclear receptors contain a central DBD (region
C), which is the most highly conserved domain and includes two zinc finger
modules. A LBD (region E) is contained in the C-terminal half of the receptor.
Situated between the DBD and LBD is a variable length hinge domain
(region D), and variable N-terminal region (A/B) contains ampF-I activation
function. Most receptors also contain a variable length C-terminal region F,
the function of which is poorly understood. Many members of the nuclear
receptor family form homo- or heterodimers, and amino acid sequences
important for dimerization are contained within the DBD and LBD.
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Figure I.6: Nuclear receptor family. Nuclear receptors contain two main domains, a DNA
binding domain composed of two zinc fingers (Yellow part) and a Ligand binding domain (Grey,
Blue, Green or Red colored part of the nuclear receptor depending on its subfamily). The four
sub-classes of nuclear receptors are based on their type of ligand and their ability to act as
monomers, homodimers or heterodimers. (from Olefsky, 2001)

on many factors. More importantly, cross-talk and competition between NR has been
reported in numerous studies (Alimirah et al., 2012). In particular, NR that heterodimerize
with the Retinoid X Receptor (RXR) compete in the formation of this functional dimer
when RXR is quantitatively limiting (Wood, 2008).

These ligand activated transcription factor regulate many aspects of human physiology
and development and more importantly have a major role in many diseases. As nuclear
receptors are activated by small liposoluble ligands, a large number of therapeutic molecules
have been developed to target and modulate the activity of NR. Chemicals that act as
agonists or antagonists are clinically used to either reactivate a silenced NR or conversely
inactivate pathologically active NR. For instance, the estrogen receptor (ER) is a master
regulator and critical driver of a large sub-type of breast cancer. To inhibit ER activity,
4-hydroxytamoxifen, a chemical similar to its natural ligand estrogen, is used clinically
and causes ER to associate with co-repressors instead of co-activators thereby inhibiting
its transcriptional activity (Berry, Metzger, and Chambon, 1990).

I.4 Early and late response

In the precedent sections, the various mechanisms by which an extracellular signal is
received and conveyed to the nucleus were discussed. The reception of such signals can
directly impact cellular processes such as cytoskeleton organization or the metabolism.



14 CHAPTER I. SIGNALING PATHWAYS

However, major cellular changes usually involve the synthesis of new mRNA and proteins.
In particular the commitment to a new di↵erentiation state requires de novo synthesis of
a wide array of proteins to carry out the cellular functions entailed to the newly acquired
phenotype.

The production of new proteins species following stimulation is a two step process,
the early and late response as depicted in figure I.7. The stimulation by a growth factor,
cytokine or any signaling molecule results in the activation of a few transcription factors
forming activating complexes. This activation induces the expression of a large number of
genes including sometimes the activated TF itself forming a positive feedback loop (e.g.
Wakabayashi et al., 2009). This first wave of transcriptional activation is called the early
response. The first set of genes can also include transcription factor coding genes. These,
once translated to functional proteins and activated if needed, can promote the activation
of a second set of genes. This second wave represents the late response.

The early and late transcriptional response are particularly important to take into
account for regulatory network inference (discussed in section IV.3) which is the task
of defining the target gene of transcription factors often solely based on transcriptomic
experiments. Measures of the transcriptome only capture modification of the set of
transcripts in a given sample. Regulatory network inference therefore can only capture
targets of a given TF if the mRNA level of this TF varies. In the case of the early response,
the mRNA level of the TF remains unchanged since the activation of the TF is controlled at
the post-transcriptional level for instance by its localization or through post-translational
modifications, none of which are identifiable through transcriptomic measures. However,
the transcriptional regulators at the origin of the late response have observable changes of
their transcript level. Therefore, it is possible to infer the regulation of the late responsive
genes by their e↵ective regulatory TF.
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Figure I.7: Early and late transcriptional response. Extracellular signals activate downstream
transcription factor (TF) either through a sequence of reaction in a signaling pathway or by directly
binding a nuclear receptor (NR) in the case of small hydrophobic molecules. The subsequent
increased expression of genes by the activated TF (green) corresponds to the early response to
the stimulus. Among the first set of activated genes are transcriptional regulator coding genes
(blue, yellow and red DNA molecules bound by the green activated TF). The transcription and
following translation of these genes into functional transcription factors, can eventually activate
a second set of gene thereby generating the late response to the stimulus.
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Chapter II
Carcinogenesis and deregulation

II.1 Neo-plastic transformation

In 1909, Peyton Rous discovered a strain of avian virus capable of inducing sarcomas, a
neoplasm arising in mesenchymal tissues, in chickens. It was named RSV, standing for
Rous Sarcoma Virus. While this finding first brought the cancer research community to
debate the classification of cancer as an infectious disease, it eventually was understood
as the discovery of a tool to transform normal cells into tumor cells. Chicken embryonic
fibroblasts infected with RSV were found to undergo radical phenotypic modifications and
acquired characteristics observed in cancer cells (Temin and Rubin, 1958). For instance,
these transformed cells continued growing in a Petri dish after reaching confluence whereas
normal cells stop proliferating once a monolayer of cells is formed. This process is called
contact inhibition in untransformed cells. Cellular transformation also caused an alteration
of their morphology, the ability to proliferate in absence of growth factors and without
any attachment.

More than a century of research lead to a deeper understanding of the cellular
characteristics acquired during neo-plastic transformation, the process by which a normal
cell becomes a malignant tumor-forming cell. In particular, an influential review enumerates
the capabilities acquired by cancer cells leading to tumor growth and metastasis. These
Hallmarks of cancer proposed by Douglas Hanahan and Robert Weinberg in their 2011
reference paper (Hanahan and Weinberg, 2011) are illustrated in figure II.1.

As tumors are masses composed of continuously proliferating cells, the foremost capacity
acquired by cancer cells is their ability to proliferate in absence of mitogenic signals. As
for normal cells, the mitogenic signals usually originate from the coordination of the cell
population, which results in the secretion of growth factors (Thisse and Thisse, 2005). As
discussed in chapter I of the introduction, these signals are integrated and processed so that
normal cells can decide whether or not to enter the cell division cycle and start to proliferate.
Conversely, cancer cells disrupt this high level process by which the organism ensures a

17
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Figure II.1: Hallmarks of cancer. Illustrated capabilities and characteristics acquired by cancer
cells. (From Hanahan and Weinberg, 2011)

constant and normal number of cells. This major step of malignant transformation is
attained either by continuously producing growth signals themselves in an autocrine mode,
by forcing other normal cells in their microenvironment to produce these signals or by
continuously sustaining the intracellular signaling pathway normally induced by mitogenic
signals (Giancotti, 2014).

Other general cellular processes allow cancer cells to acquire malignant characteristics.
Tumors most frequently arise from epithelial cells and are termed carcinomas. During
development stages as well as following the formation of a wound, epithelial cells
can undergo Epithelial-Mesenchymal Transition (EMT) (De Craene and Berx, 2013).
Transformed cells that undergo this regulatory program acquire the abilities to invade,
form metastasis and to resist to programmed cell death, referred to as apoptosis. EMT is
normally a temporary state that is followed by MET, Mesenchymal-Epithelial Transition,
and more advanced stages of cell di↵erentiation. However, tumor cells that underwent EMT
remain in this mesenchymal phenotype suggesting that a malignant process maintains this
cellular state.

Mitogenic signaling and EMT can be observed in normal cells during embryogenic
development and following wounding (Thiery et al., 2009). Wound healing is also associated
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to tissue inflammation, a process that has been described to promote tumor progression
(Grivennikov, Greten, and Karin, 2010). These similarities between tumor progression
and wound healing were observed in several di↵erent ways. For instance, Harold Dvorak
detailed the similarities between the stroma of solid tumors and the tissue surrounding
a wound. His observation lead him to describe tumors as ”wounds that do not heal”
emphazing the idea that tumors sustain normal processes to maintain growth (Dvorak,
1986).

Several of the hallmarks proposed by Hanahan and Weinberg rely on normal processes
of wound healing, which involves cell proliferation and migration as well as vascularization
of the wounded tissue (Hanahan and Weinberg, 2011). The constitutive activation of
these normal processes support the concept that cellular mechanisms activated in cancer
cells mostly rely on normal regulatory programs. Evidently, it is thought that core
processes such as DNA replication and cell division are essentially conserved during neo-
plastic transformation. Instead of inducing a global reorganization of cellular functions,
carcinogenesis implies sustained signals of several characteristics of normal wound healing
and development as well as abrogation of negative feedbacks and safeguards, which includes
inhibition of apoptosis, avoidance of immune destruction and evading growth suppressors.

Moreover, two of the proposed hallmarks cause the constitutive activation of
characteristics relative to growth and inhibition of growth restrictions. These were
identified as enabling characteristics and include tumor promoting inflammation and
genetic instability of which the impact on carcinogenesis is discussed in the next section.

II.2 Cancer is a genetic disease

The identification by Peyton Rous of tumor initiating virus’s lead, years later, to another
stunning discovery: the tumor was induced by the transcription of a viral gene that has
a close homolog in the host genome. This suggested that regardless of the physiological
mechanism underlying neo-plastic transformation, cancer is a disease of genes and it looked
like only small modifications of the original copies of a gene could induce tumors.

While the discipline tumor virology was being created, particular chemical and physical
agents were discovered to have the ability to induce cancer. Several organic compounds,
mostly extracted from coal tar, were found to be highly carcinogenic. The carcinogenicity
of X-rays was also described as well as its ability to introduce modifications in the genome
of exposed cells. The latter discovery revealed that genetic information could be modified:
genomes are mutable. From there, studies of carcinogenic chemicals showed that these were
mutagenic compounds as well. Altogether, these observations were indicative that cancer
arises from alteration of the genetic information. This new perspective was supported in
1960 by the discovery of an abnormal karyotype (the description of chromosome number
and shape in a cell) common to nearly all cases of Chronic Myelogenous Leukemia. This
alteration causing an exchange between the two long arms of a copy of chromosome 9
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and 22 results in a characteristically shorten 22 chromosome entitled the Philadelphia
chromosome (Nowell and Hungerford, 1960).

Since then, we learned that the translocation involved in the formation of the
Philadelphia chromosome takes place in the middle of two coding regions (Hermans
et al., 1987). A homolog of one of these genes, abl, was also found in a murine tumorigenic
virus (Daley, Van Etten, and Baltimore, 1990). The study of several other tumor forming
viruses revealed that most of these carried a homolog of a human normal gene. The
common grounds of tumorigenic viruses and oncogenic genetic alterations became the
genes that were encoded in virus or targeted by genetic alterations. The genes carried by
these viruses were termed oncogenes. Their normal homologs present in the genome of
non-transformed healthy cells are called proto-oncogene, has they have the potential to
become oncogenes consequently to specific genetic alterations.

Figure II.2: Frequent genetic alterations. Based on the profiling of 3,299 tumors from 12 cancer
types by the TCGA (The Cancer Genome Atlas) consortium. The upper panel shows segments
of chromosome and their relevant associated gene that is most often a↵ected by copy number
alterations. Blue bars represent losses. Red bar represent gains in copy number. The lower panel
presents the genes most frequently found with point mutation in their coding sequences. (from
Ciriello et al., 2013)

The further study of tumor forming viruses resulted in a broader list of proto-oncogenes
encoded in the human genome. In the case of non-viral caused tumors, it is now known that
most cancer arises from genetic alterations in normal cells, which promote their malignant
transformation. Advances in genome-wide techniques and the analysis of thousands of
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cancer genomes also revealed a set of frequently altered genes. Figure II.2 summarizes the
most frequent alterations found by the TCGA (The Cancer Genome Atlas, a consortium
intending to profile most human cancer types). These alterations can result from, or
actually cause, the acquisition of a mutator phenotype of genome instability increasing
the probability of chromosome alteration and mutation events (Loeb, 2001). Although
these alterations target more or less random regions of the genome, the ones providing
the fittest advantage for tumor growth and progression is selected in a Darwinian fashion.
This process explains one of the most important enabling characteristic proposed as a
Hallmark of cancer as it can, through this selection process, cause the acquisition of most
if not all of the other characteristics of neo-plastic transformation.

II.3 The diversity of genetic alterations

Tumor inducing retroviruses can contain the mRNA of an oncogene. In normal cells,
the expression of the corresponding proto-oncogene is tightly controlled to respond to
given stimuli. This is done to a certain extent by specific DNA elements in its promoter
controlling the recruitment of the transcriptional machinery and thus the transcription
initiation rate. For instance, housekeeping genes are controlled by promoter elements
causing a high and constant level of transcription. In the case of an oncogene acquired
by the infection of a retro-virus, the retroviral promoter upstream of its coding sequence
results in a much higher and constant level of expression. Oncogenes of retro-viral origin or
proto-oncogenes under the control of a promoter of viral origin, are defined by pathological
level of expression with a foreseeable e↵ect on their downstream e↵ectors. This is only one
example of the mechanisms by which tumor viruses bypass the way a proto-oncogene is
normally regulated, usually only being expressed and activated for a short period of time,
in most cases determined by the length and strength of the stimulus. Interestingly, this is
also one of the e↵ect of tumor-driving genetic alterations.

Genetic alterations are modifications of the information contained in the DNA molecules
of a cell. In normal cells, genetic aberration occur randomly and trigger repair mechanisms
or cell death when the level of damage is unmanageable. The acquisition and maintenance of
genetic alterations in cancer cells therefore greatly participate to malignant transformation.
These modifications include point mutations and chromosome alterations.

Point mutations

Point mutations only a↵ect a few, often one, nucleotide in the DNA sequence.
The substitution of a nucleotide inside a gene’s coding sequence can have several

implications and are classified into four categories:
- Missense mutations resulting in the modification of the amino acid sequence of the

translated protein
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- Non-sense mutations introducing a stop codon (TAA, TAG, TGA), thereby shortening
the protein if it is translated

- Silent mutations, which will have no consequence on the protein sequence yet may
impact post-transcriptional processes such as the stability of the mRNA

- Non-stop mutations substituting a stop codon into an amino acid coding codon
As an example of missense mutations and its potential e↵ect, figure II.3 illustrates a

mutation frequently found in bladder cancer and a↵ecting the gene coding for the growth
factor receptor FGFR3.

Figure II.3: Missense FGFR3 mutations. A nucleotide substitution in the 249th (R249C)
or 248th (S249C) codon can be found in bladder cancer and melanomas and results in the
replacement of the original amino acid by a Cysteine. In normal cells, FGFR3 homodimerizes in
the presence of ligand which activates the cytoplasmic Tyrosine Kinase domain (TK, below the
trans-membrane domain TM). In cells presenting these mutations, the cysteins are able to form
a disulfide bond causing a constitutive dimer and activation of the kinase activity.

The e↵ect of insertions and deletions, generally referred as indels, of nucleotides in
the coding sequence of a gene depends on the number of nucleotides a↵ected. Indels of
three nucleotides or multiples of three are called in frame indels and will simply add or
remove amino acids from the final synthesized protein which can have variable e↵ects on
its function. Indels a↵ecting a number of nucleotides that is not a multiple of three are
termed frame shift indels. As expected by their name, these alter the reading frame of
the mRNA and change virtually all downstream codons. In most cases frame shift indels
result in dysfunctional and/or shorten proteins.

The deletion, insertion or exchange of a nucleotide can also a↵ect many other processes
in the regulation of a gene whether they appear inside or outside the translated or even
the transcribed sequences. Modifications in the promoter and DNA response element can
alter the recruitment of regulatory proteins or RNA and therefore have consequence on
the expression of the downstream gene (Labussière et al., 2014). Modifications inside and
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around the coding sequence can alter the maturation of the mRNA and in some cases
induce aberrant splicing (Liu et al., 2001). Other alterations of the transcribed sequence can
a↵ect the a�nity for mRNA stabilizing proteins, ribosome-recruiting proteins, regulatory
RNAs such as miRNA or simply a↵ect the secondary structures encoded in the mRNA
sequence. Beside the direct modification of the coding protein sequence, most of these
e↵ects are usually di�cult to identify.

In fact, the addition, loss or the substitution of a single nucleotide into another often
has no or only little e↵ect. For instance, a non-sense mutation or a frame shift indel
is supposed to be of great significance but can occur in a gene that is not expressed
neither in normal or pathological conditions of the studied cell type. These inconsequential
mutations are frequent especially in cancer with high genomic instability. These were
termed passenger mutations and are opposed to driver mutations that have higher and
sometimes dominant pathological e↵ects. This concept of passenger mutation is recurrent
in the scientific literature of high-throughput sequencing. However, arguments to classify
mutations as passenger often rely on weak characteristics such as frequency of occurrence
and fail to take into account mutations that do not a↵ect the amino acid sequence of
proteins but their abundance.

Chromosome alterations

Larger alterations of the genetic information can involve chromosomal regions of several
kilobases - under which the border with indels becomes di�cult to define - or an arm
of a chromosome and up to an entire chromosome. The maintenance of aberrant forms
of chromosomes during cancer cell division often requires some tweak in the mitotic
process to allow mitosis to deal with chromosomes altered in form and number. This is
particularly true for alterations a↵ecting large portions of chromosomes often resulting in
aneuploid cells. Alterations in copy number and chromosome rearrangements define two
main categories of alterations. These two classes do not di↵er in terms of the mechanisms
by which they occur in cancer cells, which mainly involves a break in the DNA strand.
However, these alteration events have rather di↵erent e↵ects on genes and their expression
into functional, and sometimes dysfunctional, proteins.

A defect in chromosome segregation during mitosis can result in the gain or loss of a
chromosome in the daughter cells. In some cases the faulty segregation a↵ects an entire
chromosome resulting in trisomy, in the cell gaining a chromosome, or monosomy in
the case of a loss. Copy number aberrations (CNA) can also a↵ect focal regions of a
chromosome.

An immediate consequence is the altered number of copies of genes present on the
parts of the chromosome a↵ected by this alteration. Normal cells have two copies of each
gene present on autosome pairs. The e↵ect of the loss of one of these copies is highly
variable. In some cases it will have no e↵ect, either because a single copy is su�cient for
the normal functioning of the gene product or simply because none of the two copies are
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normally expressed. Other cases range from a 50% to a 100% decrease in expression in
the case were only the lost copy was normally expressed. This can be due to di↵erentially
expressed alleles of a same gene depending on their parent of origin, a phenomenon called
genomic imprinting (Joyce and Schofield, 1998). Conversely the e↵ect of the gain of the
part or of the entire chromosome is simpler in that it increases the number of potentially
transcribed loci and therefore the potential number of proteins encoded by genes usually
present in only two copies. Figure II.4 illustrates the e↵ect of copy number alteration on
the expression of 20 genes present in regions of frequent copy number aberrations of 131
urothelial carcinomas.

Finally, loss of heterozygosity (LOH) involves the loss of the arm or of an entire
chromosome and the duplication of the remaining copy without any modification of the
overall copy number. LOH is a copy-neutral chromosome aberration mainly implying the
presence of the two same copies of genes present in the locus subjected to LOH. This
mechanism was described in retinoblastoma by the Knudson two-hit hypothesis (Knudson,
1971). The first hit is an inactivating mutation of the RB1 gene. The second hit is then
the loss of part or the whole chromosome 13 carrying the wild type RB1 gene and a
duplication of the concordant locus of the chromosome carrying the mutated RB1 (Kato
et al., 1993). This results in cells homozygous for the mutated form of RB1 and therefore
the double inactivation (of both functional alleles), a necessary step for tumorigenesis.

Figure II.4: E↵ect of copy number on gene expression. The expression of 20 genes recurrently
found in chromosomal regions of copy number aberration in bladder cancer is reported. The
values of expression, measured by RNA-sequencing and log2 transformed, of a gene in a sample
is plotted as a function of the copy number status of the same gene in the same sample. (from
Cancer Genome Atlas Network, 2014)

Extreme cases of aberrant copy number alterations include the deletion of both copies
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of a chromosome locus or the amplification of a locus resulting in often more than 5
copies. The amplicon, the copies of an amplified locus, can remain on the chromosome
from which it was copied. Amplicons can also be part of an independent particle able
to perpetuate itself throughout cellular divisions. These extra-chromosomal particles
are called double-minute chromosomes. Chromosome alterations analysis in nearly 5,000
tumors also revealed that more than one third of tumor cells undergo whole genome
duplication (Zack et al., 2013).

Chromosome rearrangements are simply displaced sections of chromosomes. These
usually result from breaks in the DNA strand and erroneous ligation of the detached
segments. In some cases, the segment is simply reintegrated upside-down at the same
position in the chromosome. In cases similar to that of the Philadelphia chromosome, the
extremities of the arms of two di↵erent chromosomes are exchanged. These events do not
a↵ect the number of copies of genes, although cases of amplification of these aberrant
chromosome segments have been reported. The particularity of these events is to create
breaks and mending back up together sequences of DNA that are not normally near each
other.

The main pathological e↵ect of chromosome rearrangement is gene fusion. This happens
when the breaks occur inside genes. The reorganized segment of DNA results in a sequence
coding for new gene, mRNA and sometimes a new protein that does not exist in normal
cells. Gene fusion can create new gene products sharing functions from both of its original
genes. The addition of new domains to pre-existing protein or creation of a shorten protein
can significantly alter its function. This is well exemplified by the frequent fusion of the
FGFR3 and TACC3 genes in bladder cancer (Williams, Hurst, and Knowles, 2013) and
glioblastoma as illustrated in figure II.5.

Gene fusion can induce neo-plastic transformation without involving the coding sequence
itself. Most of the miRNA regulate mRNA by binding the 3’ untranslated regions (UTR)
of their targets. The fusion between the 5’ UTR and coding sequence of a proto-oncogene
with the 3’ UTR of another gene can result in the resistance of the proto-oncogene to
miRNA silencing thereby abnormally increasing the mRNA expression level (Parker et al.,
2013). Other cases of gene fusion with an unrelated promoter have been reported. This
can substantially modify the expression pattern of a gene. In most cases of Burkitt’s
Lymphoma, a translocation involving the proto-oncogene MYC was reported. This
rearrangement causes a copy of MYC to be set downstream of the promoter controlling
the expression of the immunoglobulin heavy-chain gene (Janz, 2006). In normal cells, MYC
is activated only in response to specific stimuli and in particular of growth factors. These
signals are normally temporary and their absence results in a silencing of MYC. However,
the immunoglobulin heavy-chain gene is highly expressed in a cell-specific but constant
manner. Therefore, the regulation of MYC by this constitutive enhancer overflows the
cells with this transcription factor of which the major function is to activate cellular
proliferation.
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Figure II.5: FGFR3/TACC3 fusion in bladder cancer. Reported in several tumors of the
bladder and in bladder cancer cell lines. The breaks occur in the 17th exon of FGFR3 and the
intron between exon 10 and 11 of the TACC3 gene. The new gene product is a protein very
similar to the normal FGFR3 protein with an additional helical domain in C-terminal. The
addition of this TACC3 originating domain is thought to contribute to a ligand-independent
dimerization and subsequent activation of the growth receptor. Ig: Immuno-globulin like domain.
TM: trans-membrane domain. TK: tyrosine kinase domain. (from Cancer Genome Atlas Network,
2014)

Structural and regulatory e↵ect of genetic alteration

Genetic alterations can transform a proto-oncogene into an oncogene either by altering
the structure of the encoded protein or its regulation and therefore its quantity. The
simultaneous alteration of both the expression and the structure of the encoded protein
have been reported. This is the case when the amplified locus carries a gene containing a
mutation a↵ecting the structure and function of the encoded protein.

The family of growth factor receptors, also called receptor tyrosine kinase (RTK), is
a↵ected by a wide array of genetic alterations. Moreover, their extensive study produced
models of the e↵ect of several types of genetic alterations. RTK are activated subsequently
to their dimerization or in the case of the insulin receptor family trough stablisation of an
active dimer, which is normally caused by the binding of specific ligand. As illustrated
in figure II.3, point mutations can induce changes in the amino acid sequence of RTK
causing their constitutive dimerization and activation. Again, with the example of FGFR3
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in bladder cancer, the fusion of an RTK with another gene can result in the addition of a
new protein domain causing a constitutive activation of the receptor. The amplification
of a growth factor receptor, which was frequently observed for EGFR and ERBB2, can
result in a substantial increase in its expression. A high number of RTK proteins present
at the surface of cells increases the chance of random ligand-independent dimerization or
can simply reduce the quantity of needed ligands to activate the downstream signaling
pathway. In these cases, the amplification also results in constitutive activation of the
protein.

Finally, genetic alterations can indirectly activate oncogenes. For instance, the
amplification and over-expression of growth factors within a cell can result in autocrine
signaling and constitutive activation of the corresponding growth factor receptors. This
incidental e↵ect implies that more important than the e↵ect of a mutations on a gene, is
the e↵ect on the genes regulated by it, on downstream pathways.

II.4 Carcinogenesis or the deregulation of signaling
circuits

The conversion of a proto-oncogene into an oncogene requires direct genetic alteration
of the encoding gene and causes a constant activation of the protein. In the case of
growth-related oncogenes, the constitutive activation state is equivalent to that of found in
normal proliferating cells following mitogenic stimuli. This resemblance suggests that most
of cancer malignant abilities are acquired by abnormal maintenance of normal processes of
proliferation. Based on this, we can assume that the regulatory circuits controlling cell
proliferation, which are stimulated during developmental processes or wound healing, are
simply sustained during tumorigenesis. Therefore, the abnormal activation by oncogenic
alterations of nodes in these signaling pathways should be capable of driving tumor
progression.

This hypothesis is greatly supported by the high frequency of genetic alterations
targeting central nodes in mitogenic signaling pathways. A simplistic view of mitogenic
responding signaling cascades is composed of successive steps of enzymatic reactions
activating proteins one after the other. Although these pathways are more thoroughly
discussed in section I, the sequence of reactions involved in the MAPK cascade is listed
below.

1. a growth factor binds to a corresponding RTK
2. the RTK activates RAS through the GRB2 and SOS proteins
3. RAS activates RAF, a MAPKKK, by transferring a phosphate group
4. RAF activates MEK, a MAPKK, by transferring a phosphate group
5. MEK activates ERK, a MAPK, by transferring a phosphate group
6. ERK phosphorylates MYC, a transcription factor engaging the cell into a

proliferation states
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As this cascade is here described as a simple sequence of positive regulatory steps,
the constitutive activation of any of the proteins involved in any of these steps should
be su�cient to maintain a proliferation state. Indeed, these proteins are known
proto-oncogenes for which activating alterations were frequently identified (see II.2 for
approximate frequency in more than 3,000 tumors). The proportion of alterations of each
of the nodes in the pathway is dependent on the tissue-origin of the tumor. However, most
cancer types were identified with amplification or mutations of growth factor receptors
(EGFR, ERBB2,. . . ), Ras activating mutations (in KRAS, HRAS or NRAS ) and Myc
amplifications (of CMYC, NMYC or LMYC ) representative of key steps of the MAPK
signaling cascade.

The occurrence of genetic alterations inducing constitutive activation of proteins at
di↵erent levels of these mitogenic signaling pathways support the idea that cancer cells
use these circuits to proliferate. More importantly, genetic alteration seems to be the fuel
that sustains the unceasing activation of these pathways in cancer.

As stated earlier, these signaling cascades are here described in their simplest form. A
more detailed but still incomplete model of pathways involved in carcinogenesis is shown
in figure II.6. This portray of cellular circuits barely illustrates the complexity of the
set of chemical reactions underlying cell signaling. However, the proposed diagram is an
understandable model in which the consequences of the aberrant activation of key nodes,
Ras for instance, can lead to the acquisition of several characteristics essential to malignant
transformation.

Several of the Hallmarks of cancer proposed by Hanahan and Weinberg were left
behind in this section. While the sustained proliferative signaling has been here thoroughly
discussed and explained by genetic alterations, other characteristics such as resistance to
cell death and evading growth suppressors were not addressed.

When DNA su↵ers a great deal of damage, such as that necessary to induce chromosome
alterations, normal cells have a safeguards that halt the progression of the cell cycle until
the damage is repaired. This is also the case when other stresses occur in the cell such as
insu�cient quantities of nucleotides, glucose or other key cellular metabolites. In extreme
cases, when the DNA is damaged beyond repair, these gatekeepers can induce apoptosis.
A specific protein acts as an input of all the alarm signals, TP53. Given that cancer
cells require aberrant cellular conditions to continuously proliferate, a normal version of
TP53 should be activated and induce cell death or arrest the proliferation in virtually all
transformed cells. By its ability to interfere with tumor progression, TP53 is a Tumor
Suppressor Gene (TSG). Moreover, TP53 is the most frequently mutated gene in all cancer
type (see figure II.2). Unlike mutation described to activate RTK in the previous section,
TP53 bears inactivating mutations such as non-sense mutations.

A full comprehension of neo-plastic transformation implies a thorough understanding
of the signaling pathways constitutively activated or repressed by oncogenic alterations.
This includes not only the critical nodes that are altered but also the entire downstream
e↵ectors that are a↵ected as both of these are potent clinical targets and can explain the
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circuit can be segmented into distinct subcircuits, each of which
is specialized to support a discrete cell-biological property in
normal cells and is reprogrammed in order to implement
a hallmark capability in cancer cells (Figure 2). Only a subset of
hallmark capabilities are addressed in this figure, either because
their underlying control circuits remain poorly understood or
because they overlap extensively with those portrayed here.
An additional dimension of complexity involves considerable

interconnections and thus crosstalk between the individual sub-
circuits. For example, certain oncogenic events can affect
multiple capabilities, as illustrated by the diverse effects that
prominent oncogenes, such as mutant RAS and upregulated
MYC, have on multiple hallmark capabilities (e.g., proliferative
signaling, energy metabolism, angiogenesis, invasion, and
survival). We anticipate that future renditions of this integrated
circuit will encompass subcircuits and associated hallmark
capabilities that are still not addressed here.

ENABLING CHARACTERISTICS AND EMERGING
HALLMARKS

We have defined the hallmarks of cancer as acquired functional
capabilities that allow cancer cells to survive, proliferate, and
disseminate; these functions are acquired in different tumor
types via distinct mechanisms and at various times during the
course of multistep tumorigenesis. Their acquisition is made
possible by two enabling characteristics. Most prominent is the
development of genomic instability in cancer cells, which
generates randommutations including chromosomal rearrange-
ments; among these are the rare genetic changes that can
orchestrate hallmark capabilities. A second enabling character-
istic involves the inflammatory state of premalignant and frankly
malignant lesions that is driven by cells of the immune system,
some of which serve to promote tumor progression through
various means.

Figure 2. Intracellular Signaling Networks Regulate the Operations of the Cancer Cell
An elaborate integrated circuit operates within normal cells and is reprogrammed to regulate hallmark capabilities within cancer cells. Separate subcircuits,
depicted here in differently colored fields, are specialized to orchestrate the various capabilities. At one level, this depiction is simplistic, as there is considerable
crosstalk between such subcircuits. In addition, because each cancer cell is exposed to a complex mixture of signals from its microenvironment, each of these
subcircuits is connected with signals originating from other cells in the tumor microenvironment, as outlined in Figure 5.
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Figure II.6: Carcinogenic Signaling circuits. A simplified version of the pathways aberrantly
regulated to drive neo-plastic transformation. Key nodes only are identified by the name of the
protein. The circuit is divided into four categories directly related to Hallmarks of cancer. (from
Hanahan and Weinberg, 2011)

acquired malignant phenotype.
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Chapter III
Urothelial carcinoma

The urothelium is the epithelial lining of the urinary bladder. It serves as a barrier to the
toxic content of the urine and to the invasion of pathogens. Urothelial cells have a very
low turnover rate of approximately 6 weeks in mice Lewis, 2000 and six months to one
year in human (Varley et al., 2005). However, in response to injury, the urothelium rapidly
enters a highly proliferative state (Kreft et al., 2005; Varley et al., 2005).

The urothelium is composed of three layers of cells, the basal, intermediary and
superficial layers of cells as depicted in figure III.1. Depending on the stretched state of
the bladder, the thickness of the epithelium ranges from three to eight cells depending on
its distension state (Staack et al., 2005). The basal layer of cells is assumed to be germinal
cells (Lewis, 2000) although mitosis has been observed in both the basal and intermediary
layers (Varley et al., 2005). The superficial layer of cells shows unique di↵erentiation
characteristics by expressing four kinds of uroplakins (Ia, Ib, II and III, see III.1) which
form rigid plaques called asymmetric unit membrane (AUM) plaques. These highly
specialized terminally di↵erentiated urothelial cells are called umbrella cells as they make
the urothelium one of the most e↵ective and impermeable epithelial barrier (Wu et al.,
2009).

III.1 Epidemiology and clinical aspects

In 2012, 118.900 men and 32.900 women were diagnosed with bladder cancer in europe
making it the 5th cancer in terms of incidence (Ferlay et al., 2013). Approximately 50%
of all bladder cancers are associated with cigarette smoking as the risk of bladder cancer
is increased fourfold for smokers (Clavel et al., 1989). Another risk factor is exposure to
chemicals such as aromatic amines, benzidine, �-naphthylamine or aromatic hydrocarbons
from coal, all found in specialized industries and associated with a thirty-fold increased
risk of bladder cancer. Finally, the tropical parasite Schistosoma haematobium causing
bilharzia (also termed schistosomiasis) can also induce cancers of the urinary bladder and

31



32 CHAPTER III. UROTHELIAL CARCINOMA

Figure III.1: Structure of the bladder urothelium. a. Illustration of the multiple epithelial
cell layers composing the urothelium. b. Immunohistochemical staining of uroplakins in mouse
urothelium, mainly expressed in umbrella highly-di↵erentiated urothelial cells. (from Birder and
Andersson, 2013)

in fact makes bladder cancer the first cancer in Egypt (Sengupta, Siddiqui, and Mumtaz,
2004).

Most tumors of the urinary bladder are urothelial carcinomas (90% to 95%). Based on
physical and histological examination, imaging and endoscopy, tumors are systematically
classified using the TNM system, standing for Tumor, Nodes and Metastasis. The 2009
consensus staging of bladder cancer is described in figure III.2. Tumors presenting a
T2 stage or more are referred to as muscle-invasive cancers as opposed to superficial or
non-muscle-invasive Ta and T1 tumors. The TNM status has a significant impact on
prognosis with for instance, a five-year survival rate dropping from 85% for T2 to 25%
for T4 cancers and a mean survival of six to twelve months for metastatic bladder cancer
(Sengupta, Siddiqui, and Mumtaz, 2004).

Non-muscle-invasive tumors represent nearly 80% of cancers at diagnosis and have a
variable prognosis depending on the phenotype of tumors cells described by tumor cell
grading. The histological description of tumor cells is a grading of its di↵erentiation state.
Tumor grade is assigned based on tissue abnormalities such as the polarity of cells, the state
of the nucleus and number of observed mitosis. In bladder cancer, two types of grading
are used and are referred to as the 1973 and 2004 WHO (World Health Organization)
consensus grades. The overlap between these two grading system is depicted in figure
III.3.

Histological grading is also of major significance in terms of prognosis and clinical
care. While only 35% papillary urothelial neoplasm of low malignant potential (PUNLMP)
develop recurrences, 70% of low and high grade Ta tumors do (Holmäng et al., 2001).
Moreover, disease progression of PUNLMP was nearly never observed. Low grade Ta
tumors rarely progress (approximately 5%) whereas high grade Ta tumors progress in
nearly one of four cases (Holmäng et al., 2001). The high recurrence rate of Ta and T1
(80%) tumors requires frequent cystoscopy and lifelong follow-up. Therefore, the cost per
patient of bladder cancer from diagnosis to death is the highest of all cancers (Botteman
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T - Primary Tumor
The su�x ”is” is added to indicate presence of caricnomas in situ.

TX Primary tumor cannot be assessed

T0 No evidence of primary tumor

Ta Non-invasive papillary carcinoma

Tis Carcinoma in situ: ’flat tumor’

T1 Tumor invades subepithelial connective tissue

T2 Tumor invades muscle:

T2a superficial muscle (inner half)

T2b deep muscle (outer half)

T3 Tumor invades perivesical tissue

T3a microscopically

T3b macroscopically

T4 Tumor invades peri-vesiculare structures:

T4a prostate stroma, seminal vesicles, uterus or vagina

T4b pelvic or abdominal walls

N - Regional Lymph Nodes

NX Regional lymph nodes cannot be assessed

N0 No regional lymph node metastasis

N1 Metastasis in a single lymph node in the true pelvis

N2 Metastasis in multiple lymph nodes in the true pelvis

N3 Metastasis in a common iliac lymph node(s)

M - Distant Metastasis

MX Distant metastasis cannot be assessed

M0 No distant metastasis

M1 Distant metastasis

Figure III.2: Urinary Bladder cancer TNM classification. 2009 consensus in bladder cancer
TNM classification and histopathological staging.
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spectrum and from grade 3 carcinoma at the
opposite end of the spectrum (Fig. 2) is the most
difficult aspect of applying the 1973 WHO grading
system, with the result that there is wide variation in
the reported frequency of grade 2 carcinoma, with
reported incidences ranging from 13% to 69% [4].
This has raised concerns about lack of reproduci-
bility in assigning tumor grades, and with this came
concerns about the appropriateness of certain
clinical management stratagems in a setting of
uncertainty about proper tumor grade. Despite its
apparent shortcomings, the 1973 WHO grading
system has been in widespread use for more than
three decades. It is accepted by uropathologists and
uro-oncologists on a global scale. Enormous
amounts of data have been accumulated using this
system in studies of the morphologic properties,
clinical behavior, treatment, and follow-up of
urothelial tumors. The system has become well
understood by clinicians, who are able to tailor
patient management according to the reported
grades. In the opinion of many, therefore, this
grading system has never been ‘‘broken,’’ and
consequently there is no apparent need to ‘‘fix it’’[5].

Nevertheless, there existed a perceived need to
develop a more universally acceptable classification
system for bladder neoplasia that could be used
effectively by pathologists, urologists, and oncolo-
gists. Consequently, following an initial meeting in
1997 among pathologists, urologists, and basic
scientists in Washington, DC, at which it was agreed
that an attempt would be made to create such a
system, several members of the International
Society of Urological Pathology (ISUP) in 1998
proposed a new grading system, subsequently
known as the 1998 WHO/ISUP system. This system
was developed by a select group of urologic
pathologists with little input from urologists, med-

ical oncologists, or radiation therapists, and studies
designed to evaluate the clinical and prognostic
relevance of this classification scheme were per-
formed only after its publication. A revised version
of this system (the 1999 WHO/ISUP system) met with
limited acceptance. At a consensus conference in
2001, the majority opinion of the participants was
that the 1973 WHO grading system should remain
the international standard for the classification and
grading of urothelial papillary neoplasms [4]. In
2004, a classification system for noninvasive papil-
lary urothelial neoplasms, identical to the 1998
WHO/ISUP classification system, was adopted in
Pathology and Genetics of Tumours of the Urinary System
and Male Genital Organs, one of a series of WHO ‘‘Blue
Books’’ for the classification of tumors. This new
system separates noninvasive papillary urothelial
neoplasms into four categories, designated papil-
loma, papillary urothelial neoplasm of low malig-
nant potential (PUNLMP), low-grade carcinoma, and
high-grade carcinoma. The recommendations in
this book reflect the views of a Working Group of
urologic pathologists assembled at an Editorial and
Consensus Conference held in Lyon, France, in
December 2002.

The authors of the new 2004 WHO classification
system expressed hopes and expectations that the
new system would be widely accepted among all
physicians affected by the system. A striking feature
of the new system was the introduction of a newly
designated category, PUNLMP, to circumvent use of
the term carcinoma for tumors with a low prob-
ability of progression, but yet not entirely benign. It
was emphasized in the introduction of this new
system that it provides detailed histologic criteria
for the diagnosis of papillary urothelial neoplasms, a
feature that was expected to improve diagnostic
reproducibility among pathologists. Additionally, it

e u r o p e a n u r o l o g y 5 1 ( 2 0 0 7 ) 8 8 9 – 8 9 8 891

Fig. 2 – Comparison of the 1973 and 2004 WHO grading system. The 1973 WHO grade 1 carcinomas are reassigned, some to
the PUNLMP category, and some to the low-grade carcinoma category. Similarly, 1973 WHO grade 2 carcinomas are
reassigned, some to the low-grade carcinoma category, and others to the high-grade carcinoma category. All 1973 WHO
tumors are assigned to the high-grade carcinoma category. WHO = World Health Organization; PUNLMP = papillary
urothelial neoplasm of low malignant potential.

Figure III.3: Bladder cancer grading system. Tumor grades range from low to high cellular
abnormality (left to right). The 1973 grade 1 are mostly reassigned to Papillary Urothelial
Neoplasm of Low Malignant Potential (PUNLMP) as well as to low grade tumors. Similarly,
1973 grade 2 are reassigned to low and high grade whereas grade 3 are all assigned to high grade
tumors.
WHO = World Health Organization

et al., 2003). While muscle-invasive tumors are systematically high grade cancers, T1
tumors are high-grade (2004 WHO) or grade 2 and grade 3 (1973 WHO) and generally
progress in 60% of cases and show a 35% 10-year survival rate (Eble, 2004). Finally,
among non-muscle-invasive bladder cancers, Carcinomas in situ (CIS) are high grade flat
neoplasms. CIS have a more frequent progression rate than papillary tumors (40% to 50%)
and are often associated with in muscle-invasive tumors (Eble, 2004).

Interestingly, PUNLMP present mostly diploid cells whereas non-muscle-invasive high
grade papillary tumors and especially CIS cells are often aneuploid. These features of
genetic instability are much more important in muscle-invasive bladder cancer which is
among the most genetically instable cancer (Lawrence et al., 2014).

Bladder cancer treatment is dependent on the stage of the tumor. Tumor resection
followed or not with endovesical chemotherapy or immunotherapy (BCG therapy) are used
for non-muscle invasive tumors. In absence of metastasis, cystectomy is performed for
muscle-invasive tumors, associated or not with systemic chemotherapy. To this date, no
targeted therapies are clinically used for bladder cancer.

III.2 Contrasting bladder cancer progression path-
ways

Classifying cancer events of the urinary bladder by di↵erentiating non-muscle-invasive
superficial tumors and muscle-invasive tumors has major clinical significance in terms of
prognosis. Moreover, histo-pathological descriptions of tumors also define two opposite
progression pathways of bladder tumors with distinct progression pathways: Ta papillary
tumors and carcinoma in situ (CIS). The history of progression and recurrence is illustrated
in figure III.4.

Papillary tumors are associated with frequent FGFR3 activating mutations (Bakkar
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Figure III.4: Bladder cancer progression pathways. Two major type of tumor arise from the
normal urothelium. The most frequent is papillary tumors (70 to 80 %) followed by Carcinoma in
situ (CIS: 10%). The remaining is mostly of unknown origin. FGFR3 activating (red) mutation is
a frequent event in papillary tumors which themselves recur in 50% to 75% of cases. Progression
is rare (5%) and often associated with CDKN2A loss (green). The CIS pathway is associated
with TP53 mutations and with an MRES epigenetic phenotype. Progression and invasion in
40% to 50% of cases. (Drawn by Renaud Chavrier based on: Bakkar et al., 2003; Dyrskjøt et al.,
2004; Neuzillet et al., 2012; Rebouissou et al., 2012; Vallot et al., 2011)

et al., 2003; Rhijn et al., 2001). In the papillary pathway, the homozygous deletion of the
Tumor Suppressor Gene CDKN2A is associated with progression and invasion (Rebouissou
et al., 2012). CIS are associated with TP53 mutations (Rhijn et al., 2004). Moreover, a
particular gene expression signature consisting in the characteristic level of 16 mRNA
species was found to be specific and predictive of CIS (Dyrskjøt et al., 2004). Finally, a
multiple regional epigenetic silencing (MRES) phenotype was associated with invasive
tumors, rare FGFR3 mutations and predicted to be CIS tumors (Vallot et al., 2011).

This CIS/papillary dichotomy was further completed by a number of reference studies
producing seemingly di↵erent molecular classification of urothelial carcinomas (Cancer
Genome Atlas Network, 2014; Choi et al., 2014; Rebouissou et al., 2014; Sjodahl et al.,
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2012). Despite obvious di↵erences between the proposed classifications, two major subtypes
of bladder cancer are emerging from all of these studies. Similarly to breast cancer, it
appears that the di↵erentiation state of the tumor is a main contributor to its classification
(Damrauer et al., 2014). A first type is composed of cells presenting a highly di↵erentiated
phenotype expressing markers similar to the cells composing the superficial layers of the
urothelium. Inspired by the biology of breast cancer, this subtype is now often referred to
as luminal or luminal-like tumors, although Urobasal A was originally used (Sjodahl et al.,
2012). A second type of bladder cancers was described as basal (Cancer Genome Atlas
Network, 2014; Choi et al., 2014), basal-like (Rebouissou et al., 2014) tumors or Squamous
Cell Carcinomas (Sjodahl et al., 2012). Basal-like bladder cancers express markers of the
basal layer of the normal urothelium (e.g. cytokeratin 5, 14 and 6A) and are particularly
aggressive tumors with poor clinical outcome (Rebouissou et al., 2014; Sjodahl et al., 2012).
An example of classification is shown in figure III.5 and present, unlike most other studies,
both muscle-invasive and non-muscle-invasive tumor classification.

Genome-wide characterization of bladder tumors enabled molecular classification of
tumors but also help to define new drivers and therapeutic targets or to associate known
targets to subtypes.

FGFR3 is the gene with the highest mutation rate (coding mutations) in bladder cancers
with nearly 50% mutated tumors (Hernandez, 2006). FGFR3, standing for Fibroblast
Growth Factor Receptor 3, is a gene encoding a transmembrane protein with an extracellular
growth receptor domain and an intracellular kinase domain (illustrated in a previous section
in figure I.1). The most frequent mutations appear in the extracellular domain (S249C:
55%; R248C: 8%) and mutations in the transmembrane domain of the proteins (Y375C:
24%). Most of the FGFR3 mutations potentially result in constitutive activation of FGFR3
and therefore on constitutive firing of the downstream signaling pathway (Cappellen et al.,
1999). These mutations were found to be oncogenic mutations with transforming potential
most probably resulting in ligand independent activation of the kinase activity (Bernard-
Pierrot, 2005). Moreover, gains of copy number, over-expression (Neuzillet et al., 2014)
and activating gene fusion (Williams, Hurst, and Knowles, 2013) have been observed. The
alterations of FGFR3 are more frequent in papillary tumors and both are associated with
luminal-like bladder cancer (Cancer Genome Atlas Network, 2014) making it an excellent
target for tumors belonging to this type of highly di↵erentiated tumors (Cappellen et al.,
2006).

Despite the numerous evidences suggesting to be a major oncogene, FGFR3 -activating
mutations were previously identified as a cause of dwarfism syndromes and a negative
regulator of bone growth (Webster and Donoghue, 1997). Moreover, studies also suggested
FGFR3 to have tumor suppressor properties in epithelial cells by reducing proliferation
(Lafitte et al., 2013). Overall, the definition of the FGFR3 signaling pathway and its
variations in normal and transformed epithelial cells is necessary to further understand its
role and rationalize FGFR3-targeted treatments.

In addition to luminal-associated FGFR3 mutations, a specificity of urothelial
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carcinoma is its alteration of the proliferation/di↵erentiation balance (DeGra↵ et al.,
2013). At this point an interesting parallel can be made with non-aberrant phenotypes
specific to the normal epithelial counterpart, the urothelium. Normal Human Urothelial
cells (NHU) can be cultivated as primary unimmortalized cultures in vitro (Southgate et al.,
1994; Southgate, Masters, and Trejdosiewicz, 2002). NHU cells initially express markers of
basal/intermediate layers and undergo rapid proliferation (Southgate et al., 1994). As in
several other epitheliums, the Epidermal Growth Factor Receptor (EGFR), along with its
ligand and downstream signaling pathway, is necessary to this highly active proliferation
state (Daher et al., 2003). This phenotype is reversed by the activation of a ligand-inducible
nuclear receptor (Varley et al., 2010), the Peroxisome Proliferator-Activated Receptor-
� (PPAR�). Similarly to its key role in the di↵erentiation of adipocytes, PPAR� was
shown to induce terminal di↵erentiation of NHU cells (Varley et al., 2004). The e↵ect of
PPAR� on NHU phenotypes is augmented by the inhibition of EGFR, which in its active
form, inhibits PPAR� by an increased phosphorylation and decreased nuclear translocation
(Varley and Southgate, 2008; Varley et al., 2004). This complex feedback control reflects the
di↵erentiation/proliferation balance characteristic of urothelial and generally of epithelial
regeneration.

A recent study identified an activation signature of PPAR� (Choi et al., 2014) in a
luminal subtype, while EGFR (Rebouissou et al., 2014) is suggested to be a driver of
the basal subtype of bladder cancer. EGFR has been observed to drive several types of
human cancer (Normanno et al., 2006), the implication of PPAR� is more di�cult to
rationalize in particular due to its role in di↵erentiation and its negative e↵ect on NHU
cell proliferation (Varley and Southgate, 2008).

Overall, the implication of oncogenic alterations in bladder cancer is only partially
understood. In particular, the divergent roles of oncogenic drivers in transformed and
normal urothelium suggests major deregulation of their associated pathways.
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moderate in one, MS2b2.1. Themajority of theQTC3 genes
was associated with the S, G2, and M phases and did not
include genes typical for the G1 phase. We therefore carried
out a supervised selection of genes with key regulatory
functions of the cell cycle and selected the top ANOVA
genes (P < 10!10). The resulting 46 genes formed 2 distinct
gene expression patterns with one group of early cell-cycle
genes, for example, CCND1, predominantly expressed in
the MS1 tumors, and one group of late cell-cycle genes, for
example, CCNE, CCNA, and CCNB expressed in MS2a and
MS2b2.2 tumors (Fig. 2, Supplementary Text S2). CCND1,
CCNE1, and CCNB1 protein expression was validated by
IHC (Fig. 4). In addition to CCND1, MS1 cases showed
expression of 3 ID gene family members and of RBL2 (Fig.
2). The association of MS2a and MS2b2.2 tumors with late
cell-cycle activity was underlined by the high expression of

the CCNB activators CDC25A, CDC25B, and CDC25C, as
well as of genes related to chromosome segregation and cell
division, such as BUB1, CDC20, and CENP genes. Taken
together, the expression pattern of the cell-cycle genes
suggested that cell-cycle activity in MS1 tumors is primarily
engaged in releasing the cells from G0 to G1, that is,
associated with CCND1 expression, whereas the pattern in
MS2a and MS2b2.2 indicated that these tumors have evad-
ed the cell-cycle restriction point and are associated with
CCNE expression.

Urothelial cell carcinoma molecular subtypes show
different cytokeratin signatures

Keratins of simple epithelial cells, KRT8/KRT18 and
KRT7/KRT19, were predominantly expressed in MS1 and
MS2a (Fig. 2, Supplementary Text S2). KRT20, specifically

Figure2. Excerpts of identifiedgene
expression profiles.
Representative genes from
described gene signatures. Red,
high expression; green, low
expression; black; mutation; white,
wild-type; gray, no mutation data,
NMI, number of nonmuscle
invasive cases; MI, number of
muscle invasive cases. The cell
adhesion genes shown are
structural components of the
different cell adhesion complexes
indicated in parentheses. TJ, tight
junction; AJ, adherence junction;
Des, desmosome; GJ, gap
junction; HD, hemidesmosome;
ITG, epithelial integrins.

Sj€odahl et al.

Clin Cancer Res; 18(12) June 15, 2012 Clinical Cancer Research3380

 American Association for Cancer Research Copyright © 2012 
 on October 10, 2012clincancerres.aacrjournals.orgDownloaded from 

Published OnlineFirst May 2, 2012; DOI:10.1158/1078-0432.CCR-12-0077-T

Figure III.5: Bladder cancer subtypes. 7 sub-type of urothelial carcinomas identified using
hierarchical clustering on 308 bladder cancer transcriptomes of all stage and grade. Only genes
involved in specific functions only are shown on the right. Numbers of non-muscle-invasive (NMI)
and muscle-invasive (MI) are shown for each cluster at the bottom of the heatmap.
TJ, tight junction; AJ, adherence junction; Des, desmosome; GJ, gap junction; HD,
hemidesmosome; ITG, epithelial integrins.
(from Sjodahl et al., 2012)



Chapter IV
Unravelling oncogenic pathways

A challenge of modern cancer research is to develop tools for the diagnosis and prognosis of
tumors and more importantly for the identification the most e↵ective therapy: theragnosis.
During nearly twenty years now and especially since the sequencing of the Human genome
was finalized in 2001, high-throughput technologies have been continuously improving.
Since then, a large part of the scientific community tackled these issues by applying genome-
wide profiling techniques on what can seem as large cohorts of patients. These studies were
quite successful in identifying recurrent alterations. Furthermore, the characterization
of whole transcriptomes (mostly messenger RNA) has lead to the definition of subtypes
inside tumors arising from the same tissue. The stratification of patients has major clinical
implications as di↵erent sub-types often have very di↵erent prognosis and in some cases
are associated with good responses to specific therapies. Several transcriptomic studies of
breast cancer observed a strong relationship between the expression of sets of genes and the
clinical prognosis of the patient (Veer et al., 2002; Vijver et al., 2002). Other studies aiming
at linking these gene expression profiles to the tumor phenotype started to be published
in 2000 (Perou et al., 2000). Figure IV.1 shows a partial illustration of the transcriptomic
datasets and the extracted sub-types using a heatmap view. For instance, the luminal
sub-type of breast cancer is often associated with the activation of the Estrogen Receptor
(ER) and potentially benefits from tamoxifen treatment, an inhibitor of ER.

Although genomic data hold great promises, its analysis is accompanied by many
di�culties. For instance, most of the data comes from heterogeneous population of cells
making it unfit to distinguish tumor sub-clones or cells originating from the stroma.
However, the major source of di�culty arises from our inability to reliably search or
extract relevant features from datasets containing at least thousands of features within
samples that are usually only several hundreds. Furthermore, while recent studies profile
more and more tumors, up to several thousands, technologies progress much faster and now
can measure simultaneously several hundreds of thousands and even millions of biological
signals. This problem is called the curse of dimensionality and is referred to for analysis
of datasets in which the number of sample n is much smaller than the number of measured
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Figure IV.1: Early transcriptomic-based breast cancer subtypes. The matrix of gene expression
is represented using a heatmap. Each colored square represent the level of expression of a gene in
a sample. Each line represents a sample and each column a gene. A heatmap is color-coded based
on the relative level of expression, often compared to a reference level, here the median level of
each transcripts in all samples, with red corresponding to over-expression, green under-expression
and black no change in expression. The dendrogram on the left of the heatmap represents the
hierarchical clustering of samples in which each branch is colored depending on it’s assignment to
one of the determined sub-type: basal-like, orange; Erb-B2+, pink; normal-breast-like, light green;
and luminal epithelial/ER+, dark blue. This color code is also reported for groups of genes of
which the over-expression is associated to one of the subtypes. (from Perou et al., 2000)

features p (p � n) whereas in fact classical statistical analysis usually requires a large
number of samples for relevant results (Clarke et al., 2008).

System-wide characterizations of human cancers studies now often include the
measurement of more than one layer of molecular biology. That is, one of the
three interconnected levels introduced as the central dogma by Francis Crick in 1958:
DNA ! RNA ! proteins. In fact, early high-throughput studies often included only
messenger RNA or data on chromosome copy numbers. Nowadays, large international
consortiums have formed for the nearly complete characterization of most cancer types.
Notably, the International Cancer Genome Consortium (ICGC: icgc.org) and The Cancer
Genome Atlas (TCGA: cancergenome.nih.gov) projects have already produced and analyzed
the mutational, copy number, DNA methylation, messenger RNA and micro RNA profiles
of thousands of tumors. Although these e↵orts clearly do not resolve the problem of
dimensions, the simultaneous analysis of genetic alterations and transcript levels is a key
step towards a better identification and understanding of oncogenic alterations as well as
their role in carcinogenesis.

In parallel to the extensive profiling of cancers, a considerable e↵ort was made to

https://icgc.org
http://cancergenome.nih.gov
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produce and gather information on the molecular interactions occurring in cells. Given the
importance of pathways and signaling cascades in cancer, these studies aim at collecting
all the interactions between proteins or between proteins and DNA in the attempt to
reconstruct fully functional pathways in silico. The large number of interactions identified
gave rise to models of celluar pathways in the form of biological networks.

The following sections discuss the current status of high-throughput techniques, network
biology and finally of methods integrating both of these types of knowledge to uncover
oncogenic driver pathways.

IV.1 Large scale tumor profiling

Most high-throughput technologies aim at quantifying all forms of a particular molecular
specie in a biological sample. The complete profile of a given cell is named after the layer
it corresponds to in the central dogma, extended with the metabolic reaction encoded by
enzymes, with the ’ome’ su�x:

Genome

transcription�������! Transcriptome

translation������! Proteome

enzymatic reaction�����������! Metabolome

In fact, the most widely used techniques to profile cancer cells are the ones measuring
nucleic acids. The main reason is that the progress in microarray technologies and more
recently in sequencing resulted in the possibility to identify and quantify most, if not all,
of the variations in DNA sequences and of the transcribed species by covering practically
the whole genome and transcriptome.

With more than 20 published studies including the multi-genomic and transcriptomic
profiling of 12 di↵erent cancer types, the TCGA consortium is among the most advanced
group in genome-wide cancer analysis. The consortium is laying down standards in cancer
genomic research ranging from production to data processing and analysis. Moreover,
the TCGA is providing a unique standardized multi-omic pan-cancer dataset used in
hundreds of published studies (more than 350 in may 2013, and counting). Figure IV.2
shows the di↵erent layers and types of alterations covered by the TCGA which mainly
involve analysis of cancer genomes and transcriptomes.

Genome

The first genome based analysis of cancer samples taking over karyotyping was array
Comparative Genomic Hybridization (aCGH) and was simultaneously introduced by D.
Pinkel (Pinkel et al., 1998) and P. Lichter (Solinas-Toldo et al., 1997). This method is
schematically depicted in figure IV.3. aCGH profiles only chromosome alterations which
involves a modification of the copy number of large chromosomal regions. Bacterial
Artificial Chromosomes (BAC) from genomic DNA library are usually used as probes in
the array. Thus, this method is sometimes called CGH BAC array with probes generally
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Figure IV.2: Omics levels covered by the TCGA consortium. Each of the presented level of
omic data is available for 12 tumor types at the time of the TCGA-12 pan-cancer analysis. The
12 cancer types include: Breast Invasive Carcinoma (BRCA), Bladder Urothelial carcinoma
(BLCA), Colon adenocarcinoma (COAD), Glioblastoma multiforme (GBM), Head and Neck
squamous cell carcinoma (HNSC), Kidney renal clear cell carcinoma (KIRC), Acute Myeloid
Leukemia (LAML), Lung adenocarcinoma (LUAD), Lung squamous cell carcinoma (LUSC),
Ovarian serous cystadenocarcinoma (OV), Rectum adenocarcinoma (READ) and Uterine Corpus
Endometrial Carcinoma (UCEC). RPPA: Reverse Phase Protein Arrays, see section IV.1. (from
Weinstein et al., 2013)

measuring approximately 150kb (kilobase) and arrays often containing less than 5,000
probes.

The next main technological progress in genome analysis was the development of dense
microarrays with smaller 25-mer probes and hundreds of thousand to millions of them on the
same chip. These chips were used for genotyping by assigning several probes for the same
genomic position and corresponding to di↵erent nucleotides possibilities, polymorphisms.
Thus, the probes were designed around known human Single Nucleotide Polymorphisms
(SNP). The higher definition, resolution, of these SNP arrays, with approximately one
probe every 2,000 bases on average (McCarroll et al., 2008), enabled the identification of
focal copy number aberrations that aCGH could not capture. SNP arrays are also useful
to identify regions of LOH (see II.3) for which the normal/tumor log ratio is null but the
homozygosity of a large locus is abnormal.

Evidently, SNP arrays are also used to genotype samples. This is conditioned on
the fact that the position and the polymorphisms have been previously observed and
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Figure IV.3: aCGH genome profiling of copy number aberrations. A. DNA extracted from a
tumor and a matching normal sample are labeled with a red (cyanine 5) and green (cyanine 3)
dyes respectively. Samples are then hybridized to a microarray spotted with long DNA sequences
representative of the Human genome. In this example, the tumor presents an amplification of
the locus containing the ERBB2 gene. B. Copy number profile of a bladder tumor obtained with
a BAC array-CGH. The base 2 logarithm of the normal/tumor fluorescence ratio is plotted for
each BAC clone. Chromosomes are indicated at the top. (adapted from Pollack et al., 1999)

are detectable by the array given its design. This problem of only detecting something
that we might expect is gradually vanishing with what is still called, after a decade of
innovations, next-generation sequencing. Sequencing technologies have brought to research
the possibility to obtain the full sequence of a human genome for now less than a thousand
dollars. In cancer research, these technologies have the potential to identify a vast number
of alterations leading to neo-plastic transformation. Indeed, the full landscape of point
mutations as well as of DNA breakage leading to chromosome alterations and of viral
integration is potentially available through high-throughput sequencing.

The amount of data and their complexity requires the development of e�cient method
to retrieve relevant information from the data. To reduce the complexity, most sequencing
approaches use a preliminary enrichment step to only sequence regions of interest in the
genome. Since point mutations in coding sequences are the most easy to grasp, a large
majority of studies sequences only the exome, the full set of exons in the genome that
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represents approximately 1% to 2% of the genome. Exome sequencing consists in three
simple steps: capturing and sequencing the DNA sequences corresponding to exons (with
surrounding sequences in some cases), mapping the sequences to the human genome and
identifying variations with the reference human genome. Putting sequencing and mapping
errors aside, this last step is most problematic for several reasons. The number of reads,
that is the number of sequences mapped at a given position in the genome, needs to be
su�cient to cover both alleles of the normal and cancerous samples. For instance, in
the case in which a mutation is found in several reads in the tumor samples but only a
few reads are given for the matched normal sample, it becomes di�cult to distinguish
somatic mutations, di↵erence between tumor DNA and normal DNA from the same patient,
from germline mutations that can be found in any of the patient cells. This problem is
well illustrated by the lack of concordance between variant calling pipelines, softwares
that aim to identify all point mutations from a sequencing experiment. Many methods
were proposed to retrieve a list of mutations and several comparison studies revealed
a substantial lack of agreement between them with often less than 25% concordance,
measured by the proportion of mutations found by all methods (intersection) among all
the mutations that were found by at least one method (Kim and Sung, 2012; Roberts et al.,
2013). This first problem is only partly resolved by increasing the depth of sequencing, the
mean number of reads on the targeted parts of the genome. Sequencing depth ranges from
approximately 20 average reads per sequenced position up to 2,000 in what is called ultra
deep sequencing which usually targets small predefined regions of the genome. To validate
mutations, the most frequent strategies include resequencing the mutations identified by
high-throughput and verifying the sequence of mRNA in the cases for which the mutation
appears inside a coding sequence and in a gene that is transcriptionally active.

Despite these great di�culties, an increasing number of tumors have been sequenced,
progressively revealing the mutational landscape of carcinogenesis. The TCGA in particular
has completed it’s first pan-cancer analysis step which is composed of more than 3,000
tumors of 12 di↵erent human organs. Interestingly, most of the frequently mutated genes
were already known (TP53, RAS family, PIK3CA,...). Most of the mutations occurred
in signaling pathways, from receptors to transcriptional regulators. Other processes
such as maintenance of genome integrity or protein/RNA core processing are also altered
(Kandoth et al., 2014). This pan-cancer analysis also revealed the high variation of mutation
frequencies between cancer types with nearly two-orders of magnitude di↵erence between
Acute Myelogenous Leukemia and Melanoma (see figure IV.4).

The wealth of data provided by cataloging mutations requires method to identify those
that are important for carcinogenesis. Most often, only mutations in coding regions are
considered, thus the goal becomes the identification of cancer driver genes. For instance,
a gene that is often found mutated in cancer samples could be considered important and
defined as a driver gene. However, Human coding genes have extremely variable sizes of
coding sequences ranging within three orders of magnitudes from hundreds of base pairs
(e.g. Histone H1A: 645 bp) to hundreds of thousands (e.g. Titin: 103kb). Therefore, large
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These methods use a handful of parameters: an average overall mutation
frequency for a cancer type; and a few parameters about the relative
frequencies of different categories of mutations (small insertions/
deletions and transitions versus transversions at CpG dinucleotides,
other C:G base pairs and A:T base pairs). Average values of these
parameters are typically estimated from the samples under study.
Various efforts, by us and others, have recently began to incorporate
sample-specific mutation rates into the analysis3,9.

We proposed that the problem might be due to heterogeneity in the
mutational processes in cancer. Whereas it is obvious that assuming an
average mutation frequency that is too low will lead to spuriously
significant findings, it is less well appreciated that using the correct
average rate but failing to account for heterogeneity in the mutational
process can also lead to incorrect results. To illustrate this point, we
compared two simple scenarios both sharing the same average muta-
tion frequency: (1) a constant frequency of 10 mutations per Mb (10/
Mb) across all genes, versus (2) frequencies of 4/Mb, 8/Mb and 20/Mb
in 25%, 50% and 25% of genes, respectively (Supplementary Fig. 1). If
the second case is analysed under the erroneous assumption of a
constant rate, many of the highly mutable genes will falsely be declared
to be associated with cancer. Notably, the problem grows with sample
size: because the threshold for statistical significance decreases with
sample size, modest deviations due to an erroneous model are declared
significant. For the same reason, the problem is also more pronounced
in tumour types with higher mutation rates. Heterogeneity in mutation
frequencies across patients can also lead to inaccurate results, including
the potential to produce both false-positive, as described earlier, and
false-negative results if the baseline frequency is overestimated.

We therefore set out to study heterogeneity in mutation rates, using
a data set of 3,083 tumour–normal pairs across 27 tumour types, for
which the whole-exome sequence was available for 2,957 and the
whole-genome sequence was available for 126 (Supplementary Table 2).
Approximately 92% of the samples were sequenced at the Broad
Institute and thus were processed using a uniform experimental and
analytical pipeline (see Methods). In this data set, an average of 30 Mb

of coding sequence per sample was covered to adequate depth for
mutation detection, yielding a total of 373,909 non-silent coding muta-
tions or an average of 4.0/Mb per sample (median of 44 non-silent
coding mutations per sample, or 1.5/Mb).

We analysed three types of heterogeneity, with the aim of achieving
more accurate detection of cancer-associated genes. First, we analysed
heterogeneity across patients with a given cancer type. Analysis of the
27 cancer types revealed that the median frequency of non-synonymous
mutations varied by more than 1,000-fold across cancer types (Fig. 1).
About half of the variation in mutation frequencies (measured on a
logarithmic scale) can be explained by tissue type of origin. Paediatric
cancers showed frequencies as low as 0.1/Mb (approximately one
change across the entire exome), whereas at the opposite extreme,
melanoma and lung cancer exceeded 100/Mb. The highest mutation
frequencies are in some cases attributable to extensive exposure to well
known carcinogens, such as ultraviolet radiation in the case of mela-
noma and tobacco smoke in the case of lung cancers.

More surprisingly, mutation frequencies varied markedly across
patients within a cancer type. In melanoma and lung cancer, the fre-
quency ranged across 0.1–100/Mb. Despite the low median frequency
in acute myeloid leukaemia (AML; 0.37/Mb), the patient-specific fre-
quencies similarly spanned three orders of magnitude, from 0.01 to 10/
Mb. Variation may in some cases be due to key biological factors, such as
melanomas not attributed to ultraviolet exposure or on unexposed skin,
colon cancers with or without mismatch repair defects3, or head and
neck tumours with viral or non-viral origin5 (Supplementary Fig. 2).

Second, after analysing total mutation frequency, we analysed het-
erogeneity in the mutational spectrum of the tumours. Starting with all
96 possible mutations (12 mutations at a base times 16 possible flank-
ing bases, then collapsed by strand symmetry), we used non-negative
matrix factorization (NMF) to reduce the dimensionality, with each
spectrum represented as a linear combination of six basic spectra
(Methods). We represented the mutational spectrum of each tumour
on a circular plot, with distance from the origin representing total
mutation rate and angle representing the relative contribution of the
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Figure 1 | Somatic mutation frequencies observed in exomes from 3,083
tumour–normal pairs. Each dot corresponds to a tumour–normal pair, with
vertical position indicating the total frequency of somatic mutations in the
exome. Tumour types are ordered by their median somatic mutation
frequency, with the lowest frequencies (left) found in haematological and
paediatric tumours, and the highest (right) in tumours induced by carcinogens

such as tobacco smoke and ultraviolet light. Mutation frequencies vary more
than 1,000-fold between lowest and highest across different cancers and also
within several tumour types. The bottom panel shows the relative proportions
of the six different possible base-pair substitutions, as indicated in the legend on
the left. See also Supplementary Table 2.
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Figure IV.4: Somatic mutation frequencies in 28 cancer types. Each dot represents one of 3,083
pairs of tumor/normal samples of which the exome was sequenced to identify somatic mutations.
Bottom panel plots the proportion of each of the sixe type of possible base pair substitution. AML:
Acute myelogenous leukemia; CLL: Chronic Lymphoid Leukemia; DLBLC: Di↵use large B-cell
lymphoma. (from Lawrence et al., 2014)

genes will be found to have more mutations simply by chance and when using a simple
frequency criterion, these will more likely be mistakenly considered as driver gene.

To address this problem of identifying driver mutated genes, several methods were
proposed to identify genes that are altered by mutations and do not seem to appear
randomly. All methods are based on a cohort of patients and aim at identifying drivers for
a particular cancer type. This can be done by considering the size and composition of the
genes to assess whether it’s mutation rate is higher to a background mutation rate (Dees
et al., 2012). Other methods focus on the e↵ect of a non-silent mutation on the encoded
amino-acid sequence and the impact it is predicted to have on the function of the protein
(Reimand, Wagih, and Bader, 2012). Another class of method prioritizes altered genes
based on the position of the mutations in their coding sequence either through a pattern of
highly clustered mutation (Tamborero, Gonzalez-Perez, and Lopez-Bigas, 2013) or based
on predefined position corresponding to potential phosphorylation sites (Reimand, Wagih,
and Bader, 2012). Finally, a more elaborate procedure is based on the fact that several
gene characteristics, such as size, expression level, replication time or the chromosomal
opening compartment, influences the random occurrence of mutations. These can be used
to derive a more refined background mutation rate to which each gene is compared to
depending on its own characteristics and is considered a significantly mutated genes if it
deviates from its background (Lawrence et al., 2014).
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Exome sequencing delivers more information than simply the list of polymorphisms,
somatic mutations and indels. Copy number alterations can also be derived from the
coverage of genome locus (Chiang et al., 2008; Cibulskis et al., 2012). Also, sequences that
cannot be mapped to the human genome can actually map to viral sequences and therefore
help to identify oncogenic viral integration. More recent studies using deep or ultra deep
sequencing addressed the problem of intra-tumoral heterogeneity, which is more usually
seen as a pitfall in the processing and retrieval of somatic mutations that only appear in a
small portion of the sequenced sample (Nordentoft et al., 2014). Sub-clones identification
relates to the history of neo-plastic transformation forming a tumor has major clinical
implication by a↵ecting treatment e↵ects (Fischer et al., 2014).

Epigenome

Alongside the massive profiling of genome alterations, a divers set of techniques based
on similar technologies were developed to model the organization of the genome (most
reviewed in Furey, 2012) sometimes referred to as the epigenome.

A first category of methods aims at identifying epigenetic marks, which influence the
compaction of the chromatin and eventually the expression of surrounding genes. DNA
methylation using microarrays or Histone tail modifications with ChIP-seq (Chromatin
Immuno-Precipitation followed by high-throughput sequencing) cover the main epigenetic
marks regulating compaction of the chromatin. While most histone modifications have
a known e↵ect on chromatin opening and therefore gene expression (or actually other
chromosomal structures), DNA methylation is much more ambiguous. It was originally
thought that a local high rate of CpG methylation down-regulates surrounding genes. Many
cases of promoter hyper-methylation have reported to result in gene under-expression,
but the opposite has also been shown (Bahar Halpern, Vana, and Walker, 2014). The
upstream or inner position of the methylated CpG can also have an e↵ect not only on gene
expression but also on mRNA splicing. Overall, DNA methylation is easily measurable
yet has many still misunderstood functions (Suzuki and Bird, 2008).

A second category of techniques aims at directly identifying the state of the chromatin
itself by estimating the enrichment in DNA-protein interaction, mostly consisting in DNA-
nucleosome interaction. The idea is to create a library of sequences enriched in nucleosome
depleted DNA by either inducing cuts using DNaseI (DNAse-seq, Song et al., 2011) which
preferentially digest naked DNA, or by cross-linking proteins and DNA using formaldehyde
and sequencing the segregated naked DNA sequences (FAIRE-seq, Song et al., 2011). A
more recent method named ATAC-seq (assay for transposase-accessible chromatin using
sequencing) relies on the fact that the hyperactive Tn5 transposase have a tendency to
integrate in open chromatin regions. ATAC-seq has a better signal-to-noise ratio than
DNAse-seq and requires only 104 cells against 107 for DNAse-seq. These techniques also
can be used identify very specific regions of open chromatin with non-nucleosome protein
binding. In the case of sequence specific binding such as transcription factor, regions of the
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Figure IV.5: Transcription factor binding inferred from chromatin opening. a. ATAC-seq,
DNase-seq and CTCF (a transcription factor) ChIP-seq reads mapped in the same locus located in
human chromosome 1. A predefined CTCF binding motif is shown as a black mark. b. Average
ATAC-seq reads around CTCF motifs throughout the genome. (from Buenrostro et al., 2013)

genome with particular ditch between two peaks of mapped reads can sometimes contain
a consensus DNA binding sequence corresponding to a particular TF as depicted in figure
IV.5. Although this is not as specific as ChIP-seq using a antibody against a given TF,
this analysis enables the identification of context specific binding sites for any TF with a
known consensus binding sequence.

A last category of high-throughput genomic structure analysis concerns the spatial
organization of the genome and the interactions between loci that may be distant in terms
of number of base pairs. The main technique is based on Chromosome Conformation
Capture (3C) which is represented schematically in figure IV.6 and basically consist in
concatenating DNA sequences that are adjacent in the nucleus whether they are in the same
genome locus or on di↵erent chromosomes. 3C can be complemented by high-throughput
sequencing, often referred to as high-C, to identify all captured interactions and thereby
map the whole DNA interactome to model the conformation of the chromosomes (Belton
et al., 2012). Genomic approaches to uncover the three-dimensional organization of the
genome are increasingly drawing attention. More importantly than the data provided
by these studies, our understanding of regulatory processes is shifting from simple TF-
DNA interaction with sequence specific binding to chromatin interaction, modification,
compactness and the dynamics of the three-dimensional shape of the genome regarding
the activity of TF and chromatin regulators. To unravel such complex phenomenon, novel
methods and in particular combination of long used techniques are being proposed. For
instance, to uncover the impact of TF binding on the conformation of chromosomes and
on the spatial association of co-regulated genes (for instance into transcription factories,
Sutherland and Bickmore, 2009), a method called ChiA-PET (chromatin interaction
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analysis by paired-end tag sequencing) combines variants of ChIP 3C and high-throughput
sequencing. ChiA-PET can be used to identify the chromatin interactions associated to a
particular protein such as the oestrogen-receptor (Fullwood et al., 2009). Another example
is the use of DNAse I digestion to improve the result of high-C techniques (Ma et al.,
2014). Overall, the analysis of genomes is shifting from the description of its sequence to
the analysis of the high-level and dynamic organization.

Figure IV.6: Chromosome Conformation Capture. Interactions inside or between genomic loci
(represented by a green or red color, can also be two di↵erent chromosomes) through proteins
(blue). Formaldehyde is used to crosslink proteins and DNA. Following a digestion step, sequences
of the same complex are ligated creating a chimeric DNA composed of spatially adjacent sequences.

Transcriptome

Arguably, the most widely exploited genome-wide technique is transcriptomics and, until
recently, almost exclusively messenger RNA profiling. Since genomic analysis give only little
information about cellular phenotypes and proteomics has not met as fast development as
nucleic acids based techniques, transcriptome profiling remains the best option to analyze
cellular states.

Whether using a nylon or glass substrate or whether the hybridized mRNA is
biotinylated or marked with fluorescent dyes, the principles of transcriptomic microarrays
remain the same. A set of predefined probes is attached to an array to quantify potential
complementary mRNA sequences, which are first reverse transcribed to use more stable
cDNA. However, the transcriptome is not only defined by the level of expression of genetic
loci. Indeed, the maturation of mRNA and especially the numerous possibility of splicing
events can result in di↵erent isoforms and thus increase the transcriptomic diversity.
Therefore, probes can be designed to hybridize with an exon common to all isoforms,
with each exon or with sequences corresponding to the concatenation of consecutive exons
characteristic to a particular set of isoforms (exon junction). Given the numerous possible
combinations, the detection of these specific transcripts is conditioned on the evolution
of microarray technologies to enable the simultaneous probing of millions of sequences
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Figure IV.7: Phenotype-reflected transcriptomes. A. Heatmap visualization of serum responding
genes in fibroblasts from ten di↵erent anatomic sites. The most di↵erentially expressed genes
among the whole set of genes represented on the microarray are shown here in the heatmap. A
subset of gene names are added and colored depending on their function. B. Transcriptomes of
HeLa cells synchronized by double thymidine block and sampled every 4 hours. Approximately
25% of the genes show a periodical pattern of expression. At the bottom of the heatmap is shown
the cell cycle phase transition during the time course.
Color legend for left panel. Cell cycle progression: orange; Matrix remodeling: blue; Cytoskeleton
rearrangement: red; cell-cell signaling: black (from Chang et al., 2004; Whitfield et al., 2002)

corresponding to hundreds of thousand possible isoforms.
Gene expression analysis underwent the same rapid development than DNA sequencing

with high-throughput RNA sequencing (RNA-seq). Mapping and quantification of RNA-seq
reads can first be used to quantify gene expression similarly to microarrays (Li and Dewey,
2011). However, RNA-seq improves the estimation of RNA expression levels approaching
absolute quantification compared to microarrays by estimating a null expression values
when no reads were mapped to non-expressed gene locus for instance. Exon inclusion
can be deduced from mRNA sequence reads mapped to exon sequences. While reads
joining two distant exons uncover splicing events. Moreover, reads that do not map to the
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Human genome can reveal the integration and expression of viral genes (Tang et al., 2013).
Furthermore, gene fusions due to DNA breakage and abnormal chromosome rearrangement
can be identified by a substantial number of reads overlapping two unrelated genes (Supper
et al., 2013). Finally, point mutations occurring in transcribed regions of the genome are
detectable only in cases in which the mutated locus is stably transcribed in the analyzed
sample.

Irrespectively to the technology used for transcriptome profiling, the purpose remains
the near-complete analysis of variations in gene expression. As discussed in section I.2,
the consequence of transient, and more importantly of malignant constitutive activation
of cell signaling pathways is transcriptional control. Indeed, while genetic alterations are
used to identify genes with potential implications in carcinogenesis, the transcriptome
is representative of the cellular state. Evidently, from a single large-scale tumor profile
it is nearly impossible to infer whether a genetic alteration is functional or whether an
increased mRNA level will result in an increased protein activity. However, coordinated
modification of mRNA levels, noticeable through systemic analysis, can e↵ectively reveal
cellular phenotypes as shown in figure IV.7.A by the transcriptomic response to serum
treatment or IV.7.B with the cyclic expression of sets of genes during cell cycle.

by chance from genes with low expression levels. We set s0 equal
to the median value of the si over the set of genes. A similar
strategy was used in the SAM methodology of ref. 7.

Thus dik is a t statistic for gene i, comparing class k to the
overall centroid. We rewrite Eq. 1 as

x! ik ! x! i " mk!si " s0"dik. [3]

Our method shrinks each dik toward zero, giving d#ik and yielding
shrunken centroids or prototypes

x!#ik ! x! i " mk!si " s0"d#ik. [4]

The shrinkage we use is called soft thresholding: each dik is
reduced by an amount $ in absolute value and is set to zero if its
absolute value is less than zero. Algebraically, soft thresholding
is defined by

d#ik ! sign!dik"!!dik! # $" " , [5]

where % means positive part (t% & t if t ' 0 and zero otherwise).
Because many of the x! ik values will be noisy and close to the
overall mean x! i, soft thresholding usually produces more reliable
estimates of the true means (8, 9).

This method has the desirable property that many of the
components (genes) are eliminated from the class prediction as
the shrinkage parameter $ is increased. Specifically, if for a gene
i, dik is shrunken to zero for all classes k, then the centroid for
gene i is x! i, the same for all classes. Thus gene i does not

contribute to the nearest-centroid computation. We choose $ by
cross-validation, as illustrated below.

Results
Choosing the Amount of Shrinkage. Fig. 2 shows the training,
cross-validation, and test errors for different values of the shrinkage
parameter $. We used 10-fold cross-validation, dividing the set of
samples at random into 10 approximately equal-size parts. The 10
parts were roughly balanced, ensuring that the classes were distrib-
uted proportionally among each of the 10 parts. Ten-fold cross-
validation works as follows: we fit the model on 90% of the samples
and then predict the class labels of the remaining 10% (the test
samples). This procedure is repeated 10 times, with each part
playing the role of the test samples and the errors on all 10 parts
added together to compute the overall error (see ref. 5 for details).
Fig. 2 shows the results, from no shrinkage (Left) to complete
shrinkage (Right). Both the cross-validated and test error were
minimized near $ & 4.34, which is the value we used to produce the
red bars in Fig. 1. The upper axis shows the number of active genes
with at least one nonzero component, d#ik, for each value of $. At
$ & 4.34, there are 43 active genes.

The Genes That Classify SRBCTs. Fig. 3 shows the shrunken differ-
ences d#ik for the 43 genes having at least one nonzero difference.
Comparing these genes to the 96 genes identified in ref. 4, the
two lists have 27 genes in common. Fig. 4 shows the heat map of
our 43 genes. The horizontal rows of the map represent genes,

Fig. 1. Centroids (grey) and shrunken
centroids (red) for the SRBCT dataset.
The overall centroid has been sub-
tracted from the centroid from each
class. The horizontal units are log ratios
of expression. From left to right, the
numbers of training samples for each
class are 8, 23, 12, and 20. The order of
the genes is arbitrary.

6568 ! www.pnas.org"cgi"doi"10.1073"pnas.082099299 Tibshirani et al.

Figure IV.8: Gene expression signature. Centroids and shrunken centroids of the transcriptomes
of 4 classes of small round blue cell tumor. Centroids are shown in grey and represent the average
expression of the 2,308 genes for each class. Shrunken centroids are shown in red and represent
the corrected average expression of 43 selected genes. Burkitt lymphoma (BL), Ewing sarcoma
(EWS), neuroblastoma (NB), or rhabdomyosarcoma (RMS) (from Tibshirani et al., 2002)

Transcriptomic experiments became the method of choice to identify and understand
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links between phenotype and molecular changes. In cancer research, genome-wide mRNA
profiles brought the potential to identify subtypes of cancers of the same organ of origin
that could have di↵erent prognosis or targetable driving pathways. For instance, the
previously discussed breast cancer initial subdivision (figure IV.1) described classes which
are still used nowadays and in particular by the more recent complete multi-omic breast
cancer analysis (mostly genome and transcriptome) of the TCGA consortium (Cancer
Genome Atlas Network, 2012).

The main clinical implications of these cancer subtypes lead to a widespread attempt
to produce Gene Expression Signature (GES). GES are used to identify a small number
of genes that show expression patterns specific to particular tumor subtypes. Indeed,
following the descriptive capacity of transcriptome analysis, the next step became the
predictive capacities of these technologies. Because microarrays and more recently RNA-seq
remain too expensive to be systematically used in clinic, GES usually contain less than 100
genes and therefore their expression can be measured using more reliable low-throughput
techniques such as qPCR (Quantitative Polymerase Chain Reaction) or nanoString R�.
Figure IV.8 illustrates this process through the use of the shrunken centroid method (also
called Prediction Analysis of Microarray, Tibshirani et al., 2002) which has been widely
used for signatures as it combines e�cient and simple feature selection and classification
steps.

Figure IV.9: PAM50 subtypes prognosis. Breast cancer subtypes determined by the expression
of 50 genes. (from Parker et al., 2009)

The presumed simple functions and central role of mRNA as templates for functional
proteins lead to several important studies with the creation of clinical GES such as the
breast cancer subtype and prognosis predictor PAM50 (figure IV.9, Parker et al., 2009).
However, non-coding RNA have more recently been brought into the limelight for their key



52 CHAPTER IV. UNRAVELLING ONCOGENIC PATHWAYS

role in regulating all regulatory processes (Esteller, 2011). During the past decade, several
studies of non-protein coding genes revealed their major role in regulating key tumor
suppressor genes (Poliseno et al., 2010) or tumor enabling characteristics (De Craene and
Berx, 2013). However, because of the seemingly simple regulatory function on mRNA,
microRNA are probably the most widely studied non-coding RNA. For instance, the
TCGA consortium systematically profiles miRNA similarly to mRNA, thereby producing
datasets with measures of both type of RNA species (Jacobsen et al., 2013).

Proteome and beyond

The central dogma of molecular biology illustrates the link between DNA-encoded
information and cellular functions. Despite it’s simplicity and recurrent critics, this
paradigm illustrates well the hope that genomics will identify alterations that will then
point towards targetable parts of aberrant cellular states.

Figure IV.10: Example of Reverse Phase Protein Array. A. Sampled cell populations are lysed
and arrayed onto nitrocellulose slides following a linear dilution curve. The array can then be
incubated with a highly specific antibody that is detected by chemiluminescent, fluorescent or
colorimetric assays. The horizontal dilution curve serves as an internal control for quantification.
B. Example of apoptosis related protein quantification. (adapted from Charboneau et al., 2002)

In an attempt to follow the fast development of transcriptomics, several microarray
technologies were developed to capture protein expression at the proteome level. Protein
microarrays can be spotted using any high-a�nity substrate for single proteins or protein
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families such as antibodies, peptides, small molecules, nucleic acid polymers or phages
(Wulfkuhle et al., 2004). However, Reverse Phase Protein Arrays (RPPA), illustrated in
figure IV.10, has taken over because of its reliability. RPPA relies on applying high-a�nity
antibodies to fixed cell lysates. Therefore, only predefined protein species or protein
post-translational modifications (PTM) with reliable antibodies can be quantified. The
TCGA consortium used this technology to acquire about 200 protein related measurements
(expression and PTM levels). The design of RPPA results in a precise analysis of proteins
and PTM with key role in signaling pathway. For instance, the TCGA consortium measured
the expression of a protein in each level of the Mitogen-Activated Protein Kinase (MAPK)
pathway from EGFR to MYC and more interestingly, of the activating phosphorylation of
some of these proteins in order to assess the activity of the pathway.

The use of highly specific and sensitive antibodies precludes the systematic
quantification of protein and PTM. Firstly, because of the di�culty to obtain such
antibodies and more importantly because of the number of possible protein isoforms and
PTM sites. Following nearly a century of development, mass-Spectrometry (MS) can now
be used to identify and quantify proteins and protein modifications in a high-throughput
setting. Given the technological restrictions and the importance of kinase reactions in
cell signalling, a preliminary enrichment in phosphorylated peptides (see figure IV.11),
using immobilized metal a�nity chromatography for instance, is one of the most widely
used MS analysis (Mumby and Brekken, 2005). Phosphoproteomics is still nowadays an
e↵ective analytical tool to identify active signaling pathways and remains one of the most
informative peptide enrichment step with immuno- or tag-a�nity- precipitation. This
latter technique is used to identify protein complexes and is thoroughly discussed in the
following section (section IV.2).

Nevertheless, recent technological developments resulted in the possibility to identify
and quantify a large portion of the proteome without any pre-enrichment step. Based on
these advances and along with the progress of the TCGA, the Clinical Proteomic Tumor
Analysis Consortium (CPTAC: proteomics.cancer.gov) aims at systematically profiling
the proteomes of most human tumor types. The CPTAC established a proteomic pipeline
illustrated in figure IV.11 which was used to quantify more than 7,000 protein species in
95 colorectal cancers also fully analyzed by the TCGA (Zhang et al., 2014a).

Although MS is also the preferred analytical technique for metabolomics, the cell-wide
analysis of small molecules is the least studied of the omic levels. A recent investigation
used MS to quantify 399 identifiable metabolites in 25 breast cancers to identify di↵erences
in metabolites level between subtypes (Tang et al., 2014). Besides MS, Nuclear magnetic
resonance or NMR, can also be used as a quantitative method in a somewhat complementary
way to MS analysis (Wishart, 2008).

http://proteomics.cancer.gov/programs/cptacnetwork
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Extended Data Figure 1 | Mass-spectrometry-based proteomics workflow.
Protein was extracted from frozen tumour tissue and used to generate tryptic
digests. The resulting tryptic peptides were fractionated using off-line basic
reverse-phase (high-pressure) liquid chromatography (basic RPLC). Collected
fractions were pooled and used for reverse-phase HPLC in line with a Thermo
Orbitrap-Velos MS instrument. Raw data were processed by MSConvert and

then used for database and spectral library searching using three different
search engines (Myrimatch, Pepitome and MS-GF1). Identified peptides were
assembled using IDPicker 3 with selected filters as described in the methods.
IDPicker 3 stores its protein assemblies for a specified set of filters in the idpDB
format. These SQLite databases associate spectra with peptides, peptides with
proteins, and LC-MS/MS experiments with a hierarchy of experiments.

RESEARCH ARTICLE

Macmillan Publishers Limited. All rights reserved©2014

Figure IV.11: Mass-Spectrometry based proteomics. Proteins are extracted from tissues and
digested into smaller peptides. Tryptic peptides are further fractioned using basic reverse-phase
liquid chromatography. Collected fractions are used for reverse-phase High-Performance Liquid
Chromatography followed Mass-Spectrometry (here Thermo Orbitrap-Velos). From the resulting
MS specters, a computing pipeline is used to identify peptides and eventually proteins all of which
are stored in an application-specific database. The di↵erent processing tools used by the CPTAC
are listed. (from Zhang et al., 2014a)
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IV.2 Signaling pathways, from interactions to net-
works

Large-scale tumor analysis mainly results in an enumeration of molecular aberrations.
Whether there is a significant di↵erence in mRNA levels between a normal and cancer
sample or an alteration in the tumor DNA sequence, this information is often unpractical.
Indeed, the over-expression or the gain of a single gene coding for an RTK is not su�cient
to conclude that the downstream pathways are activated and that this sustains aberrant
proliferation. This notion of activity is fundamental to our understanding of carcinogenesis
and to the development of targeted therapy by means of inactivating drivers of tumor
progression using highly specific drugs. The idea is that genetic alteration modifies the
regulation of particular genes, which in turn activate oncogenic pathways from which
hallmarks of cancer can arise. This is well exemplified by mutations in the RTK EGFR
driving non-small cell lung cancers. Mutations in the kinase domain of EGFR activate
the Akt and STAT signaling pathways. Small pharmacological inhibitors targeting any of
STAT, Akt or EGFR proteins resulted in reduced cell proliferation and more importantly
increased apoptosis (Sordella et al., 2004). Knowing that EGFR can activate the STAT
or Akt pathways, the concomitant EGFR mutation, STAT and Akt protein activation
(often by phosphorylation) and over-expression of the genes activated by these pathways is
informative on their activity. These facts can be consequently used clinically to specifically
interfere with this constitutive aberrant signaling.

While large-scale profiling is necessary to identify which pathways are active, they
do not enable the identification of the composition of the pathways themselves. Having
the knowledge of the structure, dynamic and impact of signaling pathways - from signal
receptors to e↵ector transcription factors - is critical to the analysis of tumors and to have
a clinical impact.

Signaling pathways are in fact mostly composed of proteins passing signals by interacting
with and modifying other proteins until reaching a transcriptional regulator. These will
in turn interact with chromatin and in some cases DNA to either enhance or inhibit the
activity of the transcription machinery towards particular coding loci of the genome.

Signaling pathways are discussed in section I.1 as linear cascades of protein PTM (see
example of figure I.3). However, each level, each protein can integrate various signals
and can be influenced by the specificity of the cellular context. In some cases, a single
protein can be regulated, either in a cooperative or competitive way, by di↵erent pathways
fired by di↵erent signals. This is referred as pathway crosstalk and is illustrated in figure
IV.12 around the NF-B regulator. This complexity clearly dismisses linear representation
of pathways yet makes the use of graph models appropriate. Graphs are mathematical
models of networks which in their simplest form are composed of a set of vertices or nodes
noted V , proteins for instance, and a set of edges E connecting pairs of vertices such as
two interacting proteins or a transcription factor binding to a gene promoter.
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Crosstalk mechanisms between p65 and IRF3 exemplify these mecha-
nisms. NF- B p65 and IRF3 can form a stable complex167 that can be 
recruited through an interferon-response element (IRE) or a B site, 
with the indirectly recruited transcription factor acting as a cofac-
tor to facilitate the activation of transcription. In addition, the IRF 
dependence of NF- B target genes can be mediated by an IRE in close 
proximity to the B site168. Interestingly, glucocorticoid receptors, 
which after binding their ligand inhibit a subset of NF- B-dependent  
transcriptional responses, have been suggested to directly displace 
IRF3 from p65 (ref. 169). In general, enhanceosome formation 
involving NF- B and IRF has been most thoroughly investigated  
for the enhancer of the gene encoding interferon- , where assembly 
of NF- B, IRF and ATF–c-Jun transcription factors occurs after viral 
infection170. Other inducers of NF- B do not trigger transcription of 
this gene, as coordinated activation of all components is required for 
productive enhanceosome assembly. In this case, transcriptional syn-
ergy is conferred by both cooperative DNA binding and recruitment 
of coactivators. This combinatorial mechanism allows great specificity 
and selectivity in the induction of gene expression. A new facet has 
been added to this intricate gene regulatory circuit with the suggestion 
that p50 homodimers repress a subset of interferon-inducible genes 
through direct binding to guanine-rich IRE sequences and probably 
through direct competition with IRF3 (ref. 171). Because they lack 
this inhibitory mechanism, p50-deficient macrophages activated with 
LPS show enhanced expression of target genes containing guanine-
rich IREs. Interestingly, the binding of p50 to guanine-rich IREs also 
seems to be involved in conferring signal-specific responses. As a 
result, in the absence of p50, cooperatively regulated promoters (those 
that would normally require activation of both IRF3 and NF- B) are 
responsive to activation of NF- B alone. Thus, p50 homodimers 
act as homeostatic repressors to enforce the stimulus specificity of 
cooperatively regulated promoters and consequently restrict anti-
viral responses to the appropriate stimuli. Although this has not been 
investigated directly, these findings might also be connected to the 
enhanced interferon-induced antiviral response to influenza infection 
of immortalized fibroblasts doubly deficient in p65 and p50 (ref. 172) 
and the resistance of p50-deficient mice to infection with encepha-
lomyocarditis virus173.

Additional transcription factors for which synergistic interaction 
with NF- B has been described are Sp1, AP-1, STAT3 and CEBP/ . 

Sp1 is a ubiquitous transcription factor that regulates constitutive 
transcription from many eukaryotic promoters but can also activate 
or repress stimulus-induced transcription. Sp1-binding elements are 
frequently located in close proximity to B sites, and NF- B and Sp1 
have been demonstrated to act together in the induction of several 
target genes, such as those encoding the integrin ligand ICAM-1 and 
the cytokine GM-CSF174–176. AP-1 transcription factors are dimers 
composed of members of the Fos and Jun protein families that, like 
NF- B, orchestrate gene expression in response to cytokines, growth 
factors, physiological stresses and infection. NF- B p65 can interact 
directly with both c-Jun and c-Fos and can stimulate the binding of  
AP-1 to DNA and its activation through AP-1 sites. Congruently,  
c-Jun and c-Fos can promote transactivation of p65 through B sites  
even in the absence of AP-1 sites177. NF- B activity has also been 
demonstrated to regulate subsequent AP-1 activation by promoting 
the expression of members of the AP-1 family, such as JunB, JunD,  
B-ATF and c-Fos. In turn, secondary AP-1 activation in pre-B cells can 
further augment primary NF- B target gene expression, which dem-
onstrates a critical role for this interaction in mounting an adequate 
immune response178,179. However, NF- B transcriptional activity may 
also be paradoxically inhibited by c-Fos in certain situations. Stimuli 
that increase macrophage cAMP concentrations have been shown to 
inhibit NF- B-dependent cytokine production after LPS stimulation. 
It has been reported that such suppression of the production of TNF 
and IL-12 is dependent on the phosphorylation of c-Fos by IKK  and 
that the resultant stabilization of c-Fos augments this effect180. As 
STAT3 is activated in response to growth, stress and inflammatory 
stimuli and is critical for the induction of immune-response genes, as 
well as pro-proliferative and antiapoptotic genes, it is not surprising 
that the activities of STAT3 and NF- B are closely intertwined. In 
this context, direct physical interaction between STAT3 and several 
NF- B subunits has been described to result in both transactivation 
and repression depending on the cellular context and target gene 
examined. STAT3 and NF- B can therefore act together to regulate 
the expression of an overlapping group of target genes (including 
those encoding PAI-1, Bcl-3 and Bcl-2). Synergism between NF- B 
subunits and CEBP/  has similarly been demonstrated for several 
genes, such as those encoding serum amyloid A2, IL-6 and IL-8, for 
which the ratio of activated CEBP/  to NF- B seems to determine a 
negative or positive outcome for the crosstalk181,182.

Figure 4 Crosstalk mechanisms involving  
NF- B subunits. The transcriptional activity 
of NF- B subunits is subject to regulation via 
a variety of PTMs, including phosphorylation, 
acetylation and methylation. As PTMs have 
the potential to modulate the interaction of 
NF- B with coactivators, corepressors and 
I B proteins, as well as the binding of NF- B 
to cooperatively functioning, heterologous 
transcription factors, they represent a major 
determinant of selectivity in the induced  
gene expression signature and are thought  
to be critical for integration of non-NF- B 
pathways and contextual tailoring of the 
transcriptional response. The formation of  
NF- B-containing enhanceosomes at the 
promoters of target genes requires cooperative 
action between transcription factors, which 
facilitates both the integration and regulation 
of non-NF- B pathways. NF- B activity also 
affects heterologous pathways, such as the  
Jnk and p53 pathways, through transcriptional regulation of signaling pathway components. Gadd45 , growth-arrest and DNA damage–inducible 
protein; MnSod, manganese superoxide dismutase; Fhc, ferritin heavy chain; XIAP, X-linked inhibitor of apoptosis protein.
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Figure IV.12: NF-B crosstalk. The transcriptional activity of NF-B subunit is regulated by
several post-translational modifications, mostly phosphorylation. The various PTM control the
possibility of interactions of NF-B with several co-activators and co-repressors which controls the
integration of di↵erent contextual input signals from various signaling pathways and subsequently
determines the specificity of the ouput signal: the regulation of target genes (from Oeckinghaus,
Hayden, and Ghosh, 2011)

Biological networks are collections of interactions between biological entities ranging
from molecular interactions between proteins and small chemical compounds up to links
between individuals in a population. In this section, only molecular interactions assembling
into signaling pathway are discussed. The set of interactions included in a network serves as
a structure to understand the functionality and consequence of alteration of proteins inside
a signaling pathway. For instance, the over-expression of mRNA or proteins interacting in
the same pathway is more robust indicator of its activity than the over-expression of any
single node in the pathway.

Pathways can be mainly described by two types of interactions: protein-protein
interactions (PPI) and regulatory interactions. This distinction is not only due to the
nature of the molecules involved, protein-protein in one case and protein-DNA in the
other case, but also by it’s direct and detectable e↵ect. In the case of PPI regulatory
interactions, post-translational modifications are the main observable consequences such as
phosphorylation in the MAPK pathway (see section I.1) or the ubiquitination as exemplified
by the degradation of TP53 promoted by an extensive ubiquitination by MDM2 (Marine
and Lozano, 2009). However, regulatory interactions have an e↵ect on gene expression and
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therefore have an impact on mRNA levels.
The next sections discuss these two major types of interactions, protein and regulatory,

as well as whole pathway models and lists the available methods and repositories for each
of these.

Protein interactions

Composing most of the signaling cascades, interactions between proteins involve a wide
variety of molecular reactions. The most widely studied are post-translational modifications
such as phosphorylation or ubiquitination. Whether protein interactions are transient
or stable, whether an interaction results in the activation or repression of their activity,
these involve the physical contact between proteins. In fact, most proteins associate into
functional complexes with highly variable sizes and functions.

In order to gain insight into the functional associations between proteins, high-
throughput methods have been devised to identify physical interactions. The Yeast-
two-hybrid (Fields and Song, 1989) methodology aims at determining whether two proteins
are capable of physically interacting and is illustrated in figure IV.13. The two-hybrid
system has been extensively improved since the first study in 1989 by using mammalian
cells, by testing protein-DNA interaction or by changing the reporting feature. Although
these methods can be carried out in a high-throughput manner using automatic and
robotic experimental designs, all these systems have several limitations. The synthetic
expression level of two proteins which might never be co-expressed in the same cell or
present in the same cellular compartment may retrieve false positive interactions which
in fact never occur in natural systems. Furthermore, the fusion with technique-specific
protein domains (Gal4 DBD and AD in figure IV.13), the lack of particular protein
modification especially in yeast systems when testing mammalian proteins as well as the
lack of particular necessary co-factors are other possible interfering e↵ects. The numerous
di�culties mainly a↵ect the number of false positive interactions, estimated to be as high
as 70% by some studies taking into account the expression of the corresponding coding
mRNA or by comparing paralogs (Deane et al., 2002). Despite these complications, the
yeast-two hybrid technique and its improvements has been widely used to identify edges
in organism-wide PPI networks.

In contrast to the unspecific PPI identified by yeast-two-hybrid derived system, western
blotting following an immuno-precipitation (IP) can identify two proteins interacting in
a particular cellular condition. A generalized a�nity capture method can be used in
association with a Mass-Spectrometry based identification of co-precipitated proteins to
identify interacting partners in a high-throughput procedure. AP-MS (A�nity-Purification
followed by Mass-Spectrometry) can be used to identify all proteins interacting with a
protein interest and is illustrated in figure IV.14. This method was used in yeast to
systematically identify for each protein their corresponding interacting partners (Gavin
et al., 2006) and more recently in human to map the protein complexes of the autophagy
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activation domain, which stimulates gene expression. Both do-
mains carry out their functions independently, but only when they
are brought together is a DNA-binding and gene expression-acti-
vating protein formed. The principle of their system lies in the
fusion of each domain with a protein of interest. Binding of the
two proteins of interest results in the reassembly of the transcrip-
tion factor Gal4, which in turn induces expression of one or more
reporter genes. In the study of Fields and Song, the physical asso-
ciation of two S. cerevisiae proteins, Snf1 and Snf4, was confirmed
by showing that a strain that expresses the hybrid genes GAL4(1-
147)-SNF1 and GAL4(768-881)-SNF4 is capable of inducing ex-
pression of an Escherichia coli lacZ reporter gene controlled by the
GAL1 promoter (Fig. 3). The DNA-binding domain fusion was
named the “bait” that is used to “capture” the so-called “prey”
activation domain fusion.

Sensitivity and selectivity. Since 1989, the two-hybrid system
has been the subject of many improvements of all its fundamental
components, e.g., the reporter genes, the AD, and the DBD. Table
2 gives an overview of the currently available possibilities for each
factor. Besides chromogenic reporters such as E. coli LacZ, pro-
totrophic reporter genes were introduced to single out colonies
that include interacting bait and prey proteins on prototrophy-
selective medium (e.g., see references 234 and 673). This step
greatly facilitated the use of prey plasmid libraries to identify the
proteins that interact with the bait of interest in a large collection
of noninteracting proteins, a significant advantage of the two-
hybrid system over many other technologies. Most two-hybrid
strains contain multiple reporter genes, with a different promoter
region for each reporter, to enable a wider spectrum of sensitivity
and selectivity. As an example, strain PJ69-4A (299) contains
HIS3, ADE2, and lacZ, controlled by the GAL1, GAL2, and GAL7
promoters, respectively. The HIS3 reporter provides the highest
sensitivity, as the Gal4 DBD binds the GAL1 promoter very effi-
ciently. In contrast, PPI assays based on the GAL2p-ADE2 module
are very stringent and can be used to exclude dubious results.
Finally, the reporter gene lacZ can be applied for ultimate confir-
mation of the interaction in a semiquantitative (169) galactosidase
assay. A more recent selection approach takes advantage of the
yeast enhanced green fluorescent protein (yEGFP) as a reporter to
screen for interacting pairs by fluorescence-associated cell sorting
(FACS) (87–89).

Apart from the reporter promoter region, other factors influ-
ence the balance between sensitivity and selectivity. The copy
numbers of the episomal bait and prey plasmids, together with the
bait and prey promoters, affect expression levels, which in turn
have an impact on the likelihood of detecting an interaction (379).
CEN-based plasmids and truncated ADH1 promoters lower bait
and prey expression levels for high selectivity, while 2!m-based

vectors and GAL1 or full-length ADH1 promoters contribute to
an increased sensitivity of the system. Libraries of prey plasmids
cannot be integrated due to the low transformation efficiency
linked with genomic integration. However, bait integration in

FIG 3 The first two-hybrid experiment (178). For the study of the interaction of two proteins of interest (in this case, Snf1 and Snf4), one protein is fused to the
DNA-binding domain (DBD) of Gal4 (the bait) and the other protein is fused with the activation domain (AD) of Gal4 (the prey). The bait fusion binds upstream
activating sequences (UAS) of the reporter gene lacZ. Association of Snf1 with Snf4 brings the Gal4 AD to lacZ, followed by recruitment of the basal transcrip-
tional machinery, which establishes lacZ transcription, detected by chromogenic analysis.

TABLE 2 Reporter genes, activation domains, and DNA-binding
domains used in yeast two-hybrid experiments

Componenta Description (reference)

Reporter genes
E. coli lacZ* "-Galactosidase chromogenic reporter (178)
S. cerevisiae MEL1 Secretory #-galactosidase chromogenic

reporter (5)
E. coli gusA "-Glucuronidase chromogenic reporter (580)
Aspergillus oryzae lacA3 Engineered secretory "-galactosidase

chromogenic reporter (318)
S. cerevisiae HIS3* Prototrophic reporter for histidine

biosynthesis (673)
S. cerevisiae LEU2* Prototrophic reporter for leucine biosynthesis

(234)
S. cerevisiae URA3 Prototrophic reporter for uracil biosynthesis

(374)
S. cerevisiae ADE2* Prototrophic reporter for adenine

biosynthesis (299)
S. cerevisiae LYS2 Prototrophic reporter for lysine biosynthesis

(580)
Aequorea victoria GFPuv Fluorescent reporter (107)
EGFP Fluorescent reporter (613)
Yeast EGFP Fluorescent reporter for flow cytometry

screens (88)
Aureobasidium pullulans

AUR1-C
Aureobasidin A resistance reporter (167)

Prey activation domains
S. cerevisiae Gal4 AD Gal4 activating region II (aa 768 to 881),

moderate strength (178)
Herpes simplex virus

VP16 AD
VP16 activating region (aa 413 to 490), high

strength (673)
E. coli B42 AD Bacterial polypeptide, weak strength (234)

Bait DNA-binding domains
S. cerevisiae Gal4 DBD* Binds GAL1, GAL2, and GAL7 upstream

activating sequences (178)
E. coli repressor LexA

DBD*
Binds LexA operator sequences (234)

H. sapiens estrogen
receptor DBD

Binds estrogen receptor elements (374)

Bacteriophage $
repressor cI

Binds cI operator sequences (580)

Tet repressor Binds Tet operator sequences (716)
a *, most popular options.
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Figure IV.13: Yeast Two-Hybrid. The first two-hybrid experiment (Fields and Song, 1989).
The interaction between two proteins of interest (here Snf1 and Snf4) is tested by fusing one
of them, the bait, with the DNA-binding domain (DBD) of Gal4 and the other, the prey, with
the activation domain (AD) of Gal4. The Gal4 DBD domain binds to the upstream activating
sequences (UAS) of the lacZ reporter gene. The interaction between Snf1 and Snf4 is detected
by the tethering of the fused AD to the UAS, which activates the transcription of lacZ, which is
detected by chromogenic analysis. Conversely, in the case of non-interacting proteins fused to the
AD and DBD of Gal4, the activating domain is not recruited resulting in no specific activation of
lacZ and therefore no detectable signal. (from Stynen et al., 2012)

process (Behrends et al., 2010).
Given the importance of PPI in the understanding of cellular processes, numerous

studies aimed at identifying interactions between specific sets of proteins using low-
throughput and high-throughput systematic mapping. In order to access easily the pairs
of interacting protein from all these studies, several groups endeavor to collect all these
published interactions in a unique database (DB). Each of these PPI-DB integrate published
results and provides an access to the data in di↵erent manners.

Bait
Prey

Prey
Contaminants

m/z

Bait
Protein X
Protein Y
Contaminants

a

b

c d e

Interactomes
Global networks of interactions 
(protein–protein interactions in 
this article).

Yeast two-hybrid 
A genetic technique that 
detects binary interactions 
between protein pairs.

Flag tag
A short amino-acid sequence 
(usually 8–11 amino acids) 
that is recognized by 
monoclonal antibodies and is 
used to tag proteins for 
detection and purification.

Tandem affinity purification 
(TAP) tag
A recombinant fusion tag 
formed of two moieties, used 
sequentially for protein 
purification. The original 
version consists of the 
immunoglobulin G (IgG)-binding 
portion of Staphylococcus 
aureus protein A (distal tag) 
and the calmodulin-binding 
peptide (proximal tag); these 
tags are separated by a 
tobacco etch virus protease 
cleavage site.

The first step — affinity purification. Generic approaches 
that use affinity-tagged recombinant proteins have 
allowed for parallel sample preparation without the need 
to optimize the purification protocol for each protein com-
plex. Proteins of interest are simply expressed in-frame 
with an epitope tag (at either the N or C terminus), 
which is then used as an affinity handle to purify the 
tagged protein (the bait) along with its interacting 
partners (the prey). Although several different tags or 
tag combinations have been successfully used in many 
low-throughput studies (see REF. 23), high-throughput 
studies have primarily used either the flag tag3,23 or the 
tandem affinity purification (TAP) tag2,4,5 system (BOX 1).

In the flag-tag approach, as used by Ho et al., 
C-terminally flag-tagged proteins were expressed under 
the control of a GAL-inducible promoter and isolated in 
a single step using an anti-flag antibody resin3. Tagging 
10% of the yeast ORFs, the authors were able to connect 
25% of the yeast proteome. In the TAP-tag approach, as 
used by Gavin et al.4,5 and Krogan et al.2, yeast genes for 
the proteins of interest were fused to a C-terminal dual-
epitope tag via homologous recombination, such that 
the proteins were expressed under their own promoters. 
Protein purification was carried out in two steps, first 
via the protein A moiety in the TAP tag (which binds 
immunoglobulin G (IgG)–sepharose), and then via the 
calmodulin-binding peptide (which exhibits high affinity 
to calmodulin–sepharose; BOX 1). Further discussion on 
false positives and false negatives in AP–MS experiments 
can be found in BOX 2.

The second step — mass spectrometry. Two main strate-
gies to ionize peptide ions, electrospray ionization (ESI) 
and matrix-assisted laser desorption/ionization (MALDI), and 
their implementation on several types of tandem mass 

spectrometers24, have allowed for efficient sequencing 
of peptides derived from proteolytic digests of protein 
complexes (an in-depth discussion of MS is beyond the 
scope of this review; we refer the reader to excellent 
recent publications25–29).

MS is currently the method of choice for peptide 
sequencing because it is sensitive; it routinely allows 
for the identification of peptides that are present at 
femtomole levels. MS is also rapid; sequencing of indi-
vidual peptides can be achieved within hundreds of 
milli seconds, and thousands of peptides can therefore 
be identified in a single MS run. Last, MS is compatible 
with high-throughput strategies and is easily automated. 
It also allows for the characterization of peptide modifi-
cations (including naturally occurring post-translational 
modifications, such as phosphorylation, and exo genously 
added modifications, such as chemical crosslinkers). 
MS can also be adapted to quantitatively measure 
peptide abundance and does not require pre-existing 
knowledge of the proteins to be analysed. Advances 
in sample processing and instrumentation have gone 
hand-in-hand with the development of software tools 
that automatically retrieve sequence information from 
acquired mass spectra and provide statistical validation 
of the accuracy of the determined sequences30,31.

Although individual research groups have used dif-
ferent methods for the analysis of protein complexes by 
MS, the basic principles are essentially the same (FIG. 1).

From interactors to complexes
The AP–MS technique only generates a list of proteins 
detected in a given sample, and does not necessarily reveal 
the composition of individual protein complexes. The data 
from a single AP–MS experiment represents an average of 
binding partners and protein complexes. If the bait pro-
tein is a component of multiple alternative complexes, a 
single AP–MS analysis cannot be used to decipher this 
multiplicity of associations. This is an important limita-
tion because proteins can have dramatically different roles 
as components of different types of complexes.

Identifying PP2A-interacting partners. The acquisi-
tion of high-density interaction data sets in which each 
component (or multiple components) of a particular 
complex is affinity tagged and purified can greatly 
assist in deciphering the association of a given protein 
with multiple alternative complexes. For example, 
TAP-tag AP–MS was used to identify the interacting 
partners for the catalytic (C) subunit of the human 
serine/threonine phosphatase PP2A (FIG. 2; A.-C.G., 
B.R. and R.A., unpublished observations). PP2A is an 
important serine/threonine phosphatase in eukaryotes 
and gener ally functions as a trimer in which the C subu-
nit is associated with a regulatory protein (B, B′ or B′′; 
14 genes in humans) through an adaptor (A) mole-
cule32,33. Mutually exclusive interaction of the C subunit 
with a protein known as α4 is also observed34–36. A single 
TAP-tag AP–MS of the PP2A C subunit revealed a large 
list of interactors without shedding light on individual 
protein–protein complexes. However, reciprocal TAP 
analyses of each of the proteins that were identified in 

Figure 1 | General overview of an affinity purification and mass spectrometry 
experiment. a | The protein of interest (often epitope tagged; blue) is purified from a cell 
lysate together with its binding partners (orange and green). Contaminants (red) can also 
be present. b | In an optional step, proteins in the complex can be separated by SDS–PAGE 
(followed by silver or coomassie staining) or by some type of liquid chromatography. 
Although analysis of gel-purified proteins has been used most often so far, gel-free 
approaches allow for a more rapid and generic analysis and are increasingly used. 
c | Proteins are subjected to proteolysis (usually with trypsin). d | Mass spectrometry (MS) 
analysis of peptides. In most cases, this involves peptide separation by reversed-phase 
liquid chromatography followed by two MS events: in the first scan, the mass/charge 
ratio (m/z) of the intact peptide is measured. The most abundant peptides are then 
specifically selected and subjected to fragmentation, yielding a tandem MS (MS/MS) 
spectrum (a simplified MS/MS scan is shown for one of the peptides). e | Database 
searching and statistical software are used to interpret the MS data to yield a list of 
proteins that were present in the initial sample, including the tagged protein, its 
interacting partners and contaminants. 
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Figure IV.14: Identifying protein complexes using a�nity purification followed by mass
spectrometry. a. A protein of interest (blue, can be tagged with a specific epitope) is purified
from the lysate of a population of cells. Co-precipitates include binding partners (green and
orange) and contaminants (red). b. Proteins in the complex can be separated by SDS-PAGE
or by chromatography. c. Protein digestion results in small peptides, which (d.) can then be
identified using Mass-Spectrometry. e. The identified proteins are then analyzed to eliminate
false positive (contaminants). (from Gingras et al., 2007)

The Biological General Repository for Interaction Datasets BioGRID (thebiogrid.org)
remains of the most up to date repository of PPI (Chatr-aryamontri et al., 2012). The

http://thebiogrid.org
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BioGRID PPI-DB is composed of more than 170,000 human protein interaction extracted
from more than 23,000 manually curated publications (BioGRID v3.2.116, September
2014). The interactions recorded in the database were identified by a wide variety of
experiments ranging from a simple immuno-precipitation followed by western blot or MS
analysis to X-ray crystallography and FRET (Fluorescence Resonance Energy Transfer).
An interesting feature o↵ered by the BioGRID repository is the accessibility of the source
of the interaction identified between two proteins. For instance, EGFR and GRB2, the
epidermal growth factor receptor and the next protein in the MAPK signaling cascade
respectively, are identified as interacting protein in BioGRID and are supported by 39
published sources in fall 2014, 23 of which are low-throughput high confidence experiments.

The Human Integrated Protein-Protein Interaction Reference database HIPPIE
(cbdm.mdc-berlin.de/tools/hippie) aims at integrating the PPI referenced in other
databases and to select only high-confidence interactions (Schaefer et al., 2012). This
database was developed to overcome the limitation of database such as BioGRID which
directly retrieve PPI from any experiment although these are known to contain large
number of false positive as discussed earlier in this section. HIPPIE applies a specific
scoring scheme by basically assigning high weights to low throughput high confidence
experiments such as X-Ray crystallography or circular dichroism, and assigning low weights
to high-throughput or low confidence experiments and data such as co-localization or
yeast-two hybrid assay. This results in a lower number of PPI referenced in HIPPIE,
approximately 70,000, much lower than the number of PPI in the BioGRID database.
Moreover, the web interface to the HIPPIE provides several useful tools to query sets of
proteins and obtain the list of interactions between all pairs of the input proteins.

Finally, the STRING database (string-db.org) is most probably the largest collection
of putative PPI (Franceschini et al., 2012; Mering, 2004). Additionally to the PPI
experimentally identified for human proteins, the project behind the STRING database
aims at predicting interaction based on several orthogonal datasets. The first feature used
for PPI prediction in STRING is the automatic processing of the full text of nearly 2
million scientific publications. The second contribution to PPI prediction is the transfer of
interactions between organisms using orthologous groups of genes. Based on these features,
PPI are predicted and scored in the STRING database, which results in almost 5 million
interactions. In addition, the web interface to the database provides tools to analyze sets
of interacting proteins and by displaying global STRING scores as well as feature-specific
scores.

Several other databases of PPI exist, some of which are listed below in chronological
order of the latest update:

DIP Database of Interacting Proteins (dip.doe-mbi.ucla.edu) (Xenarios et al., 2002),

MINT Molecular Interaction Database (mint.bio.uniroma2.it/mint) (Chatr-aryamontri
et al., 2007)

http://cbdm.mdc-berlin.de/tools/hippie/network.php
http://string.embl.de
http://dip.doe-mbi.ucla.edu
http://mint.bio.uniroma2.it/mint
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HPRD Human Protein Reference Database hprd.org (Keshava Prasad et al., 2009)

IntAct an EBI supported interaction database (ebi.ac.uk/intact/) (Kerrien et al., 2011)

GeneMANIA an analytical application merging genetic, protein and predicted
interactions (genemania.org) (Warde-Farley et al., 2010; Zuberi et al., 2013)

Figure IV.15: PPI in MAPK signaling pathway. A selected set of proteins involved in the
MAPK pathway and the protein interactions between them referenced in the HIPPIE database
are shown. The first network contains only high confidence interactions (score above 0.8 in the
HIPPIE scoring scheme). (obtained from the HIPPIE database (Schaefer et al., 2012) and using
Cytoscape for network manipulation and visualization (Shannon et al., 2003))

These collections of protein interactions are extensive source of information concerning
potential signaling pathways. However, these resources are noisy and enclose inaccurate
data either due to the integration of faulty experimental data such as those coming from
yeast-two-hybrid experiments, or by errors in the retrieval of interactions from scientific
articles. As an example, figure IV.15 shows the interactions found in the HIPPIE database
between proteins involved in each level of the MAPK signaling pathway. While the filtered
list of protein interactions models the expected signaling cascade (growth factor, receptor,
RAS, MAPKKK, MAPKK, MAPK and TF, left panel of the figure), the complete list
of PPI shown in the unfiltered network (right panel) shows many unexpected, though
possible, interactions between various steps in the cascades. For instance, the surprising
interaction between EGF and GRB2 was collected by HPRD and therefore present in
HIPPIE. This interaction is annotate to be provided by a study of EGF response in rat
hepatocytes. However, the published results do not show any interactions between these

http://www.hprd.org
http://www.ebi.ac.uk/intact/
http://www.genemania.org/
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two proteins and consequently the deduced protein interaction is erroneous (Kong et al.,
2000). Therefore, PPI network and in fact biological networks in general have modest
reliability concerning single interactions. However, a broader view and a systemic analysis
can in many case be much more reliable and informative despite local errors.

Transcriptional regulatory interactions

Transcriptional regulation is the second complex component of signaling pathways. The
possibility to abrogate the synthesis of specific transcripts and to initiate the transcription
of new mRNA species is the mean by which gene regulation a↵ects the proteome and
potentially modifies the cells phenotype. Several steps are required to regulate the
expression of genes.

First, a transcription factor or a set of factors is activated by a stimulus, an extracellular
growth signal for instance. For regulators present in the cytoplasm, this activation can
trigger the nuclear translocation of the activated TF.

Transcription factors are then able to bind consensus sequences in the genome for which
they have a particularly high a�nities, which are called Transcription Factor Binding Sites
(TFBS). These sequences are specific to TF or TF-families and are often degenerated.
TFBS are usually represented as Position Weight Matrices (PWM) also referred to as
Position Specific Scoring Matrix (PSSM). An example of the GATA3 human consensus-
binding site is shown in figure IV.16. Association of transcription factor to their cognate
binding site upstream of a Transcription Start Site (TSS) is one of the mechanism by
which TF regulate the synthesis of transcripts.

In fact, transcription initiation is much more complex. First, TF binding is highly
dependent on the accessibility of the target binding site. As discussed and depicted earlier
(see section I.2 and figure I.4), the presence and activity of co-factors is necessary for the
binding of TF. Moreover, functional TFBS, those that can e↵ectively regulate transcription
when bound, can be placed anywhere around the TSS with extremely varying distances.
Finally, the presence of specific cooperative factor is often essential for the binding of a
TF to e↵ectively recruit the core transcriptional machinery.

Transcriptional regulation, and in particular transcriptional activation, requires a large
number of molecules to associate in the right place at the right time. This complexity
makes transcriptional response extremely specific to the cellular context and to the stimulus
or stimuli.

The first step towards the full comprehension of regulatory processes is the collection of
all possible binding sites encoded in the human genome sequence as well as the consensus
sites of all DNA binding transcription factors.

Several groups collected published data concerning TF binding and in particular TFBS
models. Most of these databases also propose tools to scan DNA sequence, sequences
of gene promoters for instance, to identify binding sites. One of the most widely used
databases is JASPAR (jaspar.genereg.net) which references TFBS in the form of PWM for

http://jaspar.genereg.net
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it is simply the product of the relevant nucleotide prob-
abilities in each position in the profile.

For efficient computational analysis, the PFM must
be converted to a log-scale. To eliminate null values
before log-conversion, and in part to correct for small
samples of binding sites, a sampling correction, known
as PSEUDOCOUNTS, is added to each cell of the PFM (BOX 2).
The specific formula for the pseudocount correction
varies widely between software applications52. In our for-
mulation, pseudocount values are defined as the square
root of the number of sites that contribute to the model.
Additionally, the genome nucleotide distribution is taken
into account in the conversion (BOX 2). The final log-scale
matrix is referred to as a PWM.A quantitative score for a
potential site is produced by summing the relevant
nucleotide PWM values, analogous to the calculation of
the probability of observing the site, as discussed above
(BOX 1 and 2). For longer sequences, the PWM is slid
over the sequence in 1-bp increments, evaluating each
possible binding site (on both strands).

sequence and lends itself to fast visual comparisons,
it fails to reflect the quantitative characteristics of TF
binding. Consensus sequences confer an information loss
from the original data, as binding bias towards one of the
possible nucleotides is not reflected in the model (BOX 1).

Position weight matrix (PWM) profiles provide
quantitative descriptions of the known binding sites
for a TF51. Based on an alignment of all known sites,
the total number of observations of each nucleotide is
recorded for each position, producing a position fre-
quency matrix (PFM; see BOX 1). A normalized PFM,
in which each column adds up to a total of one, is a
table of probabilities for observing each nucleotide at
each position.

The matrix framework enables us to assign a quanti-
tative score to any sequence to identify potential binding
sites. It is helpful to visualize a profile model as a
‘machine’ that analyses a string of nucleotides (of the
same length as the profile). The calculation of the proba-
bility of observing a certain sequence is straightforward:

INFORMATION CONTENT

A measure of nucleotide
conservation in a position, based
on information theory.

PSEUDOCOUNT

The sample correction that is
added when assessing the
probability to correct for small
sample sizes (that is, few
binding sites).

Box 1 | Building models for predicting transcription-factor binding sites

The first step towards building models for predicting transcription-
factor (TF) binding sites involves data collection. To illustrate the
process, we use MEF2 as an example.

Data collection
A set of experimentally validated MEF2-binding sites was collected
from the literature and aligned (a). The sequence variability of the
collection of binding sites strongly affects the downstream models
for predicting additional sites. Note the diversity between the sites;
for instance, only 50% of the nucleotides are identical between sites
one and eight.

Model building
Consensus sequence model: a consensus sequence is defined by
selecting a degeneracy nucleotide symbol for each position
(column) in the alignment (b). Unusual binding sites can have an
extreme effect on the consensus (see, for example, site eight).

Position frequency matrix 
To more accurately reflect the characteristics at each position, a
matrix that contains the number of observed nucleotides at each
position is created (c). For instance, the first column in the alignment
(a) consists of no As, three Cs, two Gs and three Ts, therefore resulting
in the corresponding first matrix column {0,3,2,3}.

Position weight matrix 
The frequency matrix is usually converted to a position weight
matrix (PWM) using a formula (BOX 2, equation 2) that converts
normalized frequency values to a log-scale (d). PWMs are also
known as position-specific scoring matrices (PSSMs, pronounced
‘possums’). Using a matrix model, a quantitative score for any DNA
sequence can be generated by summing the values that correspond
to the observed nucleotide at each position (e). For large and
representative collections of binding sites, the scores are
proportional to binding energies51.

Sequence logo 
The specificity in each column of the alignment can be measured in
terms of INFORMATION CONTENT92.A sequence logo scales each nucleotide
by the total bits of information multiplied by the relative occurrence of
the nucleotide at the position (f; BOX 2, equation 4).Sequence logos
enable fast and intuitive visual assessment of pattern characteristics.

Site 8
Site 7
Site 6
Site 5
Site 4
Site 3
Site 2
Site 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Source binding sites

C T C C T T A C A T G G G C
C A A C T A T C T T G G G C
C A A C T A T C T T G G G C
T G C C A A A A G T G G T C
T G A C T A T A A A A G G A
T G A C T A T A A A A G G A
G A C C A A A T A A G G C A
G A C C A A A T A A G G C A

a

B
its

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

Position

f

b
B R M C W A W H R W G G B M

Consensus sequence

1 2 3 4 5 6 7 8 9 10 11 12 13 14
A 0 4 4 0 3 7 4 3 5 4 2 0 0 4
C 3 0 4 8 0 0 0 3 0 0 0 0 2 4
G 2 3 0 0 0 0 0 0 1 0 6 8 5 0
T 3 1 0 0 5 1 4 2 2 4 0 0 1 0

T T A C A T A A G T A G T C

A –1.93 0.79 0.79 –1.93 0.45 1.50 0.79 0.45 1.07 0.79 0.00 –1.93 –1.93 0.79
C 0.45 –1.93 0.79 1.68 –1.93 –1.93 –1.93 0.45 –1.93 –1.93 –1.93 –1.93 0.00 0.79
G 0.00 0.45 –1.93 –1.93 –1.93 –1.93 –1.93 –1.93 0.66 –1.93 1.30 1.68 1.07 –1.93
T 0.15 0.66 –1.93 –1.93 1.07 0.66 0.79 0.00 0.00 0.79 –1.93 –1.93 –0.66 –1.93

0.45 –0.66 0.79 1.68 0.45 –0.66 0.79 0.45 –0.66 0.79 0.00 1.68 –0.66 0.79

Σ = 5.23, 78% of maximum

c  Position frequency matrix (PFM)

d  Position weight matrix (PWM)

e  Site scoring

Figure IV.16: Modeling transcription-factor binding sites. Example of the MEF2 transcription
factor. a. Alignment of the DNA sequences of 8 experimentally validated MEF2-binding sites.
b. Consensus binding sequence using an extended DNA alphabet. c. Position frequence matrix
with 4 lines (one per nucleotide) and as many columns as positions in the binding site. Values
in the matrix represent the frequency of the presence of a given nucleotide at a given position.
d. A transformation of the frequency matrix into a weight matrix is often used to score a given
nucleotide at a given position and therefore score and characterize a sequence (e). The weight of

base b at position i is computed as follow: Wb,i = log2
p(b,i)
p(b) , with p(b) the background probability

of base b and p(b, i) is the (corrected) probability of base b at position i. f. Visual representation
of the position frequency matrix in which the height of a nucleotide at a given position reflects its
information content (Schneider and Stephens, 1990).
(From Wasserman and Sandelin, 2004)
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more than 200 human transcription factors. Another reference database is TRANSFAC
which provides a public TFBS dataset as well as a large commercial hand-curated database
(Matys et al., 2006). A more recent database, HOCOMOCO (autosome.ru/HOCOMOCO/
Kulakovskiy et al., 2012), collected and curated the most informative PWM for nearly 400
human TF. Finally, the MotifDB R/Bioconductor package references most of these TFBS
models and can be easily used to scan DNA sequences with a large set of PWM.

The main di�culty in the analysis of gene regulation using consensus sequences is the
high frequency of occurrence of potential TFBS throughout the genome. For instance, in a
complete random setting, an 8-base long consensus sequence, such as the GATA3 binding
site shown in figure IV.16, can approximately appear every 65 kb along the genome which
results in about 46,000 putative sites in the Human genome. Therefore, to more accurately
map target genes of human TFs, the direct binding of protein to the genome in specific
cellular context can be identified using several large-scale experiments such as ChIP-seq
or DNase/FAIRE-seq (see IV.1 for short discussion about techniques). In particular, two
large consortiums are engaged in this type of full analysis of the Human genome.

The ENCODE project, Encyclopedia of DNA Elements project (encodeproject.org),
aims at referencing all functional elements of the human genome. This project extensively
uses ChIP-seq (Chromatin ImmunoPrecipitation followed by high-throughput sequencing)
using TF or histone modifications, ChIA-PET (Chromatin Interaction Analysis by Paired-
End Tag Sequencing, similar to High-C) as well as DNase- and FAIRE-seq to understand
the function of captured sequences.

The Functional Annotation Of Mammalian Genome project, FANTOM (fan-
tom.gsc.riken.jp), focuses on unraveling gene regulatory networks in human cells. For
instance, the consortium aims at identifying the promoter sequence of every human gene
by accurately referencing all possible TSS. More generally, the goal of the FANTOM
project is to map all the possible regulatory interactions governing cellular processes and
in particular combinatorial complexity of gene regulation.

Other groups collected published datasets of Protein-DNA interactions to propose
databases of potential regulatory interactions. The Human Protein-DNA Interactome hPDI
(bioinfo.wilmer.jhu.edu/PDI/) references almost 20,000 regulatory interactions between
genome locus and 1,013 human DNA binding proteins including 493 transcription factors.
SwissRegulon (swissregulon.unibas.ch) proposes tools and a database of TF bounded
genomic regions and in particular to the FANTOM consortium data (Pachkov et al., 2007).

Transcription Factor cooperativity are also referenced in a final type of regulatory
interaction repository. Transcription Factor synergy and competition is at the
heart of cellular and signal specificity of transcriptional response. Therefore, the
FANTOM consortium generated a list of human combinatorial TF interactions (Ravasi
et al., 2010). Moreover, the Dragon database of transcription co-factors and TF
interacting proteins proposes a curated database of TF-cofactors and TF-TF interactions
(cbrc.kaust.edu.sa/tcof/, Schaefer, Schmeier, and Bajic, 2010).

The discussed studies and database of regulatory interactions mostly concern TF-DNA

http://autosome.ru/HOCOMOCO/
https://www.encodeproject.org
http://fantom.gsc.riken.jp
http://fantom.gsc.riken.jp
http://bioinfo.wilmer.jhu.edu/PDI/
http://swissregulon.unibas.ch
http://cbrc.kaust.edu.sa/tcof/
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potential a�nity or binding. Tools and data can be used to analyze genes of interest
to search for potential binding sites. However, the binding of regulators to promoter
elements does not necessary causes modification of the level of transcription of the nearby
coding sequence. This is particularly well illustrated by the significantly low intersection
between the TF-bound genes and transcriptionally a↵ected target genes. For instance,
the FANTOM consortium carried out siRNA depletion of TF followed by transcriptomic
analysis to list genes with altered transcriptional levels. These perturbation experiments are
used to identify genes transcriptionally a↵ected by the depleted TF. Although perturbation
analysis does not only list direct transcriptional targets, the concordance between regulated
and bound genes is unexpectedly low as shown in figure IV.17. Overall, gene regulatory
networks are highly context-specific and standard repositories can only be used as sets of
potential interactions.

Perturbation ChIP Intersection

ETS1 1106 1670 118

STAT1 1022 259 15

MYC 447 2630 66

BCL6 954 474 3

Figure IV.17: TF target consistency. Number of target genes determined for four transcription
factors using two di↵erent methods. Perturbation experiments list the genes with a significant
di↵erent mRNA level after siRNA-mediated depletion of a specific TF. ChIP is the set of genes
found near a TF-DNA interaction determined by a ChIP-seq experiment. The last column
contains the number of genes found to be targets of each TF in both experiments. For each of
these TF the intersection is significantly lower than expected randomly (fisher’s exact test < 1%)

Pathway models

Signaling pathways are mainly composed of a first set of protein interaction to transduce
extracellular signals and a set of regulatory interactions to orchestrate a transcriptional
response and induce changes in the targeted cell’s behavior. In order to fully understand
the operation and impact of cellular signaling, rigorous review and curation processes
generated repositories of whole pathway models.

These fundamental investigations started in the late nineties with KEGG the Kyoto
Encyclopedia of Genes and Genomes (genome.jp/kegg, Kanehisa and Goto, 1999; Kanehisa
et al., 2013). By providing graphical and understandable representations of cellular
signaling cascades and of the involved reactions, KEGG is an essential tool to grasp cellular
behaviors.

While KEGG provides metabolic pathways as well, recent studies contribute to more
complete repositories. For instance, the Reactome pathway database is a collection of more

http://www.genome.jp/kegg/
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than 1,500 human pathways precisely describing protein reactions such as the association
into complexes, post translational modification or protein cleavage (Croft et al., 2013).

A last highly curated and reliable collection of human pathways is the Pathway
Interaction Database (pid.nci.nih.gov) supported by the National Cancer Institute (Schaefer
et al., 2009). This database contains only 137 human pathways annotated with e↵ect of
protein reactions on activity of nodes as well as potential e↵ect of drugs.

IV.3 Unraveling cancer driving pathways

The main objective of genomics in cancer research, which here includes any kind of cell-wide
profiling technique, is to identify active and therefore targetable molecules and pathways.

While genome-wide profiles can be informative on the excessive concentration or the
altered form of specific biomolecules of each tumor, network representations of signaling
pathways model their functioning and potentially the causes and consequences of these
alterations. Referenced pathways remain theoretical and contain only possible interactions.
Therefore, genomic profiles can potentially enlighten these pathways with some level of
context-specificity by pointing towards subparts of cellular networks or pathways with a
higher level of relevant alteration. For instance, a routine analysis of transcriptomic profile
consists in the selection of pathways or biological processes composed of a significant
number of over-expressed genes (e.g. Gene Set Enrichment Analysis, Subramanian et al.,
2005). These analyses are simplistic and often di�cult to analyze because of the number
of identified pathways.

In order to identify more than simply enriched processes but active pathways and
more importantly vulnerable spots, a great number of studies proposed a wide variety of
methods and algorithms. These integrate various levels of prior knowledge to context-
specific genomic or transcriptomic data.

Two main categories of analytical systems are discussed in the following sections. In the
first section, methodologies attempting to lay genomic data on pre-constructed network,
often to identify hotspots, are discussed. The last section focuses on methods relying on
inferred and context-specific constructed network often to identify highly influential genes.

Predefined network based method

A network of biological interactions can be mathematically defined as a graph composed of
vertices and edges. A wide variety of methods are based on this theoretical framework to
extract active hotspots from networks. Generally, methods rely on a PPI network and use
it to integrate transcriptomic data and identify highly expressed subparts. Although it can
be considered to be generally the case, mRNA levels is not systematically representative
of the activity of nodes in a protein network (Chen et al., 2002; Ghazalpour et al., 2011).
However, the coordinated up-regulation of genes involved in the same modular subpart of

http://pid.nci.nih.gov
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a functional network can in some cases attest the protein over-expression of the module or
pathway and potentially its activity.

One type of analysis of transcriptomic profiles aims at developing predictive models
for diagnostic or prognostic purposes. Because of the high number of dimensions of gene
expression data and the low number of samples, standard supervised classification models
are often unstable and have low reproducibility. To overcome this problem termed the
curse of dimensionality (see section IV), several groups proposed extension of standard
algorithm to take into account prior information in the form of pathways or networks. This
a priori data is seen as a compilation of the current knowledge of cell biology. Networks
have therefore been used to construct a new penalty (Zhu, Shen, and Pan, 2009) or kernel
function (Lavi, Dror, and Shamir, 2012; Rapaport et al., 2007) in a Support Vector Machine
model for binary classification problem or to filter expression profiles by defining a new
metric in an unsupervised framework (Rapaport et al., 2007).

Figure IV.18: Identification of transcriptionally active sub-networks. Active sub-network
extraction consists in the identification of modular subparts of a cell wide interaction network
(left) which contain genes with a specific expression level pattern (right). The searched expression
patterns are often simply based on the over-expression of genes between two predefined conditions
in the transcriptomic experiment. (from Lahti, Knuuttila, and Kaski, 2010)

Another approach aims at identifying network hotspots or active modular subnetworks
in a cell wide interaction network as depicted in figure IV.18. This is sometimes referred
to as significant-area-search or active-module detection (Mitra et al., 2013). Most of these
methods use the same set of data, a PPI network and transcriptome profiles of two distinct
conditions (e.g. cancer vs. normal samples) resulting in a list of di↵erentially expressed
genes. The extraction of active modules is transformed into an optimization problem in
which the most di↵erentially expressed connected module is to be found and can be referred
to as the Maximum-Weight Connected Sub-graphs (Dittrich et al., 2008). This problem
was first formulated in early 2000’s with the work of Trey Ideker on the jActiveModules
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software (Ideker et al., 2002). Several solutions based on other search algorithms were
introduced and were based on graph clustering (Gu et al., 2010), simulated annealing (Guo
et al., 2007) or based on solving a Steiner tree problem to obtain exact solutions (Dittrich
et al., 2008). A last method is more relevant to the use of a PPI by searching for active
modules through the integration of the results of proteomic studies (Nibbe, Koyutürk, and
Chance, 2010).

While these methods di↵er in their search algorithms and the way they score modules,
they are all based on the comparison of two or more phenotypes and often rely on simple
univariate statistics on genes (t-test for instance). In order to remove potential bias
introduced by these often unreliable or incomplete annotations, more global analytical
search for network modules of interest were proposed. For instance, the Module Analysis via
Topology of Interactions and Similarity SetsMATISS (Ulitsky and Shamir, 2007) integrates
a PPI network with links of co-expression between genes to find jointly active subnetworks.
Another meaningful approach is the non-transcriptomic based hotnet algorithm (Vandin,
Upfal, and Raphael, 2011) aims at identifying highly mutated sub-network using network
heat di↵usion. The Mutual Exclusivity Modules in Cancer MEMo also aims at extracting
mutated modules but uses an interesting property of mutual exclusivity of alterations of
genes in the same pathway (Ciriello et al., 2012). Finally, Netreponse (Lahti, Knuuttila,
and Kaski, 2010) is a more general approach to identify subnetworks with coordinated
expression patterns, termed response, in an unspecified subset of samples as illustrated in
figure IV.18. It uses a model based approach which can be used both as a class discovery
(clustering) and feature selection approach with a network constraint.

Another class of method aims at identifying sample-specific network activities.
Conversely to the precedent methods, which often consist in analyzing datasets with
pre-defined sample classification, patient-specific measures have the potential to be used
clinically in a personalized treatment framework. In fact, most of these analytical systems
are considered as dimension reduction methods as they are based on or related to Principal
Component Analysis.

The first of these proposed methods is called Network Component Analysis (Liao
et al., 2003). Figure IV.19 shows the use of NCA in a simple context of the analysis of
hemoglobin species from absorbance spectra. This example is simply transposable to
regulatory network in which the observed values are changes in gene expression, the a priori
connectivity diagram is a large scale regulatory network derived from ChIP experiments
or TFBS promoter scanning analysis and the sought values are the level of activity of
transcription factor. This is fundamentally di↵erent than the previous method as the goal
is not to use a predefined structure to identify gene that might have a common function
but to identify the true level of activity of a molecule based on observation of downstream
entities. Indeed, the mRNA level of a transcription factor is not representative of its true
activity on its target gene as this is dependent not only on the level of translation but
also on the cellular localization of the regulator protein, on the level of post-translational
modifications and on the vicinity and the activation states of co-factors. As all these are
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Figure IV.19: Network component analysis. a. Schematic representation of a simple regulatory
system with output nodes dependent on combination of regulatory node values. Unlike Principal
or Independent Component Analysis (PCA and ICA respectively), Network Component Analysis
(NCA) takes into account the known connectivity between the sought regulatory nodes and the
observable output nodes. b. and c. Example of the use of NCA on absorbance spectra of
hemoglobin solutions. b.Connectivity diagram between the pure components contained in the
solution (regulatory nodes) and the seven measured mixtures (output nodes). c. Comparison of
NCA, PCA and ICA estimated regulatory signals with the true signals. (from Liao et al., 2003)

di�cult to measure and to analyze, the NCA proposes to infer the activation state of
regulator by the level of transcription of its putative target genes. NCA takes as an input
a connectivity diagram containing only potential interactions, which in fact did not needed
to be actual interaction happening in the analyzed samples, and a set of transcriptomes
in which the transcription factor activities (TFA) would be inferred. The original NCA
method required the number of samples to be greater than the number of regulatory
nodes. Several improvements overcame this limitation (Galbraith, Tran, and Liao, 2006;
Noor et al., 2013) and other approaches based on Partial Least Square were also proposed
(Boulesteix and Strimmer, 2005). A particularly interesting feature of NCA is to take only
putative interactions between regulatory and output nodes while the method re-weights
these interactions based on the observed data.

Finally, a last type of technique relies on full pathway models to infer active and driver
genes/proteins. A first method termed DriverNet (Bashashati et al., 2012) was developed
to identify drivers among genes presenting genetic alterations, mostly copy number and
point mutation, which have a measurable e↵ect on their target or downstream genes. To
this end, DriverNet uses both protein interactions and regulatory interactions to link
genetic alterations to coordinated gene expression modification among co-regulated genes.
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The main intention of DriverNet is to consider infrequently altered genes as significantly
altered genes on the basis of the e↵ect of their aberrations on their downstream pathways.

Figure IV.20: PARADIGM pathway modeling. Based on a set of directed interaction with
known e↵ects between parent and child node, which includes various biomolecules and higher
level cellular processes (left), paradigm builds a corresponding factor graph (right). The pathway
model includes observable variables (DNA, mRNA and for some cases Protein level) and infers
unobservable variables (protein activity, apoptosis) based on the coherence between the measurable
data of child and parent nodes. (adapted from Vaske et al., 2010)

PAthway Recognition Algorithm using Data Integration on Genomic Models also known
as PARADIGM is an inference system using thoroughly annotated pathway models from
the Pathway Interaction Database (Schaefer et al., 2009) to model their function and
activity in a patient/sample specific manner. The model used by PARADIGM consist in
the transformation of known pathways into factor graphs as illustrated in figure IV.20. The
goal is to infer the values of hidden variables such as protein or cellular process activity
by searching for the set of possible values with the highest consistency regarding the
observed value. For instance in the model depicted in figure IV.20, given an amplification
of the MDM2 gene, an over-expression of it’s mRNA and an under-expression of all the
genes described to be activated by TP53, the TP53 protein is expected to be inactive and
that the MDM2 protein is active. This highly successful approach was used in several of
the TCGA marker paper of full cancer genome profiles (Cancer Genome Atlas Network,
2012, 2014; Kandoth et al., 2013). It was also used to identify functional mutations by
underlining mutation-driven inconsistency in pathways (Ng et al., 2012) and for patient
subtype identification (Sedgewick et al., 2013). Overall, PARADIGM is an influential
algorithm for it tackles several of the most important challenges in cancer genomics by
integrating all levels of data available and by returning sample specific activities of nodes
in signaling pathways and therefore designating potentially active therapeutic targets
with high specificity. However, it requires an exceptionally accurate description of cellular
pathways which themselves are condition unspecific and error prone.
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Network identification method

As thoroughly discussed in the previous section, integrating repositories of biomolecular
interactions with genome-wide datasets has the main drawback of taking into account
protein or regulatory interactions that might not occur in the studied cells. To overcome
this problem, a whole area of research is dedicated to the development of methods aiming
at the construction of context-specific networks.

Based on genomic alterations, a first type of method uses an interesting property of
genetic aberrations in cancer to identify mutated pathways and driver mutations. It was
observed and sometimes used in pathway discovery methods (e.g. Ciriello et al., 2012)
that genes in the same pathway are rarely mutated in the same sample. Therefore, based
on the simple fact that only one mutation in a pathway is su�cient to alter its function,
the Dendrix algorithm (Vandin, Upfal, and Raphael, 2012) identifies altered signaling
pathways without any prior knowledge by searching for sets of genes with mutual exclusive
and frequent mutations as depicted in figure IV.21.

Figure IV.21: Mutually exclusive mutations. a. Selection of six genes for which their combined
alterations are mutually exclusive and cover a large portion of samples. Black bars indicate
alterations in genes defined at the top of the plot in a specific sample. Grey bars are co-occurring
mutations. b. Known pathway composed of these mutually mutated genes.
ECD: Extra-Cellular Domain; KD: Kinase Domain; HD: Helical Domain.
(from Vandin, Upfal, and Raphael, 2012)
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However, the dominant area of research of context-specific network discovery is
undoubtedly transcriptomic-based. Often referred to as network inference or reverse
engineering, the multitude of proposed learning systems usually proceed in a similar
manner. These all use a normalized transcriptomic dataset composed of thousands of
mRNA levels measured in a set of samples resulting in a matrix of gene expression data.
Then, a measure is used to identify pairs or sets of genes that have significantly correlated
or co-dependent mRNA transcription rate levels. This last step is particularly variable
between methods in the way that either pairs or association of sets of genes are scored.
However, these all result in the construction of a large scale regulatory network containing
the highest ranked (or most statistically significant) associations.

In an ideal experimental design, gene regulation would be inferred by the dependency
between transcription rates and several measures of regulatory proteins such as post-
translational modification and cellular localization. However, protein levels are still
di�cult to obtain for large number of samples. Therefore, regulatory network discovery
can meanwhile only rely on transcriptomic experiments. This strong limitation is handled
in two di↵erent ways by inference systems. First, by searching for abstract networks.
These methods do not aim at identifying real interactions but higher-level dependencies
between mRNA levels. This is generally the case when no prior information is used and
is sometime called co-expression network (Carter et al., 2004). Second, by constructing
real regulatory networks between transcription factors and target genes (e.g. Fletcher
et al., 2013; Lefebvre et al., 2010). These methods require to preselect regulatory genes
and assume that the mRNA levels of regulators are representative of their activity. Given
the wide number of possibility for an over-expressed regulatory gene to not be active
(translational regulation, post-translational modifications, cellular localization,...) this is
a highly precarious assumption. However, as discussed in section I.4, the activation of a
signaling pathway does result in the activation of a first set of regulator at their protein
level but also usually activates a late response by triggering the transcriptional activation
of new TF.

Despite these great di�culties, network inference aims at deriving functional
and context-specific regulatory models from gene expression data only. A network
representation of the regulation actually taking place in cancer cells holds the promise of
identifying key nodes in the network, their role in tumorigenesis and predicting the e↵ect
of their silencing by small inhibitors. In short, to accurately identify oncogenes, tumor
suppressor genes and more importantly e↵ective therapies.

Nearly all network inference method identifies regulatory interactions by scoring gene-
gene or TF-gene pairs. Therefore, Pearson’s or Spearman’s correlations are often used
to construct what are then called co-expression network (Carter et al., 2004; Langfelder
and Horvath, 2008). More successful approaches are based on Mutual Information, an
information-theoretic measure of co-dependency (Butte and Kohane, 2000). In particular,
two broadly appreciated algorithms build up on Mutual Information to infer robust
regulatory networks. The context likelihood of relatedness CLR algorithm (Faith et al.,
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2007) selects the best TF-gene interactions compared to a background Mutual Information
score and remove insignificant pairs. The Algorithm for the Reconstruction of Accurate
Cellular Networks ARACNE (Margolin et al., 2006a,b) is probably one of the most
successful algorithm in terms of biological application and findings (discussed later in this
section). It is also based on Mutual Information to score TF-gene pairs but it applies a
filter to remove putative indirect interactions using the Data Processing Inequality concept
(Margolin et al., 2006a).

Another category of reverse engineering methods assumes a linear dependency between
regulators and targets. The simplest methods consider the expression of a gene as a
weighted sum of its regulator and infers these weights using a simple linear regression
model (D’haeseleer et al., 1998). More recent algorithms basically use the same linear
model but introduce a penalization term to induce sparsity in the inferred network using
Least Angle Regression (LARS) (Haury et al., 2012) or Least Absolute Shrinkage and
Selection Operator (LASSO) (Someren et al., 2006). Penalization terms have also been
used to infer networks with specific structures such as modular networks (Chiquet et al.,
2009).

Finally, other types of methods were developed and based on various areas of
mathematics and machine learning to solve the problem of constructing regulatory networks.
Based on Bayesian networks (Husmeier, 2003) or ordinary di↵erential equations (Quach,
Brunel, and Buc, 2007), some methods aim at identifying the true underlying mathematical
model of gene regulation. Similarly to the penalized regression methods, another type
of statistical algorithm tackles the problem of identifying the regulators of a gene as a
feature selection problem. The idea is to identify variables which best explains a given
random variable, i.e. the expression of a target genes. Therefore, a popular supervised
machine learning algorithm with an intrinsic feature selection capability, Random Forest
(Breiman, 2001), was used as to select for each gene the most influential variables thereby
predicting its regulators (Huynh-Thu et al., 2010). Unlike penalized regression methods,
this tree-based algorithm called GENIE3 (GEne Network Inference with Ensemble of
trees) does not assume linearity between regulator and target gene mRNA levels.

Most of the proposed learning systems identify pairs of interaction, although it is known,
especially in higher eukaryotes, that genes are regulated by a complex set of competing
and synergistic regulators (see section I.2). To overcome this problem, an algorithm based
on frequent itemset mining called LICORN (Elati et al., 2007) aims at identifying for each
gene the best combination of TF.

As a great number of methods were proposed to reconstruct genome-wide regulatory
network from gene expression data, it is necessary to compare them it terms of prediction
accuracy. Usually, a golden standard is used as ground truth to compare predictive models.
However, in the case of gene regulation, very little interactions are highly reliable and
more importantly they are often context-specific. For instance, ChIP experiments identify
TF bound genomic locus. However, binding does not necessarily result in regulation of
gene expression (see figure IV.17). Similarly, perturbation experiment (siRNA target
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depletion for instance) results in a list of di↵erentially expressed genes which might be in
fact regulated indirectly, that is involving an intermediary TF or regulatory molecule, by
the depleted TF.

The Dialogue on Reverse Engineering Assessment and Methods (DREAM) project
is a community challenge to reconstruct large-scale regulatory network. It provides to
challengers a transcriptomic dataset on which network inference algorithms can be applied
and compares their results with benchmark data. In early challenges (Marbach et al., 2010),
synthetic gene expression data were generated in silico to ensure the quality of the gold
standard. Later, real gene expression datasets for Escherichia coli, Staphylococcus aureus,
Saccharomyces cerevisiae were used and the predictions were compared to unfortunately
unreliable ChIP data or TFBS predictions (Marbach et al., 2012b). The main outcome of
these challenges is the extremely poor precision of all these methods with less than 10%
AUPR (Area Under the Precision Recall curve) for E. coli and less than 5% in yeast.

Although these extremely low quality metrics should be put into the perspective of the
lack of exact gold standard, it can also be explained by the incomplete information included
in transcriptomes and strong assumptions as discussed earlier. Overall, the conclusion is
that a single interaction taken out of an inferred network has an extremely low reliability
with a high probability of being false.

Figure IV.22: Master Regulator Inference. Sub-network of the FOXM1 and MYB inferred as
master regulators of from a Human B-Cell proliferation. (Lefebvre et al., 2010)

However, this does not undermine the potential of network inference algorithm to
provide an informative model (Della Gatta et al., 2012). Evidently, this requires the
development of new methods to analyze network and retrieve functional information from
the error-prone network. Significant foundation in regulatory network analysis was laid
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by an extension of the Gene Set Enrichment Analysis (Subramanian et al., 2005) in the
master regulator inference algorithm (MARINA, Lefebvre et al., 2010). Using as an input
a network and a set of gene of interest, for instance the most di↵erentially expressed genes
between two conditions of interest, MARINA identifies the most specific regulators of
these genes. This method was first used to infer the master regulators of human B-cell
proliferation (Lefebvre et al., 2010) as depicted in IV.22. An extension of the algorithm
was applied to prostate cancer of mice and men in a cross-species regulatory network
analysis to identify synergistic regulators of prostate malignancy (Aytes et al., 2014).
Another application of this algorithm is particularly compelling in the context of pathway
analysis and discovery. The MARINA algorithm was improved to identify the downstream
regulators of the FGFR2 gene, which was only known to be a risk factor of breast cancer
(Fletcher et al., 2013). This was done by exogenously activating FGFR2 in breast cancer
cell lines and searching for the master regulators of the gene deregulated by the induced
perturbation. Although no intermediary connections between FGFR2 and the discovered
downstream regulators are identified, this is a major step towards the complete definition
of cancer driving pathways.

Conclusion Overall, the goal of network-based model is to identify targetable oncogenes
as active nodes in large-scale networks. Relying on previous knowledge allows to identify
network hotspots (Netresponse has a nice and easy general purpose R package at
bioconductor.org, Lahti, Knuuttila, and Kaski, 2010) or to use functional pathway models
to discover weak points (e.g. PARADIGM available at sbenz.github.io/Paradigm, Vaske
et al., 2010). Another possibility is to rely only on data to identify master regulators
from context-specific reconstructed network (e.g. LICORN for co-regulation models in
the CoRegNet R package available in bioconductor.org, ARACNE, MARINA and
extensions are well implemented in the RTN R package at bioconductor.org, Fletcher
et al., 2013) or by integrating both genomic and transcriptomic data to discover genes with
genetic alteration that have an impact on the cell phenotype (Akavia et al., 2010, provides
software at c2b2.columbia.edu/danapeerlab). However, better solutions might arise from
methods using knowledge as an a priori instead of a strict framework to work on. The
network component analysis provides a good example of using prior knowledge of gene
regulation without forcing all provided regulations as true interactions. Finally, as network
reconstruction methods showed the highest analytical value so far, methods integrating
prior knowledge in the inference step also hold great promises (e.g. a interesting study by
Setty et al., 2012 and the CoRegNet package implementing network refinement solutions
based on regulatory datasets).

http://www.bioconductor.org/packages/release/bioc/html/netresponse.html
http://sbenz.github.io/Paradigm/
http://www.bioconductor.org/packages/release/bioc/html/CoRegNet.html
http://www.bioconductor.org/packages/release/bioc/html/RTN.html
http://www.c2b2.columbia.edu/danapeerlab/html/conexic.html
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In order to identify and understand the regulatory networks and signaling pathways
driving bladder cancer, a project entitled INSight (Identification of Networks Specifically
altered during tumorigenesis) was initiated by the laboratoire d’oncologie moléculaire and
funded by the french Institut National du Cancer. It also involved two computational
teams from the ISSB (Institute of Systems and Synthetic Biology,issb.genopole.fr) and the
LIPN (Laboratoire d’Informatique de Paris Nord,lipn.univ-paris13.fr). The project aimed
at developing algorithms to infer the regulatory network of normal urothelial growth and
di↵erentiation in order to identify its disruptions leading to cancers of the urinary bladder.
Based on the resources of the INSight project and on a proteomic analysis of the proteins
participating in the signaling pathway of FGFR3, the objective of my study was twofold:

1. Develop methods to reconstruct and analyze networks by integrating context-specific
tumor profiles (transcriptomic and/or proteomic)

2. Propose and validate dysregulated and driver networks of bladder cancer
I will first present an analytical approach based on an algorithm to infer large-scale

cooperative regulatory networks termed LICORN (Elati et al., 2007). First, improvements
of the search algorithm were proposed in a joint work with the team of Céline Rouveirol at
the LIPN to increase the accuracy of LICORN on Human data. This work was published
in 2014 (Chebil et al., 2014, article available in appendix A). Using the inferred regulatory
network, I then devised a procedure to estimate the influence of transcription factors on
their target genes. I first proposed this method as a robust dimension reduction approach
for transcriptome data analysis (Nicolle, Elati, and Radvanyi, 2012, article available in
appendix B). I then designed and implemented several additional methods to both improve
the reliability of the predicted network using external data and to facilitate its analysis
through a visualization tool of the inferred transcriptional programs. Finally, I integrated
the entire pipeline, from the inference of the network to its visualization, in a Bioconductor
package termed CoRegNet. This work was submitted to the journal Bioinformatics
(article available in appendix C).

I will then describe the use of the CoRegNet package through the characterization
of the transcriptional programs of bladder cancer. This analysis showed the specific
association of the activity of distinct transcriptional programs to each bladder cancer
subtypes. The integration of transcriptional activity with genomic alteration profiles
highlighted driver transcriptional programs. This emphasized the role of PPAR� as a
driver of luminal-like bladder cancers and identified a potential driver of the basal-like
bladder cancers, FOXM1, for which I experimentally assessed the impact on cellular
proliferation.

In a third chapter, I will present my study of the networks controlling the proliferation
and di↵erentiation of normal urothelial cells and the contribution of these normal
transcriptional programs to urothelial carcinogenesis. This work illustrated the extent
to which normal regulatory programs are active and sustained during neo-plastic
transformation. Moreover, it identified two transcription factors with major role in
bladder cancer. First, a constitutively activated master regulator of proliferation for

77

http://www.issb.genopole.fr
http://lipn.univ-paris13.fr
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which I experimentally validated its impact on bladder cancer cell proliferation. Second, a
master regulator of the urothelial terminal di↵erentiation program for which we discovered
frequent mutations and a dual role in carcinogenesis of the bladder.

I will then present a novel algorithm to reconstruct protein complexes and signaling
pathways using both proteomic data from an a�nity purification followed by mass
spectrometry and a repository of protein-protein interactions. The algorithm entitled
Pepper is proposed as a Cytoscape application (apps.cytoscape.org/apps/pepper) and
was published in the journal Bioinformatics in 2014 (Winterhalter et al., 2014, article
available in appendix D).

The last chapter describes my study of the signaling pathway of FGFR3, a growth
factor receptor frequently mutated in bladder cancer. This work aimed at constructing the
entire pathway downstream of FGFR3, including the downstream transcription factors.
Based on a proteomic analysis of the protein partners of FGFR3 in a bladder cancer cell
line, Pepper was used to extend the signaling pathway and identify transcription factors
linking the signal transduction proteins to the transcriptional impact of the activation of
FGFR3.

I also included in appendix E three articles in which I was involved. In the first work
by Elati et al., 2013, I developed a multi-view classifier fusion algorithm. In the second
study by Mahmood et al., 2013, I analyzed the relationship between copy number and
gene expression in several cancers. Finally, in the work of Ho et al., 2012, I analyzed
expression patterns of a normal human urothelium transcriptomic dataset.

http://apps.cytoscape.org/apps/pepper


Chapter 1
CoRegNet: reconstruction and integrated
analysis of co-regulatory networks

1.1 Introduction

Cancer cell behavior is often sustained by aberrant molecular signaling such as those
induced by growth factors and signal transducers. By bridging cellular signaling to the
control of gene expression and ultimately cellular phenotypes, Transcription Factors (TF)
play crucial role in the maintenance of a malignant cellular state. The capabilities of
regulators of transcription to driver a cellular phenotype is well exemplified by the recent
breakthroughs in cellular reprogramming in which only several TF are needed to trans-
di↵erentiate a particular cell type (usually fibroblasts) into another (Lee and Young,
2013).

The transcriptional regulation of genes involves the cooperation of a large number of
proteins to regulate the nuclear translocation, association with DNA in particular positions
of the genome and finally transcriptional activation (Hill and Treisman, 1995; Panne,
2008). Thus, the activity of a particular TF is dependent on the availability of specific
co-factors and other regulators to define its target genes. For instance, the transduction of
Gata4 in mouse fibroblasts can lead to either cardiomyocyte or hepatocyte reprogramming
depending on its co-induction with either Tbx5-Mef2c or Hnf1a-Foxa3 respectively (Huang
et al., 2012; Ieda et al., 2010). These examples of engineered cellular phenotypes through
TF induction underline the importance of identifying the set of active co-regulators leading
to a phenotype-specific and more interestingly a disease-driving transcriptional program.
Furthermore, the potentially small number of overactive TF and their direct role in
maintaining a malignant cellular phenotype make transcriptional regulators appealing for
targeted therapies (Darnell, 2002).

Transcriptional programs and more generally transcriptional regulation is usually
modeled using gene regulatory networks composed of edges linking regulators to their
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target genes. Large-scale network models are used to gain insight into complex biological
processes (Bandyopadhyay et al., 2010; Behrends et al., 2010), identify driver pathways
of clinically relevant cancer subtypes(Dutta et al., 2012) and overall holds great promise
in the understanding of diseases (Goodarzi, Elemento, and Tavazoie, 2009) and cellular
behavior (Karr et al., 2012).

Numerous methods discussed in introductory chapter IV.3 were proposed to reconstruct,
use or characterize phenotype-related networks or network-modules. Overall, the most
successful approaches in terms of biological discovery were those that focused on context-
specific network or that aimed at characterizing sample-specific network activation
measures.

Given the importance of identifying the set of active transcription factors driving the
behavior of a particular cell, I propose a global analytical system composed of a set of
methods to a) reconstruct a context-specific large-scale regulatory network; b) estimate
the sample-specific activity of each of the TF using a novel measure of regulatory
influence; c) infer sets of cooperative regulators as part of an active transcriptional
program; d) integrate prior evidences on regulatory interactions such as TFBS (TF binding
sites) or ChIP-seq/ChIP-on-chip data; and e) identify sample- or subtype-specific active
transcriptional programs through a visualization using both a network of cooperative
regulators and TF/gene specific data such as the expression, influence and genomic
alterations when available. Each of these methods are further detailed in the following
sections.

Altogether, the goal of this network-based strategy is to ease the analysis of large-scale
gene expression data by modeling the e↵ect of master regulators on the transcriptome.
The idea is to identify the transcription factors responsible for a particular transcriptomic
state and to some extent, to a particular cellular phenotype. The identification of highly
influent and active regulators in normal and cancer samples as well as their validation on
corresponding cell lines with the most representative transcriptional programs is shown in
the next chapters.

The entire analytical pipeline is embodied in an R/Bioconductor package entitled
CoRegNet (bioconductor.org). The package is divided in three parts described in the
next sections. First, a method to infer large-scale regulatory network from transcriptomic
data is proposed to identify cooperative TF forming specific transcriptional programs.
Second, the activity of these TF is estimated sample by sample to identify sample- or
subtype-specific active sets of regulators. Third, a visualization tool is used to analyze a
given network with a given transcriptomic dataset to easily apprehend the set of active
regulators in each sample (or subtype of samples) with the possibility to easily integrate
additional data (DNA copy number alterations, TFBS. . . ).

A first version of the network inference method was presented at the IEEE International
Conference on Bioinformatics and Biomedicine in 2013 (BIBM 2013) and published in the
IEEE Transactions on NanoBioscience:
Chebil I, Nicolle R, Santini G, Rouveirol C and Elati M (2014) Hybrid Method Inference

http://www.bioconductor.org/packages/release/bioc/html/CoRegNet.html
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for the Construction of Cooperative Regulatory Network in Human. IEEE Transactions
on NanoBioscience, 13: 97-103.

The measure of transcriptional regulatory influence was presented at the 11th
International Conference on Machine Learning and Applications (ICMLA 2012):
Nicolle R, Elati M and Radvanyi F (2012) Network Transformation of Gene Expression
for Feature Extraction. IEEE 11th International Conference on Machine Learning and
Applications (ICMLA), 1: 108-113.

This work including the set of methods of the CoRegNet package and the visualization
tool has been submitted to the Bioinformatics journal of the Oxford Publishing Group.

1.2 Reconstruction of large-scale cooperative regula-
tory networks using LICORN

Network inference methods are used to reconstruct the regulatory network underlying a
particular set of transcriptomes. This task is sometimes called reverse-engineering as it
attempts to describe the regulation events which resulted in the observed transcriptome.
In the simplest cases, the regulatory events that are searched are described as a pair
composed of a Transcription Factor responsible for the variation of the expression of a
target gene. In fact, most of the available methods only try to extract these pairs (Marbach
et al., 2012b). However, our goal is not only to enumerate all the regulatory interactions
at work in a given set of samples but also to identify sets of cooperative regulators. The
inference method proposed in the CoRegNet package is based on an algorithm that
proposes to search for sets of TF regulating target genes. To do so, the package implements
an improved version of the LICORN (Learning cooperative regulation network) algorithm
(Elati et al., 2007). LICORN uses a discretized version of the transcriptomic data in which
each gene is associated to a vector of expression values gd defined in {�1, 0, 1}, respectively
under-expression, normal expression and over-expression. The discrete values are obtained
from the vectors of continuous mRNA level usually defined by microarray or RNA-seq
techniques and which is noted gc (for continuous as opposed to gd for d iscrete). LICORN
uses a frequent itemset mining approach (Agrawal, Imieliński, and Swami, 1993) to first
enumerate all putative sets of co-regulators (sets of cooperative TF) and then extract
for each gene the best sets of co-activators A and the set of co-inhibitors I. LICORN
enumerates for each genes local gene regulatory network models GRN = (A, I, g) in which
A and I are non-intersecting sets of regulators where both cannot be empty.

In the CoRegNet package, the discretization of the data is user-defined. However,
a standard threshold-based procedure is implemented for default use. As in previous
applications of LICORN (Chebil et al., 2014; Elati et al., 2007), the value of a given gene
in a given sample is set to 1 if it is above a predefined threshold, to -1 if it is below another
threshold and 0 otherwise. The simplest use of such discretization technique requires to
center the expression of each gene either on the mean of a set of reference sample when
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relevant or on the mean of each gene in all samples. In the case of a ratio with a reference
sample, a fold change can be used as a discretization threshold. Otherwise, in order to
adapt to each dataset, the default threshold is set to the standard deviation of the entire
values of gene expression resulting in a balanced discrete dataset with frequent non-zero
values for highly variable genes and a constant 15% of 1 and 0 (approximately) for all gd.

In order to identify the most plausible combinations of cooperative regulators, LICORN
introduces a scoring scheme to compare the observed expression of a gene gd to the expected
expression ĝd given the proposed GRN model. The computation of ĝd is represented in
figure 1.1. It was designed to favor the discovery of co-regulators for which the combination
is necessary for the regulation of the target gene. First, the values of the q activators in A

(q = |A|) and the p inhibitors (p = |I|) are aggregated using an extended AND logical
function which sets the value of A (or I) to 1 or -1 only if all activators (or inhibitors) have
a 1 or -1 expression value respectively, as in the following equation for a given sample:

E AND(A) =

8
><

>:

1, if 8ai 2 A : ai = 1

�1, if 8ai 2 A : ai = �1

0, otherwise

Figure 1.1: LICORN regulatory rules. The expected expression ĝd is determined for each sample
by an aggregation of the expression of its co-activators in A and co-inhibitors in I. The E AND
function aggregates the expression of co-regulators by setting to 1 or -1 only if all co-regulators are
set to 1 or -1 and 0 otherwise. The expression of co-activators and co-inhibitors is then aggregated
using a set of regulatory rules in which if on of the co-regulators is set to 0 the expression of the
other is determinant. (from Elati et al., 2007)

Given E AND(A) and E AND(I), ĝd is determined by a set of rules illustrated in
figure 1.1. Given the vectors of observed and estimated expression, each GRN models
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are then scored by the di↵erences between ĝd and gd using the Mean Absolute Error:P
|gd � ĝd|.
Using the previously described computation on discretized expression data, LICORN

is able to identify putative GRN in a time e�cient manner. The search algorithm is
specifically designed to extract sets of cooperative regulators, which together regulate the
target genes whereas each of the regulators have no e↵ect individually. The major drawback
is that since the data is discretized in three values, a large number of possible GRN will end
up with the same best score. For instance, on a bladder cancer transcriptomic experiment
(Stransky et al., 2006), LICORN identifies a mean of 45 GRN per gene that have the best
score (minimum Mean Absolute Error). Figure 1.2 shows the distribution of the number
of best GRN gene showing that many putative GRN cannot be di↵erentiated solely based
on the discretized expression data.

Distribution of number of best GRN per gene

Number of GRN proposed by LICORN with the best discrete score
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Figure 1.2: LICORN identifies many putative GRN with identical scores. For each gene in
a transcriptomic dataset, the 100 best GRN were extracted using LICORN and the number of
GRN with the best score was kept. This histogram represents the distribution of the number of
best GRN per gene.

Transcription Factors

At this point, it is important to note what are here referred to as transcription factors. As
discussed in the following sections, the large-scale regulatory network is inferred using a
set of genes in the transcriptomic data that identified as Transcription Factors. The set of
transcription factor used by the methods of the CoRegNet package and throughout the
following studies is defined mostly as proteins that have been described to have a direct
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role in the regulation of transcription although not necessarily mediated by DNA binding.
The list of 1,988 transcriptional regulators from the FANTOM consortium (Ravasi et al.,
2010) was used as a reference from which Histone proteins were removed and to which
missing TF found in the TRANSFAC database (Matys et al., 2006) were added. These
added TF were mostly from the Krüppel-like family of transcription factors, zinc-fingers
and zinc-fingers SCAN domain containing families of genes. This resulted in a list of 2,020
genes encoding for proteins which have a role in transcriptional regulation. This list in
fact includes many protein that do not bind to DNA to activate downstream gene loci.
Many transcriptional co-factors, such as transcription-involved DNA topoisomerase (e.g.
TOP2B) or enhancers of transcription factors (e.g. TP53BP1 ), are included in the list.

1.3 Hybrid-LICORN

A three value discretization of the expression dataset allows to easily encode and search
for cooperative regulation models. However, it does not allow to di↵erentiate between
several proposed models and overall induces a loss of information during the discretization
process. To overcome this, each local GRN models are tested in the space of continuous
gene expression values by fitting a linear model using all co-regulators in A and I as
predictor variables and the target gene g as the response.

We first proposed this approach in collaboration with Ines Chebil as a novel hybrid
algorithm of network inference using both the discretized and continuous space of gene
expression. The published article is available in appendix A. The objective of the original
method entitled h-Licorn (hybrid LICORN, Chebil et al., 2014) was to select pairs of
TF-gene in order to compare the performances of the algorithm to other methods in
predicting correct regulatory interactions. For each GRN proposed by LICORN, a linear
model is used to estimate the expression of the target as follow:

ĝc = � +
q+pX

i=1

↵i ⇤ ri

with q the number of co-activators q = |A|, p the number of co-inhibitors p = |I| and ri

belonging to the set of regulators ri 2 A [ I. Here ĝc is used as opposed to ĝd to denote
that it is an estimate of the continuous expression of g.

In this classical setting of linear regression the target gene expression is the response
variable and the explanatory variables are the p co-activators and the q co-inhibitors.
The parameters ↵ and � are estimated using the Ordinary Least Squares method. In a
bootstrapped setting, the ↵ are then used to weight the confidence of the method in the
prediction of a regulatory link between a regulator and a target gene.

The performance of h-Licorn was tested on in silico dataset of the 5th DREAM
challenge (the-dream-project.org, Marbach et al., 2012b). In this project the set of
regulatory interactions are considered as known and the provided gold standard can be

http://www.the-dream-project.org
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Performance measure
Most measures of prediction performance are based on four terms representing
counts of correct and wrong predictions similar to the type 1 and type 2
errors in statistics. These require the predictions of the tested algorithm
to be assigned classes (instead of weights, scores or probabilities). These
are based on the comparison of the set of instances predicted as positive
or negative and the true class of each of these instances and are defined as follow :

TP True Positive is the number of instances predicted as positive and that are
positive
TN True Negative is the number of instances predicted as negative that are
negative
FP False Positive is the number of instances predicted as positive that are
negative
FN False Negative is the number of instances predicted as negative that are
positive

Based on these four measures, a number of metrics are often used to estimate
the overall performances and are defined as follow :

Recall or TPR (True Positive Rate) TP
TP+FN

Precision TP
TP+FP

FPR (False Positive Rate) FP
FP+TN

A last type of performance measure requires the predictions to be scored
(probabilities for instance). By sliding the decision threshold on these scores
from the lowest to highest values, some metrics are computed at each step
and their distributions are analyzed. Two plots are often used to visualize the
performance of a prediction algorithm.

ROC The Receiver Operating Characteristic curve plots all TPR and FPR
values computed at each variations of the decision threshold
PR Similar computation for the Precision Recall curve

Both of these curves can be used to graphically represent the performances but
the area under these curves is also a broadly used measure of performance. The
AUC, the area under the ROC curve, relates to the wilcoxon signed and ranked
test. The AUPR, area under the PR curve, is better suited in cases in which the
class distribution is skewed (i.e. far more negative instances than positive).

Figure 1.3: Box : classification performance measures.
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used to calculate the prediction error and estimate the performance of proposed algorithms.
The measures of performance of binary classification are used here and briefly explained
in the Box 1.3 Performance measure.
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Figure 1.4: Hybrid-LICORN performance. The ROC and PR curve are plotted using the
prediction of the ARACNE (Margolin et al., 2006a), GENIE3 (Huynh-Thu et al., 2010) and the
proposed h-Licorn (Chebil et al., 2014) algorithms on the DREAM5 in silico dataset (Marbach
et al., 2012b). (from Chebil et al., 2014)

The ROC and PR curves on this dataset are represented in figure 1.4. Along with
h-Licorn, two algorithms were tested, the winner of the DREAM5 challenge GENIE3
(Huynh-Thu et al., 2010), which is based on the Random Forest machine learning method
(Breiman, 2001) and ARACNE (Margolin et al., 2006a), which is based on Mutual
Information and was applied successfully to resolve original biological and clinical problems
(Aytes et al., 2014; Lefebvre et al., 2010).

In an in silico setting, the performances of h-Licorn are comparable to those of
GENIE3, a state of the art network inference method (Marbach et al., 2012b). We also
showed that h-Licorn is more robust to sub-sampling and therefore more e�cient in
experimental settings in which only a small number of samples are available (Chebil et al.,
2014).
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TFBS
n interactions Random GENIE3 ARACNE h-LICORN
50 6.3 2 3 10 .
100 12.7 8 4 14
500 63.4 57 27 49
1000 126.8 109 81 107
5000 634.1 556 587 565
10000 1268.2 1138 1286 1200
50000 6341 6086 6534 ** 6769 ***

ChIP
n interactions Random GENIE3 ARACNE h-LICORN
50 3.1 6 . 1 9 **
100 6.2 11 * 1 17 ***
500 31 44 * 20 64 ***
1000 61.9 80 * 49 108 ***
5000 309.7 395 *** 343 * 417 ***
10000 619.3 761 *** 762 *** 819 ***
50000 3096.6 3380 *** 3482 *** 3787 ***

Figure 1.5: ChIP and TFBS supported inferred regulatory interaction. Significance code
(Fisher’s test) : p < 0.1., p < 0.05⇤, p < 0.01⇤⇤, p < 0.001⇤⇤⇤ and no symbol for p � 0.1 . (from
Chebil et al., 2014)

Beyond pure in silico performances, the same algorithms were also tested on human
transcriptomics and against real regulatory evidences. This comparison was carried out on
a bladder cancer data set (Stransky et al., 2006) and the inferred regulatory networks were
compared to the sets of genes bounded by TFs based on a TFBS promoter scanning and
ChIP-on-chip datasets from the TRANSFAC database (Matys et al., 2006). As discussed
in section IV.2, these datasets are mainly unreliable on their own (see their low overlap
in figure IV.17 of the introduction section). This is mostly explained by the non-context-
specificity of TFBS and more generally by the fact that TF binding does not systematically
imply gene regulation. Therefore, the comparison of the algorithms is done by computing
the enrichment of the inferred regulatory links in corresponding TFBS or ChIP data. The
number of TFBS or ChIP defined interactions, hereafter referred to as regulatory evidences,
found among the n best regulatory interactions of GENIE3 (Huynh-Thu et al., 2010),
ARACNE (Margolin et al., 2006a) and of h-Licorn (Chebil et al., 2014) are reported in
figure 1.5. h-Licorn is more e�cient in retrieving regulatory interactions supported by
predicted (TFBS) or experimentally observed TF binding. Interestingly, as the network
gets larger, ARACNE performs well suggesting that the links with the highest Mutual



88 CHAPTER 1. ACTIVE TRANSCRIPTIONAL PROGRAMS

Information score are not necessarily more relevant yet the algorithm is suitable for higher
eukaryotes. GENIE3 predicted regulatory interactions correspond to ChIP evidences
yet are as enriched in TFBS than randomly picked interactions. However, our proposed
algorithm h-Licorn is both enriched in TFBS and ChIP supported evidences. Overall,
this work suggests that a hybrid method using both a discretized and continuous gene
expression dataset is relevant in the context of regulatory network inference.

The CoRegNet package implements a bootstrapped version of h-Licorn. However,
the goal is to select sets of co-activators and co-inhibitors to identify transcriptional
programs, the linear model is used to select relevant GRN instead of TF-gene pairs. To
do so, interaction are added to the linear model and the mean adjusted coe�cient of
determination over 100 bootstrap iteration is used to score a GRN . The linear model is
the following:

ĝc = � +
q+pX

j=1

↵j ⇤ rj + ↵a

qY

k=1

ak + ↵i

pY

l=1

il

in which regulators rj 2 A [ I, activators ak 2 A, inhibitors il 2 I and the product of
expression of the set of co-activators and co-inhibitors is used to model the interaction
between these co-regulators.

The adjusted coe�cient of determination used to score each GRN and noted R̄

2 is
computed as follow:

R̄

2 = 1 � V ARerr

V ARtot

with V ARerr =

P
(gc � ĝc)2

n � q � p � 1
and V ARtot =

P
(gc � ḡ)2

n � 1

Given all these described calculations, the network inference process proposed in the
CoRegNet package runs as follow. The LICORN search algorithm is used on a discretized
version of the transcriptomic data. In order to ensure the diversity of extracted GRN and
based on the observation that for at least 99% of genes, the first 100 GRN contain all
the best possible GRN (see figure 1.2), the 100 first GRN are selected using the Mean
Absolute Error for each gene. The linear model is then fitted on a set of samples drawn
randomly with replacements and the adjusted coe�cient of determination (R̄2, see previous
equation) is computed. This bootstrap procedure is repeated 100 times and the values of
the R̄

2 are averaged. This results in a robust evaluation in the original continuous gene
expression data of all the GRN extracted by the original LICORN. This score is then be
used to select the most relevant GRN per gene.
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1.4 Regulatory influence

In order to identify the transcriptional programs that are active in a sample or a set of
samples of interest, a new measure of Transcription Factor activity (TFA) is devised. This
work was originally presented at the 11th International Conference on Machine Learning
and Applications and the associated published article is in appendix B.

The proposed method aims at estimating the influence of a transcription factor on it’s
target genes. It simply measures the di↵erence between the activated and repressed target
genes of a TF. Figure 1.6 shows an example of the expression of the targets of a given TF
in a given sample in which it is expected to be highly active.
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Figure 2: Distribution of the expression of the targets of FOXA1 in a given
tumor. FOXA1 has 54 activated (red long dashed line) and 65 repressed targets
(light blue dotted-dashed line).

was first applied on random subsets of samples. The sub-sampling procedure
is carried out as follow. Given a data set with m samples, Ns sub-samples
of size 0.9 ⇥ m are drawn randomly and used to train a shrunken centroid
classifier and it’s associated set of selected features fi with i = 1, 2, · · · , Ns.
The Area Under Curve (AUC) was computed in each sampling iteration on the
predictions of the remaining 10% of the samples. The AUC is widely used in
the machine learning field to measure the accuracy of a classification method
by testing how well the two classes are separated. An AUC of 1 represents a
perfect classification and an AUC of 0.5 is obtained by random classification.
Figure 4 presents the distribution of the AUC of the classification based on
the expression, the regulatory influence and on a regulatory influences obtained
by 10 di�erent random regulatory networks. In this subsampling procedure,
the prediction accuracy was independent of the number of selected features,
therefore the results are presented for all sizes of features.

The accuracy of prediction is very similar between classifier trained on gene
expression or regulatory influences. Although the influence data set has a re-
duced number of features, it contains enough information to accurately classify
samples. Furthermore, the poor accuracy of models based on random regulatory
influences shows the importance of context specific network.

Although classification accuracy is an important feature, it has been pre-
viously shown that good accuracy can be obtained with a classifier based on
randomly selected features in gene expression [3]. Thus, the ability of a method
to select the same features after perturbing the data set, defined as the stability,
is a determinant factor. The stability was estimated by measuring the average

7

Figure 1.6: Expression of FOXA1 target genes. Example of distribution of the centered (non
scaled) expression of FOXA1 target genes in a bladder cancer sample. Targets were inferred from
a bladder cancer data set (Stransky et al., 2006).

Transcription Factor Activity is calculated for a single TF in a single sample and is

based on Welch’s t statistics, computed as follow:
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with X̄ the mean and s

2 the variance of expression of the target genes, n their number,
and the subscripts a or i for the activated and inhibited targets respectively. This measure
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is only computed for TF with a minimum number of both activated and repressed targets
in the provided network (set to 10 by default in CoRegNet).

The computation of this measure for all TF of a provided large-scale regulatory network
and in all samples of a transcriptomic dataset results in a new dataset with the same
number of sample but a highly reduced number of features dropping from several thousands
of gene expression measures to usually several hundreds of TF influence measures.

The first use of this new view over transcriptomic data was feature extraction. This
relates to feature selection, that is, the selection of a set of genes with relevant expression
patterns to discriminate two types of samples. Feature extraction only di↵ers in the fact
that it aims at selecting transformed versions of features, principal components from PCA
or transcription factor activities for instance. The set of selected genes is usually termed
Gene Expression Signature, in the case of feature selection. In terms of predictability, GES
hold acceptable performance (Haury, Gestraud, and Vert, 2011). However, they usually
perform as well as a random list of genes and GES designed to predict the same prognostic
feature can be very di↵erent in terms of gene content (Fan et al., 2006). This instability
questions the biological relevance of the selected features and challenges the field for more
reliable models.

In the published paper, I showed that using the influence to classify muscle-invasive
bladder cancers has similar prediction performances than using the original gene expression
dataset. More importantly, the reproducibility of feature selection was much higher. Gene
Expression signatures were constructed using the shrunken centroid method (Tibshirani
et al., 2002). The overlap between the signatures built in two di↵erent datasets were
compared using the Kuncheva stability measure (Kuncheva, 2007) which corrects for the
number of selected features as follow:

stability =
2
Pi=1

Ns

Pj=i+1
Ns

F (fi, fj)

Ns(Ns � 1)

The Kuncheva stability of the features selected in two bladder cancer datasets (Dyrskjøt
et al., 2004; Stransky et al., 2006) are reported in figure 1.7.

Overall, the transformation of gene expression into a higher-level transcription factor
influence is more representative of the cellular state. Therefore, using this network-
transformation of transcriptomes, the analysis of two distinct datasets of the same type of
samples, here bladder cancers, is more reliable.

Other methods were previously proposed to estimate transcription factor activity using
a large scale regulatory network and a set of transcriptome profiles. These methods are
discussed in the introductory section IV and are based on linear models. The CoRegNet
package aims at inferring active TFs based on an inferred network, which often contains
a large number of false regulatory interactions (Marbach et al., 2012b). Therefore, these
algorithms must be able to estimate TFA using noisy networks. TFA was computed using:
the influence method embedded in the CoRegNet package, the ROBNCA (Noor et al.,
2013) algorithm (a newer and more robust version of the original Network Component
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Figure 1.7: Stability of expression and influence signatures. Plots of the Kuncheva stability
measures for signatures built on the gene expression, the TF influence and the TF expression.
The measure is computed for an increasing number of selected features. (adapted from Nicolle,
Elati, and Radvanyi, 2012)

Analysis) and a PLS (Partial Least Square) based method (Boulesteix and Strimmer, 2005).
The TFA was computed on the CIT bladder cancer dataset (CIT : ”Carte d’Identité des
Tumeurs”, a french initiative for tumor profiling) using a network inferred by CoRegNet
on the same data and following the addition of noise in the network. This noise is added
by permuting the targets of each TF in the network in order to preserve the topology. To
compare the influence to the two other TFA methods in terms of robustness to noise, the
correlation between the original TFA with the noisy TFA was computed and is reported
in the top left panel of figure 1.8 in which the overall noise-resistance process (network
permutation, TFA computation and correlation to original TFA) was repeated 10 times.
To further compare these methods, the original TFA of all TF in the network for which
TFBS or public ChIP-seq data is available was correlated to the TFA computed using
only the targets genes with corresponding regulatory evidences. The distribution of the
correlation between the original TFA and the validated TFA is reported in the top right
panel of figure 1.8.

Finally, the three TFA methods were tested on a dataset in which the activation
status of the PPAR� TF is known. In essence, urothelial cells were cultivated with a
PPAR� agonist (Roziglitazone) in combination with the PD153035 EGFR inhibitor to
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Noise Influence ROBNCA PLS
5% 0.99 0.92 0.93
10% 0.98 0.86 0.91
20% 0.97 0.75 0.54

Evidences Influence ROBNCA PLS
ChEA 0.96 0.51 0.49

ENCODE 0.97 0.72 0.67
TFBS 0.93 0.42 0.19

Figure 1.8: Comparison of Transcription factor activity measures. Top left panel: Pearson
correlation of all TF activities in all samples with the activity computed on the same data using a
network in which noise was added. Top right panel: Pearson correlation of all TF activities in all
samples with the activity computed on the same data using a network containing only interactions
found in the CHEA2 (Kou et al., 2013) and ENCODE (Gerstein et al., 2012) ChIP-seq data
as well as on the interaction identified by scanning gene promoters with TFBS mostly from the
HOCOMOCO (Kulakovskiy et al., 2012) and JASPAR (Portales-Casamar et al., 2009) databases.
Bottom tables : average correlations between TFA computed using the original and modified
network.

prevent an EGFR-dependent phosphorylation and inhibition of PPAR� (Böck et al.,
2014; Varley et al., 2008). The cells were sampled at various time after the activation
of PPAR� resulting in a small time series (6 hours, 24 hours, 3 days and 6 days). In
this experimental setting, PPAR� exhibits null-to-weak activation at confluence (starting
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at day 3) in non-treated cells, a modest activation as soon as 6 hours and to reach full
transcriptional activation at 24 hours and maintain this state in treated cells. Based on
these transcriptomes, the activity of PPAR� was computed using the three tested methods,
including the influence of the CoRegNet package. The result is shown in figure 1.9.

The influence measure is concordant with the expected state of PPAR� activity whereas
the ROBNCA method does not detect PPAR� activation at 24 hours nor a small increase
at confluence in non-treated cells. The PLS-based measure of TFA shows less di↵erence
between the two types of cultures (treated and non-treated), especially at day 6.

1.5 Transcriptional programs

Transcription factors have a major role in determining cellular phenotype and behavior.
The joint activation of a set of specific master regulators can greatly alter the cell and
reprogram it’s function (Lee and Young, 2013). Interestingly, most of cell reprogramming
experiments require a combination of TF to be simultaneously induced. For instance,
the Estrogen Receptor ↵ (ESR1 ) is a major driver of Estrogen dependent breast cancer
cells. The driver function of ESR1 was shown to necessitate the presence of two major
co-regulators, GATA3 and FOXA1 (Kong et al., 2011). As shown in this study of the ESR1
program in breast cancer and by the combined action of TF in cell reprogramming in general
(reviewed in Lee and Young, 2013), regulator cooperation is key to the understanding
and modeling of transcriptional programs. While transcriptional co-regulation is clearly
modeled at the level of a few extensively studied promoters (Panne, 2008), cell-wide and
context specific co-regulatory networks are still di�cult to reconstruct. In an attempt to
resolve combinatorial TF activity, the FANTOM consortium enumerated the direct physical
interactions between the products of the cDNA encoding human TF using a Mammalian-
2-Hybrid (similar to Yeast-2-Hybrid with mammalian cells) systematic screening (Ravasi
et al., 2010). This study brought simple yet interesting insight into the link between TF
interactions and cell fate. More importantly it provides a basis for general human TF
co-regulation as cooperation is partly driven by TF protein interaction although these are
described in an unspecific cellular context.

In order to identify context-specific transcriptional programs, the CoRegNet package
uses the Hybrid LICORN algorithm to extract for each gene the sets of co-regulators
previously termed local GRN. The idea is to directly extract the sets of regulators that
are together necessary for the regulation of their target genes and thereby identifying
global cooperative regulators in a set of transcriptomic profiles. All pairs of regulators
that were found by h-Licorn to be co-activators or co-inhibitors of at least one gene
are considered as potential co-regulators in the studied context. Then, only those pairs
that have a significant overlap of target genes using Fisher’s exact test are predicted as
co-regulators (with a 1% FDR control).

In order to verify the proposed algorithm, the pairs of co-regulators predicted by the



94 CHAPTER 1. ACTIVE TRANSCRIPTIONAL PROGRAMS

Figure 1.9: PPAR� predicted activity. Transcription factor activity predicted at 4 time points
in a set of sample with PPAR� treatment and in untreated samples. Each time points contain
3 to 4 replicates. In this experimental setting, PPAR� is thought to exhibit no activation
without treatment in the first days with a minimal activation at confluence (from day 3). A
modest activation is observed in as soon as 6 hours in treated cells and is thought to reach full
transcriptional activation at 24 hours and maintain this state.

CoRegNet package are compared to the pairs of TF with significant regulon overlap
(intersection between sets of target gene) using the RTN package. This package implements
the ARACNE algorithm (Margolin et al., 2006a) and was previously used to identify what
is called Transcriptional Modules which aims at describing the sets of TF involved in the
same transcriptional programs (Fletcher et al., 2013). Only significant pairs of TF identified
by the RTN package were considered as co-regulators using the same statistical selection
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(Fisher’s test and multiple hypothesis testing correction). The enrichment of both of these
inferred co-regulator networks in real protein-protein interaction is reported in table 1.10.
These results show that the CoRegNet-inferred co-regulators better correspond to real
protein interactions between TF.

Unfiltered regulatory networks

Algorithm Dataset FANTOM HIPPIE HPRD STRING
CoRegNet

CIT
2.43 2.6 2.75 3.75

RTN 1.44 1.49 1.5 1.8
CoRegNet

TCGA
1.26 † 1.37 1.34 1.82

RTN 1.32 1.28 1.4 1.55

Refined regulatory networks

Algorithm Dataset FANTOM HIPPIE HPRD STRING
CoRegNet

CIT
3.32 3.36 3.45 5.32

RTN 2.03 1.98 2.31 3.23
CoRegNet

TCGA
3.2 † 3.16 3.67 † 5.13

RTN 1.9 1.56 1.83 3.42

Figure 1.10: Co-regulation enriched in protein interaction. Table of enrichment, computed
as Odds Ratio, of Protein-Protein interactions found among inferred TF-TF cooperation. The
co-regulators were identified by the CoRegNet package using either the network inference
algorithm h-Licorn internal to the package or the ARACNE algorithm (Margolin et al., 2006a)
implemented in the bioconductor package RTN (Fletcher et al., 2013). The top table contains the
Odds Ratio for the entire regulatory network inferred with either algorithm. The bottom table
contains filtered network using the refine function of the CoRegNet package (selecting the best
GRN per gene based on the adjusted coe�cient of determination) or using the Data Processing
Inequality for the RTN package (Margolin et al., 2006a). The inferred pairs of co-regulators were
compared to the pairs of TF with protein interactions referenced in four studies: the FANTOM
screen for combinatorial TF (Ravasi et al., 2010), the HIPPIE (Schaefer et al., 2012), HPRD
(Keshava Prasad et al., 2009) and STRING (Franceschini et al., 2012) protein interaction
databases. All enrichment are significant (Fisher’s exact test ↵ = 10%) except the Odds Ratio
marked with †.

In order to further investigate the performance of both type of co-regulator predictions,
inferred pairs were ordered by the number of shared targets for the RTN package and
by the number of shared GRN for the CoRegNet package. This score was used to
draw the Precision Recall curve (see box 1.3 listing classification performance analysis
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measures) which is shown in figure 1.11. The precision and recall were computed using
the protein interactions found in the STRING database (Franceschini et al., 2012) as
ground truth. It is to be noted that STRING references experimentally identified protein
interactions as well as predicted interactions based on several type of protein analysis such
as phylogeny-based or literature mining. Therefore, STRING is considered as referencing
highly relevant functional relationships, which have been previously used for biological
predictions of operon for instance (Taboada, Verde, and Merino, 2010).

Figure 1.11: Precision Recall curve of TF interaction predictions. The area under the PR curve
is of approximately 0.14 and 0.5 for the co-regulators predicted using the regulatory inference
method of the CoRegNet and RTN package respectively.

The h-Licorn algorithm implemented in the CoRegNet package extracts sets of
cooperative regulators instead of simple TF-gene pairs. By directly identifying functional
regulatory sets of TF, the methods implemented in the CoRegNet package have overall
higher performances in identifying relevant co-regulators to build a context-specific co-
regulation network of functionally related TF.

1.6 Integration of regulatory evidence

In order to obtain a trustful regulatory network, additional data can be integrated to the
fully inferred network. The data is in the form of regulatory (TF-gene) and co-regulatory
interactions (TF-TF) and is used to support the predictions of h-Licorn. More specifically,
these supporting regulatory evidences are used two ways, first to refine the predicted
network and second to validate the measure of transcription factor influence by computing
the activity of TF using only targets which are validated by external data. The validation
of TF influence is quite simple. Basically, the influence is recomputed by using for each
TF only the target genes that were also found in one of the regulatory evidence database
(for instance, all genes with a binding site of the TF in their promoter).
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The following section detail the origin of the regulation data as well as the way these
can be used to refine an inferred network.

Origin of the regulatory evidence data

The additional regulatory evidences originated from several sources.
The ENCODE project aims at identifying and describing the regulatory DNA-elements

of the Human genome. To do so, the consortium performs a large number of ChIP-seq
experiments using TF-directed antibodies (Gerstein et al., 2012). The ENCODE ChIP-seq
data was recovered from the UCSC genome browser (Human hg19 February 2009 genome
assembly) by selecting all narrow ChIP-seq peak (ENCODE chip V3) within -5000 bp
to 2000 bp around a Transcription Start Site of a gene with a non-null Human genome
organization Gene Nomenclature Committee (HGNC, genenames.org) symbol.

In addition to this, the ChIP-seq and ChIP-on-chip from previously published studies
are available through the ChEA2 database which aggregates and processes published ChIP
data (Kou et al., 2013).

Transcription Factor Binding Sites (TFBS) models in the form of Position Weight
Matrices (PWM) were recovered through the MotifDB R/Bioconductor package which
references models from several studies (Jolma et al., 2013; Portales-Casamar et al., 2009;
Xie et al., 2010). This was complemented by the HOCOMOCO database of human TFBS
(Kulakovskiy et al., 2012). When several models were available for the same Transcription
Factor (TF), the PWM with the highest Information Content (in bits) was kept. The
promoter sequences (using the same coordinate that were used for the ENCODE ChIP-seq)
were scanned for these sequences using the PWMEnrich R/Bioconductor package.

Protein-Protein Interactions (PPI) were downloaded from several databases such as:
HIPPIE (Schaefer et al., 2012), STRING (Franceschini et al., 2012), HPRD (Keshava
Prasad et al., 2009) as well as from the FANTOM study of TF physical interaction through
Mammalian-2-Hybrid assays (Ravasi et al., 2010).

Regulatory network refinement

In order to refine large-scale regulatory networks using external regulatory interactions, the
CoRegNet package implements functions introduced by the modENCODE consortium
(Marbach et al., 2012a) and applies them to the selection of local GRN models.

In essence, the goal is to score each GRN (each interactions in the original method)
using both the transcriptomic data and the integrated evidences to select the set of best
GRN models. Each GRN is scored by each of the integrated dataset. The transcriptomic
data used to infer the network scores GRN by the adjusted coe�cient of determination
provided by h-Licorn and noted R̄

2. The regulatory evidences score each GRN by
the proportion of predicted interactions found in the integrated data. The number of
intersecting interactions in a given GRN is divided by the total number of predicted

http://www.genenames.org
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interactions (|A| + |I|). For cooperative evidences (TF-TF) such as protein interactions,
all possible pairs of activators ( |A|⇥(|A|�1)

2 ) are compared to the pairs of TF found in the
data and similarly for inhibitors.

Following this, to each GRN is associated as many scores as their are integrated
regulatory datasets all which range from O to 1, plus the network inference R̄

2 score,
which is defined on [�1, 1] although most values are non-negative. The original study
(Marbach et al., 2012a) proposes two approaches to merge the scores, an unsupervised
and a supervised approach. While both are implemented in the CoRegNet package, the
unsupervised approach is preferred as it was shown to have better performances in the
original study. It is simply an unweighted average of each of the scores.

Finally, for each gene, the GRN with the maximum merged score is selected. Figure
1.12 shows the enrichment in five di↵erent regulatory evidence datasets (ChIP data were
merged) of networks refined using various evidence datasets.

Regulatory networks
Enriched datasets Raw Refined ChIP TFBS Regulation All
TFBS 0.95 † 1.16 1.38 1.15 5.94 2.28
ChIP 1.12 1.03 † 9.68 11.69 8.07 2.56
Hippie 2.51 2.46 3.47 3.7 3.57 17.76
Fantom 2.43 3.53 2.82 † 4.07 2.85 † 20.22
STRING 3.75 5.36 5.23 6.10 5.15 57.9

Figure 1.12: Enrichment of the refined network. Table of enrichment, computed as Odds Ratio,
of known interactions in a predicted network. Each column corresponds to (in same order) the
original network, refined using only the score of h-Licorn (R̄2), using the ChIP and the TFBS
data, the merge of both regulatory interactions (ChIP and TFBS) or the entire set of evidences
listed in the first column (noted All). Each line corresponds to the dataset used to test the
enrichment. All enrichments are significant (Fisher’s exact test ↵ = 5%) except the Odds Ratio
marked with †.

As expected, except for TFBS, the integration of a given dataset increases the chances
of finding an interaction from the corresponding dataset. Interestingly, the integration of
TFBS does not increase the chance of finding a TFBS among the predicted interaction.
However, it increase the number of corresponding ChIP interactions. This is in part due
to the fact that these datasets are only available for widely studied TF. Therefore, GRN

containing these TF are more likely to have higher scores whereas less studied TF will less
often be selected. Overall, while these results tend to indicate that the resulting network
is more reliable, it introduces a bias towards well-studied TF.
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1.7 Visualization of transcriptional programs

Transcriptomic measurements usually contain thousands of features, gene expression levels,
for each sample. The high number of dimensions makes analysis and direct visualization of
transciptomes di�cult to perceive. One of the objective of the measure of transcriptional
influence is to summarize changes in the expression of several genes by the activity of
their common regulators. This abstraction of the expression of thousands of genes into the
activity of only several hundreds of transcription factor can be used to visualize the entire
dataset in a reduced and as expressive view of the samples. Since the regulation of sets
of genes is usually the result of a coordinated action of several transcription factors, the
co-regulation network built from the pairs of cooperative TF can be viewed as a blueprint
of transcriptional programs composed of sets of co-regulators, which can be activated
together to maintain a particular phenotype.

Based on this, an interactive visualization tool is embedded in the CoRegNet package
to analyze several layers of information, including transcription factor influence, through
the co-regulation network. Figure 1.13 shows snapshots of the visualization application to
illustrate its use and capabilities.

The visualization tool of the CoRegNet package is based on a shiny application
(shiny.rstudio.com) with a Cytoscape javascript widget. The widgets in the shiny webpage
can trigger R functions thereby resulting in an interactive application.

http://shiny.rstudio.com
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Figure 1.13: Visualization application of the CoRegNet package. The main page of the
application is divided in three parts. The control part can be used to select sample subtypes,
modify the cooperative threshold or search for a TF in the network. The network part is an
interactive widget in which node color reflects the activity of the TF in the selected sample(s).
When Copy Number Aberration data is available, nodes are pie charts representing the proportion
of the status of the TF (gain, loss, . . . ) in all samples or in the selected sample(s). The plotting
part displays either a heatmap of TF influence with all TF or only the TF selected in the network,
or it can display data related to the single TF selected in the network. The representation of the
data related to a single TF is represented as a multi-layer heatmap with sample related features
which can include sample classification, TF copy number status, TF expression, TF influence
and the expression of the activated and repressed genes.
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1.8 Discussion

Being among the most e↵ective pharmacological treatments of cancer, targeted therapy
aims at blocking the activity of growth driving molecules and pathways. The success
of such clinical approaches mainly relies on our capability to assess the influence of the
targeted pathways on the growth of the tumor. Given that regulation of gene expression
is the final e↵ect of signaling pathway activation and that transcriptome measures are yet
more e↵ective than proteomics, mRNA signature is a compelling tool to predict response
to therapy (Bild et al., 2006).

As a first step towards the prediction of signaling pathway activity, this chapter presents
a novel approach termed CoRegNet to model the transcriptional programs driving a
particular cellular behavior. The idea behind this package is to take advantage of the
advances in network inference methods to reconstruct large-scale context-specific gene
regulatory models and use these to highlight the combination of active transcription factors.
CoRegNet proposes a new inference algorithm, hybrid LICORN, which is particularly
suited to identify sets of cooperative regulators thereby forming building blocks to the
identification of transcriptional programs. In order to identify the most active regulators
in a particular sample, a novel method for Transcription Factor Activity prediction is
embedded in the package. This measure of TF influence is particularly suited to cope with
a recurrent problem found in inferred networks, the lack of reliability of single regulatory
interactions.

Several large consortium, such as ENCODE and FANTOM, were formed worldwide
with the intent to experimentally identify the entire regulatory functions of the human
genome and the function of all regulatory molecules, including non-coding RNA, chromatin
modifiers and transcription factors. While these projects are far from achieving their
goal of modeling the entire human cell regulatory systems, they provide large amounts of
data. The main di�culty of using such knowledge originates from the lack of consistency
between the information obtained in di↵erent though similar cellular systems, thereby
highlighting the importance of context-dependency. Indeed, the regulatory information
uncovered by these large-scale experiments are specific to the cellular systems used by the
consortium and therefore do not necessarily apply in other circumstances.

The CoRegNet package implements methods to integrate the large amount of
regulatory knowledge produced by such projects. The idea is that the integration of highly
context-specific data, the transcriptome, and objective-specific data, regulatory-related
knowledge will produce more realistic and e↵ective models of the regulation at work in
the studied samples.

Finally, the complexity of the models proposed by the CoRegNet package or by
any other network-related method necessitates tools to analyze them. In this work, the
reduction of transcriptomic variations to the activity of upstream regulators as well as
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the construction of a cooperative TF network allowed to propose a visualization tool
embedding all the produced information.

Overall, the CoRegNet package is meant to be the basis of a set of tools to model
and analyze active transcriptional programs and signaling pathways in a sample-specific
manner. Further improvements are now in development among which: a. the inference
algorithm, using more e�cient models of the cooperativity of transcriptional factors based
on novel constraints of the LASSO algorithm b. the network analysis methods, using factor
graphs to consider simultaneously the influence of all transcription factors on all target
genes and c. the visualization tool, using more advanced network visualization tools and
methods to quickly identify and visualize the data corresponding to a set of co-regulators.
Moreover, while the methods are here focused on the transcriptional regulation component
of pathways, an algorithm is proposed in chapter 4 to identify proteins taking part in the
signal transduction part of pathways and chapter 5 presents a complete analysis linking
both signaling pathway and transcriptional programs.



Chapter 2
Transcriptional Programs driving bladder
cancer

2.1 Introduction

Several studies recently proposed a molecular classification of bladder cancer with the
consensus discovery of two main subtypes (Cancer Genome Atlas Network, 2014; Choi et al.,
2014; Damrauer et al., 2014; Rebouissou et al., 2014; Sjodahl et al., 2012). The luminal-
like bladder cancer subtype shows high level of terminal di↵erentiation markers such as
uroplakins and includes most FGFR3 -mutated tumors. The other reproducibly identified
subtype is designated as basal-like. It expresses basal markers, includes tumors with
squamous histology and is likely to be sensitive to EGFR-targeted therapies (Rebouissou
et al., 2014).

In this work, I propose a network analysis and a model of the transcriptional programs
driving bladder cancer subtypes. Using the CoRegNet package, a bladder cancer
regulation network is constructed from the CIT dataset (Carte d’Identité des Tumeurs,
from the French National Cancer League) containing 179 primary bladder tumor samples
and 4 normal samples (Rebouissou et al., 2014). The active transcriptional programs of each
of these samples and of the available urothelial cell lines are extracted using a method to
estimate TF activities and a network of cooperative regulators. The muscle-invasive tumors
of the same cohort were used to distinguish transcriptional programs driven by genomic
alterations and identified PPAR� as a driver of the luminal-like subtype. Functional
validation and knockdown transcriptomic profiles determined an aberrant PPAR�-driven
activation of the highly energetic beta-oxidation pathway.

103
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2.2 Bladder cancer subtype specific transcription
factor influence

The TCGA consortium recently released a classification of muscle-invasive bladder cancer
describing four sub-types (Cancer Genome Atlas Network, 2014). Two tumor subtypes
were particularly discussed and well described: a highly di↵erentiated class of tumors
with frequent papillary histology termed luminal-like and a basal-like subtype of poorly
di↵erentiated tumors enriched in characteristic squamous tumors. This classification was
applied to the CIT dataset and the most active transcription factors of each of these
subtypes were retrieved. The top 5 most active regulator of each of the subtypes are listed
in figure 2.1 and a snapshot of the bladder cancer co-regulation network specific to each of
the corresponding sub type is showed.

An interesting use of the influence measure from the CoRegNet package is to be
able to compute the activity of the TF from a given network in related samples. In the
case of the analysis of Bladder cancer, this can be used to identify cell lines driven by
similar transcriptional program. For instance, figure 2.1 shows two cell lines SD48 and
1207 resembling the luminal-like and basal-like phenotypes. Interestingly, PPAR� is the
most active TF in the SD48 cell line suggesting it to be an interesting model to study the
role of PPAR� in cancer cell survival.

In order to assess the reliability of these predicted master regulators of bladder cancer
subtype, the same analysis was performed on an independent bladder cancer dataset. The
RNA-seq gene expression data from the TCGA consortium was used to infer a bladder
cancer large-scale regulatory network. Using this new network, the influence of all TF was
computed in the TCGA samples and for each of the four types of tumors the activity of
each TF was averaged. Using only TF found in both TCGA and CIT networks, each of
the mean subtype influence of the CIT network significantly (↵ = 103) correlated (using
Pearson’s correlation) the activity computed in the TCGA dataset (Luminal-like: 0.76,
TCGA II: 0.38, TCGA IV: 0.81, Basal-like: 0.82).

The basal-like bladder cancer subtype was recently shown to be associated with frequent
EGFR gains and amplifications and to be sensitive to anti EGFR therapies. EGR2 was
found to be the most active TF in the basal-like subtype (figure 2.1) and is also known to be
a downstream e↵ector of EGFR (Chandra et al., 2013). Similarly, the SOX9 transcription
factor is particularly active in basal-like tumors (Student’s test, ↵ = 10�6) and was
determined to mediate EGFR-dependent cellular migration in urothelial cancer (Ling et
al., 2011). Furthermore, twist and snail, two major regulators of the epithelial-mesenchymal
(Thiery et al., 2009) were also predicted to be highly active in basal-like bladder tumors.

The luminal-like bladder cancer subtype was suggested by the TCGA consortium
to highly express urothelial terminal di↵erentiation and luminal breast cancer markers.
PPAR� is predicted to be one of the most highly active TF of the luminal-like subtype and
was described as an initiator of adipocyte and more recently of urothelial di↵erentiation
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Figure 2.1: Bladder cancer subtype and cell lines co-regulation network. The table presents
the 5 regulators with the highest mean influence in samples of a specific bladder cancer subtype
defined by the TCGA. Below each column of each subtype is shown a snapshot of the entire
network of co-regulators in which an edge is set between two regulators if these were predicted to
be significant cooperative regulators. Each node, regulator, is colored to represent its influence in
the given subtype (blue: low activity, red: high activity). The same was done for two bladder
cancer cell lines (right panel) to illustrate the ability of the influence method to characterize each
and every sample of a dataset, as opposed to other network methods, which usually compare two
subtypes of samples. The SD48 cell line shows to use similar transcriptional programs than the
luminal-like subtype. The L1207 cell line uses similar transcriptional programs than the basal-like
subtype.

through FOXA1 activation (Varley et al., 2008). Furthermore, the two key factors of
luminal breast cancer, GATA3 and FOXA1, are among the most significant co-regulators
of PPAR� in the co-regulation network inferred from the CIT dataset (see 2.2).

In the TCGA network, EGR2, SOX9, TWIST1 and Snail were also found to be master
regulators of the basal-like subtype by being significantly more active in the basal-like
subtype than in other samples (p < 10�5) as well as PPAR� , GATA3 and FOXA1 in the
luminal-like samples, which were also predicted to be significant cooperative regulators in
the TCGA-inferred co-regulation network.
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Best co-regulators
PPAR� FOXA1 GATA3

co-regulator # GRN co-regulator # GRN co-regulator # GRN

GATA3 143 PPARG 53 PPARG 143
MSX2 107 FOXQ1 47 MSX2 88
FOXQ1 106 GATA3 39 FOXQ1 85
TBX3 70 TBX3 31 TBX3 50
ZNF626 66 ID4 26 ZNF440 49
ZNF440 65 ZNF626 24 ZNF626 45
FOXA1 53 MSX2 24 HOXB6 42
HOXB6 49 ZNF440 21 FOXA1 39
ID1 48 ID1 19 TBX2 35
ID3 43 SPOCD1 18 ID3 31

Figure 2.2: PPAR�, FOXA1 and GATA3 best co-regulators. Listing the 10 best co-regulators
of PPAR�, FOXA1 and GATA3 as predicted in the CIT network. # GRN is the number local
gene regulatory network in which the pair of co-regulator was found. All the shown co-regulators
have significant targets overlap (Fisher’s exact test).

2.3 Bladder cancer driver transcriptional programs

Transcription factors are key components of cellular states and were shown to be able to
alter cell phenotypes by simply inducing their expression (Lee and Young, 2013). In the
case of carcinogenesis, the maintenance of an aberrant phenotype necessarily requires the
sustained activation of a set of regulators. In order to maintain a proliferative state it is
common that a signaling pathway, the growth factor receptor tyrosine kinase and MAPK
pathway for instance, is constitutively activated by genetic alterations. Given that this
will result in the activation of a set of responding transcription factors, it is also possible
to imagine that these alterations may directly target transcription factors themselves and
in a similar manner lead to tumorigenesis.

In order to identify driver transcriptional programs of bladder cancer I investigated
whether active bladder cancer regulatory programs were driven by genomic alterations.
Copy number data was obtained from CGH BAC arrays profiling regional losses and gains
in the genome of 86 tumors for which the transcirptomic profiles and subsequently the
TF influence are available. Figure 2.3 plots both the subtype specific activity and the
concordance between a high influence and gain or amplification of the locus containing the
gene coding for the tested TF. Only representative TF are noted on the plot: PPAR� with
both high CNA-influence concordance and high influence in the luminal-like subtype,
FOXM1 with high influence in the basal-like and moderate CNA-influence concordance
and finally TOP2B and POGK with high CNA-influence concordance yet moderate
influence in luminal-like tumors.

Several regulators showed significantly higher transcriptional activity in samples with



2.3. BLADDER CANCER DRIVER REGULATORS 107

Figure 2.3: Bladder cancer subtype specific driver TF. For each TF of the network, the e↵ect
of Copy Number Aberration (CNA) on the influence was tested by a one tail Student’s test of an
increase of the influence in samples presenting a gain or amplification (3 or more copies of the
TF gene locus). The y-axis reports the negative log transformed p-value for which high values
represents a high correlation between CNA and influence. The x-axis plots the mean influence of
each TF in a given subtype. Only representative TF names are given.

gains of copy number of their coding gene as shown in figure 2.4. However, PPAR� was
both among the TF with highest activity and the highest concordance between high
transcriptional activity and abnormal high copy number suggesting PPAR� as a driver of
the bladder cancer luminal-like phenotype. PPAR� copy number status was significantly
correlated with both its influence and it’s expression as shown in figure 2.4. This result
was confirmed in the TCGA dataset in which PPAR� is the regulator with the most
significantly correlated influence and copy number (kruskal-walis test p � value = 10�6).

A recent study identified PPAR� as a master regulator of the luminal-like subtype of
bladder cancer(Choi et al., 2014). The high correlation between the genetic alterations
of PPAR� and it’s transcriptional influence further suggest PPAR� to be a driver of this
subtype. Moreover, a recently published study from our group (Biton et al., 2014, in press)
demonstrated by specific siRNA knockout assay the necessity of PPAR� in the survival
and proliferation of certain bladder cancer cell lines. In particular, the two cell lines
predicted to have the highest PPAR� influence, SD48 and UMUC9, are the most sensitive
to PPAR� siRNA knockdown with a 50% to 60% decrease in cell viability. While these
results confirm the driver role of PPAR�, the relation between the predicted transcriptional
activity and the e↵ect of the KD on cell line survival and proliferation was tested and
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Figure 2.4: PPAR� Copy Number, influence and expression in bladder cancer. Distributions
of the influence (left) and expression (right) of PPAR� relatively to its copy number aberration
(CNA) status. The levels of influence and expression were statistically di↵erent as measured by a
kruskal-walis test (↵ = 10�3)

shown in figure 2.5. The influence of PPAR� significantly correlates (↵ = 0.01) with the
e↵ect of the KD suggesting that the proposed influence measure allow both to identify
driver regulator as well as samples in which these are active and therefore targetable.

Figure 2.5: Relation between PPAR� influence and its e↵ect on cell survival. The mean e↵ect
of PPAR� siRNA knockdown on the survival of 9 bladder cancer cell lines (y axis) was plotted
against its predicted transcriptional activity. Pearson’s correlation is shown in the top right
corner (R2 = 0.83).

No other TF showed such high activity and copy number abnormality in any other
bladder cancer subtype. However, FOXM1, a known oncogene described in several studies
as a master regulator(Lefebvre et al., 2010; Raychaudhuri and Park, 2011), is highly active
in the basal-like subtype and presents a slight gain of activity concomitant to abnormal
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gains of copy of the coding gene. FOXM1 is predicted to be the second most active TF in
the Scaber bladder cancer cell line. To assess the activity and potential oncogenic role
of FOXM1 in bladder cancer, I performed an siRNA KD of FOXM1 in the Scaber cell
line. Using two di↵erent siRNA, this resulted in a 40% to 50% decrease in cell viability as
shown in figure 2.6.

Figure 2.6: FOXM1 knockdown in the Scaber bladder cancer cell line. Quantification of viable
cells following the transfection of a control or FOXM1 targeting siRNA was determined by
colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. The
data shown are numbers of viable cells relative to the control siRNA. Experiments were conducted
twice, each in triplicates. * : Student’s test ↵ = 1%.

2.4 Characterization of PPAR�-driven carcinogene-
sis

Previous studies described PPAR� as a key regulator of urothelial cell di↵erentiation
(Varley et al., 2008; Varley and Southgate, 2008). This is somehow consistent with the strong
expression of terminal di↵erentiation markers in luminal-like bladder cancers. Despite
these descriptions, no hypothesis was expressed about the oncogenic role of PPAR� , which
remains unexpected from a master regulator of terminal cellular di↵erentiation.

In order to determine the role of PPAR� in luminal-like bladder cancer progression,
the siRNA knockdown performed in the SD48 cell line was followed by transcriptomic
profiling. This identified 1026 di↵erentially expressed genes due to PPAR� silencing
(limma, FDR10%). The set of targets of PPAR� predicted by the CoRegNet package
was 1.8 fold enriched in this set of PPAR� responsive genes (fisher’s exact test : 2.10�5).
As expected the PPAR signaling pathway was found to be one of the most significantly
enriched in genes activated by PPAR� (KEGG pathway: ↵ = 1%). Interestingly, the lipid
metabolism, regulated by PPAR� in several other tissues (mainly liver and adipocytes)
was also highly disrupted after the KD (KEGG pathway: ↵ = 1%). Several enzymes of
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the lipid degradation/beta-oxidation pathway shown figure 2.7 were found to be targets
of PPAR� . Several of these enzymes were predicted to be activated by PPAR� in both
the CIT and TCGA datasets and where confirmed by external ChIP-seq from the encode
project. Finally, the UMUC9 cell lines treated with a PPAR� agonist (Roziglitazone)
(Choi et al., 2014) also showed significantly higher expression of the lipid metabolism
pathway (KEGG pathway:↵ = 1%) and confirmed the activation of enzymes involved in
Beta-oxidation (see figure 2.7).

Figure 2.7: PPAR� regulated lipid metabolism. Metabolic network of the lipid degradation
metabolism from the KEGG database. Genes encoding for the enzymes are shown for each
step of the degradation pathway. Some steps are encoded by several enzymes, which in some
cases are specific to the number of carbons. Genes in red were found to be under-expressed
following the depletion of PPAR� in the SD48 cell line and to be over-expressed following the
activation of PPAR� by the roziglitazone in the UMUC9 cell line. Genes in orange were only
found over expressed in the roziglitazone-treated UMUC9. Underlined genes were found to be
bound by Genes for which PPAR� ChIP-seq or Chip-on-chip experiments identified a binding
site in their promoter are underlined. The first metabolic step of lipid degradation is Palmitic
acid (16 carbons), which is activated with an Acyl-CoA and thereby is transported inside the
mitochondrion. Palmitoyl-CoA then enters the �-Oxidation cycle, in which at each end of cycle
the fatty acyl-CoA is shorten by two carbons and produces NADH, FADH2 and Acetyl-CoA each
of which can be latter use to produce energy either directly or through the citric acid cycle.
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These transcriptomic experiments suggest that PPAR� fuels the elevated energy
requirement of fast growing cancer cells by activating the enzymes of the high energy yield
beta-oxidation pathway. Although several enzymes of the lipid degradation pathway also
have a function in the reverse lipid biosynthesis pathway, most of the PPAR� activated
enzymes specifically direct the metabolic flux towards the production of acetyl-CoA and
the citrate cycle such as ACOX1 and the limiting carnitine palmitoyltransferases (CPT1
and CPT2). Furthermore, PDK4 favors lipid over glucose as an energy source (Zhang
et al., 2014b) and is shown by both the transcriptomic profiles and the inferred network
to be activated by PPAR� (under-expressed after KD and over-expressed after agonist
treatment).
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2.5 Discussion

This work constitutes the first network analysis of bladder cancer. The application of
the CoRegNet package to a bladder cancer transcriptomic dataset shows its ability to
identify sample- and subtype-specific transcriptional programs. More importantly, the
proposed measure of transcription factor influence can be used to identify the most relevant
cell lines to perform validation experiments.

The aim of the proposed approaches is to eventually identify active signaling pathways
and therefore e↵ective targeted therapy for each of the analyzed samples. Evidently, the
available data, mostly of the genome and transcriptomes of tumors, only allows, for now,
to identify active transcriptional programs. Therefore, to assess the validity of the concept
of inferring large-scale and potentially error-prone networks in order to identify active
pathways, I first focused on genetic events that directly impacted the transcriptional
regulation level. This identified several transcription factors for which the activity was
predicted to be high and to be potentially caused by gains in copy number. Among these, I
was particularly interested in two TF, FOXM1, which was previously described as a master
regulator of proliferation, and PPAR�, which had clear gains of copy number associated
with a remarkably high transcriptional activity. The inhibition of FOXM1 resulted in
a significant decrease of cell proliferation in a cell line in which it was predicted to be
highly active. While more experimental validations are to be performed by the team, this
illustrates the exploratory capacity of CoRegNet and the possibility to easily design
experimental validations.

There is emerging evidence that PPAR� is an oncogene in bladder cancer. However,
its role remains unclear, especially as it is mostly described as a major activator of the
di↵erentiation of the normal urothelium. While the discovery of PPAR� as a driver of
luminal-like bladder cancer is very recent (Biton et al., 2014, in press), the relevance
of its predicted activity correlating with the impact of PPAR� knockdown on cell line
proliferation supports the algorithm itself. Moreover, the prediction of the target genes of
PPAR� in bladder cancer samples along with transcriptomic profiles following knockdown or
agonist treatment provided a hypothesis explaining the role of PPAR� in the carcinogenesis
of the bladder.

Altogether, the network analysis of bladder cancer demonstrates the benefit of using
genome scale models to rationally identify active and potentially targetable e↵ectors of the
oncogenic pathways. Ongoing work by the team includes testing of PPAR� antagonists
and the e↵ect of using drugs targeting known co-regulators.



Chapter 3
Deregulation of normal Transcriptional
Programs in bladder cancer

The project detailed in this chapter implicated several collaborators. All NHU-related
transcriptomic data and experimental results on NHU cell cultures were obtained from
Jennifer Southgate and her team at the university of York (york.ac.uk). Sequencing and
knockdown of ELF3 in bladder cancer cell lines was performed by Clémentine Krucker
(Oncologie Moléculaire team, Institut Curie).

3.1 Introduction

The epithelium acts as a protective layer of the underlying tissues. In response to physical
damage, a complex process of wound healing is initiated to both replace missing cells and
restore the function of the epithelium. Therefore, wound healing involves a complex balance
between regenerative repair involving cell proliferation and migration, and restitution
of tissue function by specializing cells through a specific di↵erentiation process. This
proliferation/di↵erentiation balance is tightly controlled in time and space in order to
maintain tissue function and integrity.

Harold Dvorak described the high similarities between the tumor stroma and the
surrounding of an injured tissue during wound healing. Dvorak resumed this parallel
by appropriately describing tumors as ”wounds that do not heal” (Dvorak, 1986). This
statement along with several more recent studies (Riss et al., 2006; Schäfer and Werner,
2008; Velnar, Bailey, and Smrkolj, 2009) underlines these similarities and suggests that
tumor cells are somehow persisting into a regenerative phenotype. At the molecular level,
the aberrant maintenance of an infinite proliferation state implies not only constitutive
activation of mitogenic-associated signaling but also loss of negative feedback controls.
The identification of the disrupted molecular processes of normal wound healing is critical
to the understanding of the driver events and pathways of tumorigenesis.
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The normal counterpart of bladder cancer is the urothelium, a highly specialized
epithelium lining the urinary bladder. It functions as a self-repairing barrier to urine. It
responds to injury by rapidly switching from a mitotically quiescent state (the urothelium
being one of the most quiescent tissues in the body) to a highly proliferative state. This
switch is driven partly by activation of the EGFR pathway (Daher et al., 2003; Varley
et al., 2005). Our partners at the university of York (york.ac.uk) have developed robust
methods to grow Normal Human Urothelial (NHU) cells as finite non-immortalized cell
lines in vitro (Southgate, Masters, and Trejdosiewicz, 2002).

In order to identify the transcriptional programs of normal urothelial cell proliferation
and di↵erentiation as well as their disruptions in bladder cancer, this study greatly relies on
transcriptomic profiles of NHU cell cultures (Fleming et al., 2012; Varley et al., 2008). NHU
cells were extracted from the ureter or the bladder of patients admitted for non-cancerous
disease. Cells were grown either in normal medium or in the presence of di↵erentiation
agents. Urothelial di↵erentiation can be partly induced by the activation of PPAR�,
which itself is repressed by EGFR (Varley and Southgate, 2008; Varley et al., 2004, 2006).
Therefore, di↵erentiation was induced either by a combination of the PPAR� activator
troglitazone and an EGFR inhibitor (PD153035, treatment noted TZ/PD) or by Adult
Bovine Serum (ABS). These cultures were sampled at four di↵erent time points after
seeding and profiled using a↵ymetrix microarrays. Time points were chosen to reflect
specific proliferation and di↵erentiation phases as illustrated by figure 3.1. Two samples
were taken the first day, 6 hours and 24 hours following seeding, times at which the
first downstream regulators of di↵erentiation (Varley et al., 2008) are expressed and
proliferation is highest. Two additional samples were taken at day 3 and 6 at which cells
reach confluence, become quiescent and reach terminal di↵erentiation in the presence of
TZ/PD or ABS.

3.2 Reconstruction of the normal urothelial cell pro-
liferation and di↵erentiation regulatory network

To identify transcriptional programs of normal growth and di↵erentiation, the network
inference algorithm of the CoRegNet package was applied to the NHU gene expression
data set. The regulatory network inferred by CoRegNet, composed of the predicted co-
regulators of 7,179 genes and was then refined by integrating additional regulatory related
data. Regulatory interactions (TF ! gene) were supported by ChIP-seq and ChIP-on-chip
data from the ENCODE project (Gerstein et al., 2012) and the ChEA2 database (Kou et
al., 2013). Systematic promoter sequence analysis using the PWMEnrich R/Bioconductor
package was carried out using known transcription factor binding sites (TFBS) models
from the MotifDB R/Bioconductor package referencing data from several studies (Jolma
et al., 2013; Portales-Casamar et al., 2009; Xie et al., 2010) and complemented by
the HOCOMOCO database of human TFBS (Kulakovskiy et al., 2012). When several

http://www.york.ac.uk/biology/research/molecular-cellular-medicine/jenny-southgate/
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Figure 3.1: Expression of proliferation and di↵erentiation markers in NHU. Microaray measured
expression of the uroplakin 1A (UPK1A, a marker of urothelial di↵erentiation) and of the marker
of proliferation Ki-67.

models were available for the same Transcription Factor (TF), the PWM with the highest
Information Content (in bits) was kept. Co-regulatory interactions (TF $ TF ) were
supported by the high-confidence protein-protein interactions of the HIPPIE database
(Schaefer et al., 2012).

The original CoRegNet-inferred network was refined using the default functions of
the package (see section 1.6). This resulted in a large-scale regulatory network of normal
urothelial proliferation and di↵erentiation, containing 36,994 regulatory interactions and
supported by 2,895 ChIP (odds ratio: 1.8, fisher’s exact test: p < 10�20) and 1,293
TFBS-based interactions (odds ratio: 1.6, fisher’s exact test: p < 10�20).
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Figure 3.2: Activity of di↵erentiation and proliferation regulators. The transcriptional activity
of two di↵erentiation-associated transcription factor FOXA1, IRF1 and of the proliferation-
associated transcription factor FOXM1 was predicted in the NHU samples using the CoRegNet
bioconductor package. The activity (y axis) is expressed in arbitrary units representing the
measure influence.
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As a first insight into the predicted transcriptional programs of normal di↵erentiation
and proliferation, the activity of three transcriptional factors was predicted using the
measure of influence (see section 1.4). FOXA1 and IRF1 are the first transcription factors
activated by PPAR� to drive urothelial di↵erentiation (Varley et al., 2008). Figure 3.2
is a plot of the predicted activity of these two TF which show an increasing activity
from the first to the last time points following di↵erentiation treatment. The influence of
FOXM1, a master regulator of tumor proliferation and more generally of cell cycle, is also
plotted in figure 3.2 showing only high activity during the first day, especially in untreated
undi↵erentiated cells.

Figure 3.3 shows a global representation of the activity of the normal transcriptional
programs in the 30 NHU transcriptomes. This illustrates well the ability of the influence
measure to summarize the entire transcriptomic variations by the activity of a potentially
involved transcription factors. For instance, the known regulators of di↵erentiation PPAR� ,
IRF1 and FOXA1 (Varley et al., 2008) as well as GRHL3 (Yu et al., 2009) are all predicted
to be active in di↵erentiated samples. Interestingly, the HOXB gene family is associated
with the ureter-originating urothelium whereas the HOXA cluster is associated with the
bladder-originating samples. A large number of TF are predicted to be active during
proliferation, among which FOXM1 is described as a master regulator of bladder cancer in
the previous chapter. Moreover, SOX9 and SNAI2 (snail) are here predicted to be active
in undi↵erentiated NHU and were also predicted to be master regulators of the basal-like
bladder cancer subtype (see section 2.2). Interestingly, SMAD3, a downstream e↵ector of
the TGF� pathway, is predicted to be part of the di↵erentiation transcriptional program
while SMAD7, a negative regulator of the TGF� pathway, is specific to undi↵erentiated
NHU cells. This observation is supported by the recent discovery of the role of the
TGF� pathway as necessary for the proliferation of di↵erentiated NHU cells and a weak
inhibitor of proliferation in undi↵erentiated NHU cells (Fleming et al., 2012).

3.3 Global contribution of normal urothelial regula-
tory networks to bladder cancer

Di↵erential network analysis, described as the study of the dissimilarities between the
interactions mapped in two conditions of interest, is considered as an innovative concept
and seen as the next prevalent type of network analysis (Ideker and Krogan, 2012).
However, based on biological observations, such as those of H. Dvorak (Dvorak, 1986), of
the high similarity between normal regenerative process and tumor growth, I argue that
the aberrant misuse of normal networks, that is the abnormal constitutive activation (or
repression) of a normal network with a mainly conserved structure, is also of potential
interest. Although it is likely that some transcription factors have di↵erences in their
sets of target genes between a normal and cancerous condition, it is also more likely that
the transcriptional network of normal cellular proliferation is simply activated instead
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Figure 3.3: Activity of normal transcriptional programs in NHU. Heatmap representation of the
influence of all transcription factors of the inferred regulatory network with at least 10 activated
and 10 repressed target genes. 6 hours and 24 hours samples are considered as proliferating
samples (yellow) whereas day 3 and 6 are considered as quiescent samples (purple). Di↵erentiation-
inducing treatments are also color-coded (green trated, orange untreated). A dendrogram of the
hierarchical clustering (correlation distance and ward’s method) of transcription factors is shown
above the heatmap.

of being entirely reorganized during neo-plastic transformation. Therefore, the task of
comparing the functioning, at the transcriptional regulation level, of normal and malignant
cell proliferation, can be carried out by identifying which and how normal processes are
aberrantly controlled instead of searching for di↵erences in interactions.

In order to define to what extent the proposed large-scale regulatory network of NHU
cell proliferation and di↵erentiation is conserved in and contributing to bladder cancer,
a first analysis of gene regulation was carried out. Each of the local gene regulatory
networks, that is the set of co-activators and co-inhibitors of each gene, extracted from
the NHU transcriptomes by CoRegNet were tested in a bladder cancer dataset of 179
bladder cancer transcriptomes, hereafter referred to as the CIT dataset (Carte d’Identité
des Tumeurs, Rebouissou et al., 2014). Each local network was fitted using the same
linear regression model used to refine the network inferred using CoRegNet. In essence,
the expression of co-regulators was used as predictor variables and the expression of the
target gene as a response variable. The linear model was fitted on 90% of the samples
to predict the expression of the target gene on the remaining 10% in a cross-validation
setting. A threshold of 0.5 was used on the cross-validated coe�cient of determination
to select the best normally regulated genes in cancer cells. This arbitrary threshold,
which selects genes for which at least 50% of the variation in expression is explained by
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CIT
Function # genes (%) Enrichment p-value FDR

GO
cell cycle phase 81 (30%) 8.4 10�20

< 10�20

nuclear division 60 (22%) 10.4 < 10�20
< 10�20

DNA replication 34 (13%) 7.6 < 10�20 10�17

KEGG
Cell cycle 19 (7%) 6.9 10�11 10�8

DNA replication 12 (5%) 12.3 10�10 10�7

TCGA
Function # genes (%) Enrichment p-value FDR

GO
M phase 64 (26%) 13.4 < 10�20

< 10�20

cell cycle process 75 (31%) 9.1 < 10�20
< 10�20

KEGG
DNA replication 12 (5%) 23.2 10�13 10�9

Cell cycle 17 (7%) 9.5 10�12 10�9

Figure 3.4: Cellular functions with conserved normal regulation. Functional analysis of the
genes for which the normal co-regulators identified in the NHU transcriptomic dataset are
conserved in two bladder cancer data set is shown. 254 and 255 genes for the CIT and TCGA
datasets respectively were selected for having a coe�cient of determination over 50% (R2 > 0.5).
Enrichment is computed as the odds-ratio of finding genes annotated with a specific cellular
function among the set of selected genes.
GO: Gene Ontology, biological process only.

normal regulators, is used simply to investigate whether genes for which the regulators are
conserved during tumorigenesis are involved in specific cellular function. Table 3.4 lists
the top cellular functions found to be significantly over-represented among the annotation
of these normally regulated genes. Core processes involved in cell proliferation are well
represented suggesting that indeed, mitosis is regulated the same way in normal and
malignant cells. This was verified by reproducing the same analysis in an independent
series of bladder cancer transcriptomes from the TCGA analysis (Cancer Genome Atlas
Network, 2014).

To further analyze the conservation of the normal regulatory network in cancer samples,
the influence of the entire NHU network was compared to the influence of 100 randomly
generated networks with similar topology (permuting target genes of every TF in the
network). The global influence of the network is measured by the sum of the absolute
influence of all TF in the network. Figure 3.5 shows the distribution of the global influences
of the NHU network and of the random networks for each sample of the CIT dataset. The
NHU network had a higher global influence in any tumor sample than any of the random
networks in any of the tumor samples. This significantly higher NHU network influence
(Student’s t test: p < 10�20) suggests that a large part of the normal network is conserved
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Figure 3.5: Influence of NHU network is conserved in bladder cancer. The absolute value of
the influence of all TF in the networks (NHU or random) is computed in each sample of the CIT
dataset. For each sample, the absolute influence of all TF is summed. The ranges of the boxplots
are minimal and maximum values.

in tumors.

3.4 Contribution of normal Master Regulators to
bladder cancer

In order to gain further insight into which and how normal transcriptional programs are
conserved during tumorigenesis, the influence of the transcription factors of the NHU
network was computed in the cancer samples. It is to be noted that the influence, calculated
using the transcriptional targets predicted in the NHU transcriptomes, is computed using
the cancer gene expression data centered on the mean expression of the normal samples
(biopsies of non-cancerous patients, not NHU cell cultures) of the dataset. Therefore, the
measured influence represents the extent to which a TF is accountable for the variation of
its target genes expression from the normal to cancerous samples.

In order to model the process of neo-plastic transformation, the transcriptional programs
for which the regulatory structure of the normal network was most highly conserved were
extracted from bladder cancer transcriptomic datasets. The idea is to model which part of
regulatory network of the normal urothelial proliferation and di↵erentiation are particularly
conserved, whether the associated transcription factor are silenced or activated. To do
so, the absolute value of the influence of the normal regulators was used as a measure
of network conservation. Figure 3.7 shows the high overlap between the 30 first most
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Figure 3.6: Reproducible identification of conserved master regulator. Overlap of the 30 first
Master regulators of the NHU network in three di↵erent bladder cancer dataset: CIT (179 bladder
tumor samples, a↵ymetrix U133 plus2 chips , Rebouissou et al., 2014), TCGA (211 bladder
tumor samples, RNAseq, Cancer Genome Atlas Network, 2014) and Stransky (79 bladder tumor
samples, a↵ymetrix U95 chips, Stransky et al., 2006).

conserved TF in three di↵erent bladder cancer datasets. The preservation of the normal
regulatory network structure is highly reproducible. For instance, the sum of the absolute
influence in all samples of each dataset, used here as a measure of network conservation,
highly correlates between these three datasets (Pearson’s correlation, CIT and TCGA:
0.91, CIT and Stransky: 0.95, TCGA and Stransky: 0.89). These results show that the
importance of each of the normal regulators, using the absolute influence as a ranking, is
highly reproducible.

The transcription factors with the highest absolute value of influence in all cancer
samples are illustrated in figure 3.7. The TF in the figure are sorted by their sum of
influence in their absolute value but the distributions represented as boxplots are the real
valued influence and hence showing both highly active TF and inactive TF. Interestingly,
TF previously described as master regulators urothelial di↵erentiation (e.g. IRF1, PPARG,
FOXA1, GRHL3 ) have a loss of activity in cancer samples while master regulators of
cellular proliferation (e.g. FOXM1 in the study of the bladder cancer network in section
2.1 and in Lefebvre et al., 2010; Raychaudhuri and Park, 2011) are predicted to have an
increased activity.

This characteristic transcription factors suggest that transcriptional programs involved
in urothelial di↵erentiation are silenced during carcinogenesis while proliferation programs
are activated, or that their high level of activity is preserved. Figure 3.8 shows the relation
between the influence of regulators measured in proliferating or di↵erentiated NHU and the
influence in the CIT dataset. The plot shows that TF with the highest predicted activity
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Figure 3.8: Relation between TF influence in cancer and di↵erentiated or proliferating NHU.
The data used is the mean influence of each TF either in all CIT cancer samples, (left) in the
two last time points of the di↵erentiating NHU (ABS or TZ/PD treatment, day 3 and 6) or
(right) in the growth phase of undi↵erentiated NHU (no treatment, 6 or 24 hours).
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in cancer samples are also those with the lowest predicted activity in di↵erentiating NHU
(Pearson’s correlation: -0.93). However, TF with the highest influence in proliferating NHU
are also the most active TF in cancer (Pearson’s correlation: 0.94). Although expected,
this result illustrates well the obvious main characteristic of cancer, cellular proliferation.
Moreover, cellular di↵erentiation is also a process generally known to be lost in cancer. For
instance, all invasive bladder cancers are high-grade tumor for which histo-pathological
analysis show a loss of cellular di↵erentiation.

Such broad conservations of normal urothelial specific programs in cancerous cells
brings to think that the cellular organization of cancerous cells is mostly unchanged
and that normal programs of proliferation may not be reorganized but instead may be
irrevocably set into a particular tumorigenic state through molecular alterations such as
Somatic Mutations or Copy Number Aberrations.

To identify regulator of proliferation and di↵erentiation that are genetically altered
and which might lead to an upstream constitutive activation, or repression, of a broader
transcriptional program, CGH arrays were used to identify copy number aberrations (CNA)
in 87 muscle-invasive bladder tumors of the CIT dataset. As CNA of transcription factor
encoding genes can only a↵ect transcriptional activity if it is reflected by an increased
expression levels, only normal transcriptional regulators for which an increase in copy
number was reflected by an increase in its expression were selected (right tail Student’s
t test of the expression between samples with gain or amplification and other samples,
FDR: 1%).

Among the transcription factors for which the copy number status corresponded to
increase in gene expression, MYBL2 was the regulator that was the most frequently found
in genomic regions of gain of copy (40% of muscle-invasive samples) and is also found in
regions of high amplification (3% of muscle-invasive samples). The same analysis in the
TCGA data also identified MYBL2 as the transcription factor with corresponding increased
copy number and expression with the most frequent gains (60% and 3% amplification).
MYBL2 was previously observed to be highly expressed in proliferating cells and was found
to regulate and be regulated by the cyclin A1 in acute myeloid leukemia (Muller-Tidow
et al., 2001).

In order to assess the role of MYBL2 in bladder cancer cell proliferation, a knockout
experiment was carried in a representative bladder cancer cell line. The e↵ect on cellular
proliferation and viability was determined by MTT colorimetric assay following MYBL2 -
targeting siRNA transfection. Figure 3.9 shows the e↵ect of silencing MYBL2 on
the survival of the Scaber bladder cancer cell line, which originally shows one of the
highest MYBL2 influence (4th among 35 cell lines). MYBL2 knockout results in a 40%
to 50% decrease in cell number, which, in addition to its frequent gain of copy and
increase expression, supports its role as a constitutively activated regulator involved in a
transcriptional program driving urothelial cell proliferation.

These results support the idea of a constitutive activation of transcriptional programs
of urothelial cell proliferation. However, several results, such as the loss of activity of
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Figure 3.9: MYBL2 knockout in the Scaber bladder cancer cell line. Quantification of viable cells
following the transfection of a control or MYBL2 targeting siRNA was determined by colorimetric
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. The data shown are
numbers of viable cells relative to the control siRNA. Experiments were conducted twice, each in
triplicates. *: Student’s test ↵ = 1%.

the di↵erentiation-related TF (see 3.8), show that tumorigenesis is accompanied by a
loss of cellular di↵erentiation at the transcriptional level. One evident explanation is the
constitutive activation of EGFR in basal-like bladder cancers (Rebouissou et al., 2014)
leading to the inactivation of the driver of urothelial di↵erentiation PPAR� (Varley et al.,
2004). However, basal-like bladder cancers only represent approximately 20% of tumors
(Rebouissou et al., 2014).

3.5 Defining the role of ELF3, a master regulator of
di↵erentiation in bladder cancers

The partial release of the TCGA exome sequencing of bladder cancers identified several
mutations of the ELF3 gene. ELF3 is a small gene encoding for an epithelial-specific
transcription factor and that is predicted to be the TF with the most important decrease
in transcriptional activity in bladder cancer samples (see figure 3.7). Figure 3.10 shows
the influence and expression of ELF3 in each stage of bladder cancer showing a marked
decrease during tumor progression.

In order to assess the genetic status of FGFR3 in bladder cancer samples, we sequenced
the exons of ELF3 in 106 samples. We found ELF3 mutations in 18 samples (approximately
17%), one with two di↵erent mutations. 10 mutations were deleterious, 1 nonsense and 9
frameshifts due to the insertion or deletions. The somatic status of the identified mutation
was verified for 9 samples, those for which normal DNA was available. All mutations were
heterozygous mutations. The mutations are mapped on the ELF3 encoded protein in
figure 3.11. ELF3 mutations were not associated to any bladder cancer subtype or any
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Figure 3.10: ELF3 expression and influence by stages of bladder cancer. Expression levels are
log2 transformed RMA normalized expression of a↵ymetrix u133 plus2 chips. Influence levels
are as computed by the CoRegNet package using an NHU-inferred regulatory network and
computing the TF activity in the CIT bladder cancer transcriptome dataset.
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Figure 3.11: ELF3 mutations. Mapping of the 19 mutations found in 18 bladder cancer samples.
Red stars identify deleterious (nonsense and framshift) mutations. Other missense mutations are
identified by the amino-acid replacement. Mutations E81D and R94D were found in the same
sample.

The final release of the TCGA data indeed identified ELF3 as a significantly mutated
gene (Cancer Genome Atlas Network, 2014) mostly because of the low probability of finding
so many deleterious mutations (mutation found in 8% of samples: 7 framshifts, 1 nonsense,
1 splice site and 2 mi sense) in such a small gene (coding for 371 amino acids). Moreover,
a recent study of NHU di↵erentiation identified ELF3 as necessary to maintain trans-
epithelial resistance, characteristic of the barrier function of the di↵erentiated urothelium,
in NHU cell cultures (Böck et al., 2014). Overall, these results suggest that the deleterious
mutations found in the ELF3 coding sequence silences the transcriptional program of
normal urothelial di↵erentiation in bladder cancer cells.

In order to further understand the function of ELF3 as a master regulator of urothelial
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di↵erentiation, our partners at the university of York performed a knockdown assay of
ELF3 in NHU cell cultures with a di↵erentiation inducing media (TZ/PD). Resulting in
an approximately 60% decrease in the expression of ELF3, the knockdown resulted in the
under-expression of several genes involved in urothelial di↵erentiation and in particular
transcription factors that are e↵ectors of di↵erentiation (IRF1, FOXA1 Varley et al., 2008,
GRHL3 Yu et al., 2009 and KLF5 Bell et al., 2011). Figure 3.12 shows the impact of
ELF3 -knockdown on the expression of 8 genes, including ELF3 itself and its known target
the claudin 7 (Kohno et al., 2006). These results suggest that ELF3 is necessary to the
activation of a large part of the di↵erentiation transcriptional programs although not
directly activating di↵erentiation markers such as uroplakins.

Figure 3.12: qPCR expression measurements following ELF3 knockdown in NHU. cDNA
qPCR measurement of 8 genes following shRNA-mediated knock down of ELF3 in NHU cultured
until 70-80% confluence after induction of di↵erentiation with 1µM troglitazone (TZ) and 1µM
PD153035 (PD) for 72h. Values (y axis) are relative quantities compared to control shRNA
after GAPDH normalization. Statistical analysis were carried out using an analysis of variance
(ANOVA, ⇤ ⇤ ⇤ : p < 0.001; ⇤⇤ : p < 0.01).

NHU cell cultures transfected with ELF3 -directed or scramble shRNA were sampled
at four di↵erent time points after TZ/PD induction of di↵erentiation to reflect the various
stages of early and late di↵erentiation (12hr, 24hr, 2 and 3 days, all in triplicate). No
genes were found to be di↵erentially expressed after 12 hours (moderate t test, FDR
1%). The e↵ect of ELF3 knockdown on di↵erentiation-related genes was observable as
soon as 24 hours after di↵erentiation induction. For instance, FOXA1 and PPAR� were
under-expressed as soon as 24 hours after TZ/PD treatment compared to the NHU cultures
transfected with a scramble shRNA.

Out of the 33,692 profiled genes, 3,171 and 2,980 were identified to be significantly over
and under-expressed, respectively (moderate t test, FDR 1%) due to ELF3 knockdown.
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Figure 3.13: Expression of ELF3 regulated genes in normal NHU di↵erentiation. left.
Distribution of the expression of ELF3 regulated genes identified in ELF3 knockdown (under-
expressed: activated, over-expressed: repressed) during NHU di↵erentiation. Values shown (y
axis) are mean log fold change between the two last time points of NHU cell cultures (day 3
and 6) with versus without di↵erentiation induction (ABS or TZ/PD). right. Comparison of
expression following ELF3 knockdown and expression in di↵erentiated NHU. x axis, mean log
fold change between ELF3 and scramble shRNA. y axis, mean log fold change between the two
last time points of NHU cell cultures (day 3 and 6) with versus without di↵erentiation induction
(ABS or TZ/PD).

Figure 3.14 shows a comparison between the expression of genes following ELF3 knockdown
and of normal NHU di↵erentiation. These result show that the genes activated by ELF3
have an overall significantly higher expression in di↵erentiated NHU samples than genes
repressed by ELF3 (p < 10�20). Moreover, a comparison of the two sets of transcriptomes
(in form of mean log fold change, right panel of figure 3.13) shows a significant anti-
correlation (Pearson’s R2 : �0.27, p < 10�20) between the NHU di↵erentiation and the
ELF3 knockdown log fold changes. These results highlight the importance of ELF3 as a
Master Regulator of the normal transcriptional program of human urothelial di↵erentiation.

Epithelial-Mesenchymal Transition (EMT) is a process inducing stem cells and
migratory properties, prevents apoptosis and senescence, and normally occurs during
development and wound healing (Thiery et al., 2009). The acquisition of EMT feature by
cancer cell is generally considered as a pro-tumorigenic event as it confers to the cell several
of the hallmarks of a malignant phenotype. Interestingly, several markers of EMT such as
fibronectin, vimentin or the n-cadherin show a significantly higher level of expression, up
to a seven-fold increase, in ELF3 knockdown NHU (log fold changes: FN1 2.07, MMP2
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1.14, CDH2 2.86, VIM 1.42, all significant under 1% FDR).
Overall, these results show the importance of ELF3 in the regulation of the urothelial

di↵erentiation transcriptional program. This major role of ELF3 suggest that its frequent
heterozygous and deleterious mutations in bladder cancer cause a partial dedi↵erentiation
of urothelial similar to EMT. ELF3 was actually shown to be down-regulated in EMT and
to actively drive to opposite process of Mesenchymal to Epithelial Transition (reviewed in
De Craene and Berx, 2013).
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Figure 3.14: Expression of FGFR3 and MYC in the ELF3 knockdown experiment. Microarray
measurements of the expression FGFR3 in MYC following shRNA-mediated knock down of
ELF3 in NHU cultures after induction of di↵erentiation with 1µM troglitazone (TZ) and 1µM
PD153035 (PD) for 12, 24, 48 and 72 hours.

Interestingly, one of the genes with the highest decrease in expression following the
depletion of ELF3 in di↵erentiating NHU was FGFR3 with a four-fold decrease in
expression as shown in figure 3.14. The figure also illustrates the marked decrease in
the expression of MYC, recently identified as a downstream TF of the FGFR3 pathway
(unpublished result). FGFR3 is one of the most frequently mutated genes in bladder
cancer, most frequently presenting activating mutation (Cappellen et al., 1999). FGFR3
is a driver of 30% to 60% of bladder cancer, when including non-muscle-invasive tumors.
Recently, FGFR3 activating mutations were associated with the luminal-like subtype of
bladder cancer, which has the specificity to show particularly high levels of expression of
urothelial di↵erentiation markers although lower than normal urothelium (Cancer Genome
Atlas Network, 2014). Although ELF3 is necessary to the expression of FGFR3 in NHU
samples, luminal-like bladder cancers are mutated for ELF3 (24% mutated samples in our
cohort, 14% in the TCGA).

These unexpected evidences along with the fact that all identified ELF3 mutations are
heterozygous suggest that ELF3 is only partially altered in luminal-like FGFR3 -dependent
bladder cancer cells and that a minimal level of activity is necessary for FGFR3 mediated
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tumor progression in bladder cancer. Previous studies demonstrated the role of ELF3 as a
necessary e↵ector of the ERBB2 oncogenic pathway in breast cancer (Coppe et al., 2010)
and of the oncogenic NF-B regulator in prostate cancer (Longoni et al., 2013).

Given the major role of ELF3 in urothelial di↵erentiation and in oncogenic pathways
of cancers in other tissue, we propose a model of the subtype-dependent role of ELF3
in bladder cancer. Given that the a full activation of ELF3 triggers the urothelial
di↵erentiation program, ELF3 is required to be inactivated in all bladder cancer samples,
either by deleterious mutations or under expression as shown in figure 3.10. However,
given that a complete inactivation of ELF3 may cause a down-regulation of the FGFR3
oncogene, a partial inactivation is necessary in luminal-like FGFR3 -dependent bladder
cancer.

Figure 3.15: E↵ect of ELF3 knockout in FGFR3-dependent bladder cancer cell lines.
Quantification of viable cells following the transfection of a control or ELF3 targeting siRNA was
determined by colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]
assays. The data shown are numbers of viable cells relative to the control siRNA. Experiments
were conducted twice, each in triplicates.

In order to investigate this hypothesis of the ambiguous and context-specific role of
ELF3, the e↵ect of siRNA-mediated knockout of ELF3 on cell viability was assessed on
two FGFR3 -dependent cell lines: MGHU3 which is mutated for both FGFR3 and ELF3,
and RT112. The results of this functional validation are presented in figure 3.15 and show
a strong decrease on cell viability. Despite the mutation of ELF3 in the MGHU3 cell line
(RT112 is ELF3 wild type), its complete inactivation leads in a nearly 70% decrease in cell
number.

Altogether, these results highlight the complexity of the role of ELF3 in urothelial
carcinogenesis and more generally of a potential di↵erentiation-related progression pathway.
Further experiments are to be conducted, in particular, the re-expression of ELF3 in both
FGFR3 -dependent and basal-like related cell line will estimate to what extent ELF3 is to
be silenced to promote urothelial malignancy.
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3.6 Discussion

Through the inference of the regulatory networks controlling normal urothelial proliferation
and di↵erentiation and by the quantification of the use of such network in bladder cancer
sample, I could provide some computational evidences that cancer cells use normal
regulatory circuits. This analysis of the ”unending wound” at the level of cellular control
circuitry provides a model to identify the alterations of the normal proliferation and
di↵erentiation processes, whether it is through constitutive activation or inhibition of
normal regulatory programs or through their disruption and the creation of cancer-specific
networks.

This study was conducted with the understanding that the inferred regulatory networks
lack accuracy in terms of single interaction predictions. Therefore, no direct comparison
of an error-prone NHU network and another error-prone bladder cancer network was
performed. To ensure that errors in the network would have minimal impact on the results,
the influence measure proposed in the CoRegNet package was extensively used.

The main contribution of this work is the identification of two main transcriptional
programs, one regulating di↵erentiation and the other driving normal proliferation, both of
which are highly active in normal urothelial cells and genetically altered in bladder cancer.
While the proliferation program is clearly constitutively activated by aberrant number
of copies of the MYBL2 transcription factor, the analysis of the di↵erentiation program
revealed unexpected results. Although cellular di↵erentiation is a process that is thought
to be lost during tumor progression, at least at the microscopic level of histo-pathology,
the identification of PPAR� as a major oncogene revealed that some pathways related to
di↵erentiation are drivers of distinct bladder cancer subtypes.

The analysis of the normal programs showed that the seemingly necessary loss of
di↵erentiation is partly imputable to undoubtedly damaging mutations of ELF3, a
recently characterized master regulator of normal urothelial di↵erentiation. However,
our investigations showed that total abrogation of ELF3 leads to the substantial decrease
of proliferation of FGFR3 -dependent bladder cancer cell lines. These results indicate that
ELF3 is potentially a major e↵ector of transcriptional programs related to di↵erentiation,
whether these are driving normal cellular di↵erentiation or the proliferation of partially
di↵erentiated bladder cancer cells.

The hypothesis of di↵erentiation-associated carcinogenesis and more specifically of
ELF3 as both having a tumor suppressor role (activating di↵erentiation) and an oncogene
function (necessary for FGFR3 -driven proliferation) can have a major impact on our
understanding of bladder tumor progression. Clémentine Krucker at the Institut Curie will
perform further experimental investigations. At first, the e↵ect of the re-expressing ELF3
in bladder cancer cell lines on their proliferation will detail its role as a tumor suppressor
and potentially explain its frequent and heterozygous inactivating mutations. Then, the
depletion of ELF3 in particular in PPAR�-dependent cell lines will help understand its role
as an oncogene, or more specifically as a regulator with minimal-tumor-required-activity
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in bladder cancers partly retaining their normal di↵erentiation phenotypes and regulatory
programs.



Chapter 4
Pepper: Protein Complex Expansion using
Protein-Protein interaction networks

The project that I will describe in this chapter implicated several collaborators. In
particular, the integration of the algorithms into a Cytoscape application was done by
Charles Winterhalter.

4.1 Introduction

Most cellular processes require a large number of proteins to assemble into functional
complexes to perform their activity. Therefore, describing functional protein complexes
taking part in given processes is critical to the underlying molecular mechanism
understanding. Experimental protocols such as A�nity Purification followed by Mass-
Spectrometry (AP-MS) have been devised to precipitate or pull down a protein of interest
(bait) together with all the interacting proteins within the same protein complex (preys).
However, these sets of preys may contain both false positives, proteins detected despite not
actually interacting with the bait, and omit false negatives (Gingras et al., 2007), proteins
interacting in the cellular context studied but not detected. E↵ective control experiments
and usage of contaminants repositories can remove some false positives. However, false
negative interacting partners identification, thereby the definition of the entire protein
complex, remains challenging. Protein-Protein Interaction (PPI) data represents abundant
information that can be employed for this purpose.

Protein complexes extraction from PPI networks is a very active area of research and
many methodologies have been developed to tackle this problem. These computational
methods generally model protein complexes as dense subnetworks within the complete
set of PPIs and thus try to solve a graph-clustering problem or to identify dense regions.
Clustering approaches were shown to be e�cient either on large PPI networks or with
large-scale experimental settings in which big numbers of baits result in context-specific
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PPI networks (Bader and Hogue, 2003; Nepusz, Yu, and Paccanaro, 2012). However, these
algorithms were not developed for use in small-scale AP-MS experiments (e.g. using only
a single bait protein) and are unable to integrate experimental data with repositories of
PPI.

We reasoned that although not all the protein partners may be detected in a given
AP-MS experiment, these proteins might have been previously identified as interacting
with either the bait or some of the preys of the experiment. Based on this hypothesis,
we developed Pepper, which addresses the problem of finding protein complexes by
combining the experimental results of a single AP-MS assay with the available information
from protein interactions in a global PPI network. Pepper solves this non-trivial problem
by using a multi-objective evolutionary algorithm, which was tested to demonstrate the
relevance of our integrative approach. To do so, we used publicly available AP-MS datasets
for yeast and human species and compared Pepper’s results with those of state-of-the-art
protein complex discovery methods. Our findings highlight the relevance of integrating PPI
repositories to the analysis of AP-MS experiments. We propose Pepper as a Cytoscape
application to further refine protein complex predictions through functional and topological
analyses.

Figure 4.1: Schematic representation of the plugin. (A) Example of input data, a large-scale
PPI and the results of an AP-MS experiment with the bait and a list of prey proteins. (B)
Context-specific protein complex extraction pipeline. (C) Output subnetwork representing a
putative protein complex using only interactions from the input PPI network: example of WDR92.
Purple squares and green circles correspond to bait and prey proteins, respectively. Hexagons
indicate the expansions proposed by PEPPER and are shown in various shades of red, according
to their post-processing score. Dark red indicates a high predicted relevance to the solution. The
edges shown in the graph are exclusively those found in the input PPI network. Green edges are
set between seed proteins. All edges involving an expansion protein are red.

In the context of a single AP-MS experiment, Pepper aims to identify a dense
subnetwork within the PPI network connecting as many of the proteins identified in this
experiment as possible, referred to hereafter as the list of seed proteins. Pepper solves
this problem by maximizing two objective functions: i) coverage; a solution must contain
as many proteins from the seed protein list as possible, ii) density; a solution must contain
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as many interactions as possible. These objectives are often conflicting thus, no single
solution can be considered to dominate over the others. Instead, the optimal solution
is a Pareto optimal set with multiple solutions. SPEA2 (Zitzler, Laumanns, and Thiele,
2001), a popular Multi-Objective Evolutionary Algorithm, is used for the simultaneous
optimization of the two objective functions and to identify solutions approximating the
set of Pareto optimal solutions. These solutions are merged into a final predicted protein
complex by maximizing the modularity with a greedy search.

Pepper was developed as a Cytoscape application which uses a seed list of proteins
and a large-scale PPI network as inputs (figure 4.1A). In addition to the aforementioned
subnetwork extraction procedure, Pepper includes a topological and function-based
post-processing pipeline for ranking the added proteins (expansions) according to their
relevance (figure 4.1B). The predicted complex and each of the proteins are annotated based
on their cellular localization or function annotation specificity. Enrichment analysis is
complemented by matching the solutions to a collection of reference protein complexes, and
expansions are scored according to their co-occurrence with the seeds in these complexes.
Topological scoring is based on the impact of the expansions on the overall connectivity of
the subnetwork. Pepper uses these scores to rank expansions and to facilitate results
visualization and interpretation (figure 4.1C).

We assessed the performance of Pepper and two network clustering algorithms for
protein complex discovery - MCODE (Bader and Hogue, 2003) and ClusterONE (Nepusz,
Yu, and Paccanaro, 2012) - on a benchmark dataset of 135 yeast and 9 human single-bait
AP-MS experiments and using a set of hand-curated protein complexes as gold standards.
For network clustering methods, performance was assessed for each AP-MS experiment by
selecting the predicted complex which best matched the seed. For each experiment, the
reference complex from the gold standard best matching the seed was used as the ground
truth in a binary classification task. Compared to both of the clustering methods tested,
the complexes predicted by Pepper scored higher in all of the performance measures for
both organisms with notably an average increase of 16% of the geometric accuracy in
Human and 12% in Yeast.

As an example, we describe here the results obtained for the human WDR92 protein.
In the initial list of preys, WDR92 was identified as interacting with only one protein.
Pepper expanded the seed with three new proteins (figure 4.1C) and greatly increased
the overall density of the original solution (22% to 47%). The new expansion proteins
were ordered on the basis of post-processing score. The first two proteins, RUVBL1 and
RUVBL2 have both a high topological and Gene Ontology score. The lower scored protein,
MAP3K3, still remains relevant according to its high topological score (connected to more
than 90% of the predicted complex proteins). AP-MS experiments using RUVBL1 or
RUVBL2 as baits both identified WDR92 as a prey protein (Choi et al., 2010). Moreover,
in the raw WDR92 experimental data, the set of preys with lower processing scores
(based on peptide counts) than the threshold contains RUVBL1. Thus, the application
of Pepper to this experiment led to the recovery of proteins that would not have been
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identified otherwise (potential false negatives).
Overall, these results demonstrate the feasibility of expanding the protein complexes

identified in an AP-MS experiment through the use of PPI networks and the value of
Pepper for this purpose.

This study was published in the journal Bioinformatics in which the two first authors
contributed equally: C Winterhalter et al. (Aug. 2014). “Pepper: cytoscape app for protein
complex expansion using protein-protein interaction networks.” In: Bioinformatics

4.2 Methods

Problem Formulation

Given an unweighted and undirected graph G = (V,E) (PPI network) with V the set of
graph vertices (i.e proteins), E ✓ V ⇥ V the set of edges (i.e protein interactions) and a
list of interesting vertices P (seed list of proteins), the problem to be solved is to identify
subgraphs G0 = (V 0

, E

0) that are densely connected and include proteins in P .

Graph based objective The first objective is formulated as a maximization of the
subgraph density fdensity(G0). Computed as the ratio between the number of interactions
found between proteins of the subgraph over the total of all possible interactions, it is
defined as follows:

fdensity(G
0) =

2|E 0|
|V 0|(|V 0| � 1)

where V

0 is the set of proteins in a given solution G

0 and E

0 is a subset of E containing
only interactions between proteins in V

0.

Seed list based objective The second objective seeks to include as many seed vertices
(proteins of interest) of P as possible in G

0 and is referred to as the coverage:

fcoverage(G
0) =

|P
T

V

0|
|P |

which is maximized whenever all proteins of the seed |P | are chosen.
Both fdensity(G0) and fcoverage(G0) functions are ranged in [0, 1]. Adding a large number

of irrelevant proteins, up to an extreme solution in which all proteins are chosen (V 0 = V ),
will not degrade the coverage function. However, in practice increasing the number of
irrelevant proteins in V

0 rapidly degrades the density (fdensity) of the solution G

0. In the
same manner, small solutions may have high density (e.g. local cliques) but will rarely
include many seed proteins from P .
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Multi-objective optimization for relevant subgraph extraction

Finding dense subgraphs is an NP-hard task (Feige, Peleg, and Kortsarz, 2001).
Optimization of multiple objectives makes the problem become even more intractable. To
address the problem of extracting subgraphs satisfying the density and coverage criteria,
Pepper uses a Multi-Objective Genetic Algorithm (MOGA) approach to extract a set
of solutions maximizing both objective functions. MOGA belong to a family of meta-
heuristic optimization algorithms that mimic biological evolution and natural selection to
evolve candidate solutions then determine the fittest individual - representing a solution
- relatively to defined fitness functions. The Strength Pareto Evolutionary Algorithm 2
(SPEA2, Zitzler, Laumanns, and Thiele, 2001) was used to optimize simultaneously the
Graph- and seed list-based objective functions. The MOGA components and operators
are described in the following subsections.

Solutions representation and fitness function Given a PPI network G = (V,E),
a candidate solution is encoded into a binary chromosome of size |V | representing the
indexed set of V . A 1 value at position i corresponds to the presence of the i

th protein.
Pepper uses the SPEA2 implemented in the open-source JMetal platform (Durillo and
Nebro, 2011). Based on the notion of non-dominance for fitness evaluation, the algorithm
searches a set of Pareto optimal solutions. A solution is Pareto optimal when no other
solution is better in all fitness functions and therefore any of the objectives cannot be
improved without degrading another. For instance in our problem, a set of proteins is a
Pareto optimal solution when no other set has both a higher density (fdensity) and higher
coverage (fcoverage) and any other Pareto optimal solution with a higher value in one of
these function will necessarily have a lower value in the other. The output of the MOGA is
a set S of m solutions S = G

1
, G

2
, ..., G

m, which represents an estimation of the whole set
of Pareto optimal solutions, also called Pareto front. All the solutions in S are available
for custom visualization and post-processing in the Cytoscape app.

Initialization MOGA requires the initialization of a predefined number of chromosomes
(population). The initial population is constructed with chromosomes composed of random
proteins in P and as many proteins randomly picked in the neighborhood of P in G within
a radius of 2.

Genetic operators and parameter settings Pepper’s MOGA optimises fdensity(G0)
and fcoverage(G0) objectives by performing changes driven by mutations (adding or removing
a protein) and crossing-over (interchanging sets of proteins in two independent solutions)
operators among chromosomes. At each iteration of the algorithm, random chromosome
pairs are exposed to these operations and generate o↵spring sets. Given the two objectives,
fittest chromosomes are then selected by binary tournament to evolve the population.
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Figure 4.2: E↵ect of parameters on density and modularity. Density and modularity of the
merged optimal Pareto solutions as a function of the number of generations and size of the
population. Results obtained on the ATG10 protein of the autophagy proteomic study. The error
bar correspond to the standard deviation of 5 replicates.

The MOGA requires several parameters that mainly impact the rate of convergence.
These parameters include size of the population (number of individuals in a generation),
number of generations (iterations), mutation rate, crossover rate and size of the Pareto
front to return. In order to define a set of default parameters, we tested the MOGA
on a Human proteomics dataset of the autophagy system (Behrends et al., 2010) using
the Hippie protein network (Schaefer et al., 2012) after removing protein interactions
originating from the proteomics study. Figure 4.2 shows density and modularity values of
the merged pareto solutions (see next section) as a function of their size and the number
of generations. Using 200 individuals per generation allowed to converge rapidly and with
lower variance, as early as 500 generations for the example given in figure 4.2. Based



4.2. METHODS 137

on these results and on general observations of other proteins from the same dataset, in
Pepper , default number of generations was set to 1,000 and number of individuals to
200. Maximum coverage is virtually always obtained independently of the parameters
and is therefore not shown. The other parameters of the MOGA were set to the standard
SPEA2 in the JMetal platform and are reported in table 4.1.

Parameter Value

Population size 200
Crossover PC = 0.90
Mutation PM = 0.10
Number of generations 1000
Pareto front 10 solutions

Table 4.1: Parameters of the multi-objective evolutionary algorithm. Crossover and Mutation,
the genetic algorithm operators, are expressed as probabilities.

Merging Pareto optimal solutions. From the union of Pareto optimal solutions [S,
we devised a simple algorithm to build a consensus modular subnetwork noted Sf . The
use of modularity is based on a common observation that functional processes are often
found in modular subparts of biological networks. This inspired clustering algorithms to
use this measure that has led to successful application in particular in protein complex
discovery problems (Nepusz, Yu, and Paccanaro, 2012). The modularity is defined here
for a subset of proteins as the ratio between the number of interactions that occur only
between these proteins against the number of other interactions involving these proteins
in the whole PPI (G). It can be computed for a subgraph G

0 = (V 0
, E

0) as follow :

fmodularity(V
0
, E

0) =

P
i,j2V 0,i 6=j E

0(i, j)

2 ⇥
P

i2V 0,j 62V 0 E(i, j)

with G = (V,E) and G

0 ✓ G.
The merge algorithm starts from all the proteins in P that were found in at least one

solution ([S \ P ) and iteratively tries to add one of the remaining expansion proteins
([S \ P ). At each step the expansion protein, which maximizes the overall modularity is
kept until it cannot be increased anymore. This greedy algorithm has two characteristics.
First, it keeps all the proteins from the initial set P which were identified in at least one of
the Pareto optimal solutions of S. Second, it helps removing non-specific proteins which
could have been added because of their high connectivity (which will increase density) but
low specificity to the subnetwork of interest (which will decrease modularity), typically
hub proteins of the network.

The final consensus network Sf is the protein complex predicted by Pepper. Union of
all optimal solutions ([S) and predicted complex are the networks that are first generated
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by Pepper in Cytoscape, showing a mixture of expanded and initial proteins as well as a
bait protein if provided. All solutions in S are also available for visualization and analysis
in Cytoscape Results panel.

Assessment of predicted protein complexes

A set of methods is used to analyze the specificity of the predicted expansions to the
solution and the initial list of proteins of interest (P ). This allows indicating the relevance
of the overall predicted protein complex and of each of the expansion proteins. Four
scoring measures are browsable in Cytoscape Results panel for a given predicted complex
and viewable as a color code for the expansion proteins based on:

• topological connectivity to assess the importance of a protein in connecting the
predicted complex

• co-occurrence in a repository of hand-curated protein complexes
• similar functional annotation, particularly in terms of cellular localization and

function
The aforementioned analysis is proposed as an integrated pipeline automatically performed
following the evolutionary-base network extraction and merge steps.

Topological considerations. Four topological properties are used: degree and clustering
coe�cient, known to be good assessment factors in cellular biology and proteomics studies
(Aittokallio, 2006; Glaab et al., 2010; Ozgur et al., 2008); modularity, which is used in the
merge algorithm and more generally used for protein complex discovery (Nepusz, Yu, and
Paccanaro, 2012); and closeness centrality, a measure used as an indicator of the overall
similarity of a network nodes (Ozgur et al., 2008). These measures were calculated for:

1. The whole predicted subnetwork, i.e. the solution given by Pepper noted Sf

2. Only proteins of interest used as an input to Pepper present in the final solution
(P \ Sf )

These measures are reported in Cytoscape Results panel, in which di↵erences between
the original list and the final solution serves as a first indicator of Pepper’s predictions
importance. Then, each of these topological measures are computed for each of the
expansion proteins and are summarized in a global topological score ranged in [0, 1] using
the following formula:

Scoretopology(X) =

P
⇡2⇧

X⇡
max(⇡)

|⇧|

with X a given protein, X⇡ the measure ⇡ associated to the protein X, max(⇡) the
maximum observed for measure ⇡ in the subnetwork and ⇧ the set of all the topological
measures used: degree, clustering coe�cient, modularity or closeness centrality.
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Overlap with known protein complexes. Pepper was developed to solve problems
encountered in proteomics studies, in particular for protein complex discovery. Therefore,
the second measure of similarity takes into account the co-occurrence of predicted proteins
in large collections of hand-curated protein complexes. These are available inside the
plugin and were retrieved from the CYC2008 database for S. cerevisiae (Pu et al., 2009)
and the CORUM database (Ruepp et al., 2009) for mammals.

Predicted complexes are evaluated using the matching score (also known as overlap
score in Bader and Hogue, 2003):

MS(S,R) =
|S

T
R|2

|S| ⇤ |R|

where S and R respectively correspond to the sets of proteins in the predicted and reference
complexes. The latter matching score is computed for any reference protein complex
that presents at least one protein in the predicted subnetwork. For each match between
a predicted and reference complex, Pepper also generates and displays its associated
performances in terms of sensitivity, precision and geometric accuracy (cf. section 4.3).

In order to evaluate and rank expansion proteins, each expansion is scored based on its
occurrence in reference complexes associated to the solution given by Pepper. This score
is weighted by the matching score to give higher ranks to proteins that occur in reference
complexes, which are more relevant to the solution. It is computed as follows:

Scorecomplex(S,X) =

P
r2R |X \ r| ⇥ MS(P, r)

|R|

where S is a Pepper predicted complex, R is the set of reference complexes with at least
one protein shared in S and X is one of the expansions in S. Known protein complexes
matching thus results in a detailed list of overlapping complexes with Pepper predictions
but also provides a score translating expansions importance in those complexes.

Common functions and co-localization. Proteins associating in a complex are
necessarily co-localized in the cell and are likely to share a given biological function.
Based on this, gene annotations of cellular function and localization were used to estimate
the relevance of the predicted complex and each of the expansion proteins. This was
computed based on the Gene Ontology (GO) annotations. A hypergeometric test is used
to identify Biological Process and Cellular Component annotations that are significantly
associated with the predicted protein complex (with ↵ < 5%).

To evaluate expansion proteins individually, each of them are scored by the number of
annotations they share with those found to be specific to the overall predicted complex as
follows:

ScoreGO(X) =
|XGO \ SGO|

|SGO|
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where SGO is the set of GO terms (Biological Process: gobp; or Cellular Component: gocc)
associated with a solution of Pepper S (fisher’s exact test ↵ = 5%), X is the protein
contained in S that is scored and XGO is the set of annotations of X. Each expansion
protein is scored by the number of functional and localization terms it shares with the
overall predicted complex.

Protein expansions global score. The integrated post-processing pipeline provides
four distinct scores related to: (i) topology, (ii) reference complexes, (iii) Biological Process
GO terms and (iv) Cellular Component GO terms. To summarize the information at a
higher level, expansion proteins must be characterized by an integrated post-processing
score. Several aggregation methods can be used to merge and normalize scores in a [0, 1]
range: mean, max or min. In order to identify the best aggregation method, we compared
the ranking of the expansion proteins using these methods with an approximation of the
optimal ranking. The reference ranking is defined by the ranked list that minimizes the
distance with the rank given by each of the individual scores. This optimal ranked list
was obtained using the R package RankAggreg Pihur, Datta, and Datta, 2009, which
uses a Cross-Entropy method to identify the ranking minimizing the sum of absolute
di↵erences with the ranks of each individual score. Because of the computational time
required to obtain this optimal ranking, RankAggreg was used only for comparison and
was not directly integrated in the pipeline.

Figure 4.3: Ranking aggregation methods. Distribution of Spearman correlations between
optimal rankings of expansion proteins identified RankAggreg and ranking obtain by several score
aggregation methods.

Figure 4.3 shows the distribution of Spearman correlations of several score aggregation
methods with the optimal ranking from RankAggreg for 10 sets of expansions from 10
pull-down assays led in the Human autophagy system (Behrends et al., 2010). Besides
mean, max and min, we also used the score integration function introduced in the String
database (Mering, 2004) (1 �

Q
i

(1 � Si), with Si corresponding to each individual scores).
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These results show that the mean of the scores is the closest to the optimal ranking of the
expansion proteins. The min function also appears to be an e�cient aggregation method;
however, a large set of expansions present at least one null score (approximately 30%).

In order to bring more flexibility to the global score calculation, Pepper gives the
possibility to add weights to each score and compute a weighted arithmetic mean such as:

ScorepostProcess(X) =

P
i2⇣ !ixiP
i2⇣ !i

where X represents a specific protein expansion, x its associated score to a post-processing
feature, ! the weight given to the latter feature within ⇣ the set of post-processing
assessment criteria:

⇣ = {Scoretopology, Scorecomplex, Scoregobp, Scoregocc}

Each score weight has a default value equal to 1, which summarizes equally the
information from each post-processing feature into a common mean 1

n

Pn
i=1 xi, where n is

the overall number of assessment criteria. Choice to modify weights individually is left to
users in Pepper post-processing panel ”Overview” tab. Tuning those parameters is a way
to make abstraction of certain properties, which may be helpful for results visualization
and interpretation since the plugin automatically updates the overall post-processing score
as users modify weights. Pepper dynamically translates each expansion overall score into
a red color gradient (the darker the higher) in Cytoscape graphs.

4.3 Performance comparison

Comparison principles

To evaluate the ability of Pepper to find relevant protein complexes, we applied it to
real A�nity-Purification followed by Mass-Spectrometry (AP-MS) data and compared
the results to gold standard sets of hand-curated reference protein complexes. Each of
the AP-MS experiments performed on a single bait protein resulted in a list of preys and
the union of both was used as a seed list of proteins. For each seed, the best matching
reference complex from the gold standard was considered as the complex to be predicted.
Therefore, only AP-MS with high matching reference complexes and for which no ambiguity
was possible (only one highly matching reference complex) were selected. Pepper was
directly applied to each of these selected seeds. State-of-the-art protein complex discovery
algorithms based on graph clustering, namely MCODE (Bader and Hogue, 2003) and
ClusterONE (Nepusz, Yu, and Paccanaro, 2012), were used for performances comparison.
Network clustering methods do not aim at finding protein complexes from a seed protein
list of interest but rather enumerate all protein complexes in a PPI network. Therefore,
these two methods were applied to the PPI network also used in Pepper and the extracted
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Figure 4.4: Pepper, MCODE and ClusterONE performances. (A) Protein complexes predicted
from 135 single Bait AP-MS experiments in Yeast. (B) Protein complexes predicted from 9 single
Bait AP-MS experiments in Human. The statistical significance is shown for comparison between
MCODE and Pepper as well as ClusterONE and Pepper (* : ↵ = 5%)

complex with the highest overlap with the seed was considered as its associated prediction.
For fair comparison, we tested several overlapping measures (intersection, Jaccard and
Matching-Score) and reported only the results of the measure with highest performance,
which was obtained with the absolute size of the intersection.

Assessing performances

For each of the protein complexes predicted by Pepper, ClusterONE or MCODE, the
overlap of the set of predicted proteins with the known complex was computed as well as
four common prediction performance measures:

• True Positive, TP: the number of proteins of the predicted complex that are found
in the reference complex.

• True Negative, TN: the number of proteins that are not in the predicted complex
and that are not found in the reference complex.

• False Positives, FP: the number of proteins of the predicted complex that are not
found in the reference complex.

• False Negative, FN: the number of proteins that are not in the predicted complex
that are in the reference complex.

Because the total number of proteins in the PPI network is several orders of magnitude
higher than the number of proteins in the predicted or reference complexes, the number
of TN provides little information. Therefore, we chose the following measures commonly
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used in information retrieval:
• sensitivity, also called True Positive Rate (TPR), which evaluates how well positives

are predicted,

Sn =
TP

TP + FN

(4.1)

• precision, also called Positive Predictive Value (PPV),

Prec =
TP

TP + FP

(4.2)

• geometric accuracy,
Acc =

p
Sn ⇤ Prec (4.3)

• density which measures subgraphs connectivity degree

Density(V ) =
2|E|

|V |(|V | � 1)
(4.4)

where V and E respectively stand for the set of vertices (proteins) and edges (interactions)
in a graph.

Results

A gold standard of manually curated protein complexes was used as a reference for
Saccharomyces cerevisiae (Pu et al., 2009) and Homo sapiens (Ruepp et al., 2009). Single
bait AP-MS experiments were obtained from a large-scale study in Yeast (Gavin et al.,
2006) and Human (Choi et al., 2010). For each experiment, the bait and its associated set
of preys were used as the seed list of proteins. Data for Yeast was already a set of curated
proteins. In Human, only high-confidence proteins (SAINT score greater or equal to 99%)
were kept as a list of preys. In order to assess the quality of predictions, only experiments
for which a reference gold standard is available were selected. To this end, seed lists were
selected based on the overlap with one of the complexes in the gold standard according to
two criteria:

• the seed should contain more than 5 proteins in the same gold reference protein
complex

• more than 50% of the seed should be contained in the same reference complex
From this filtering, 135 and 9 lists of seeds were selected for Yeast and Human

respectively. The PPI networks used for the analysis were the default Yeast Biogrid
network (Stark et al., 2010) and the HIPPIE database (Schaefer et al., 2012) for Human.

Performances of our method are reported in figure 4.4 alongside with those of MCODE,
ClusterONE and of the original list of proteins used as seeds. Significant di↵erences
between Pepper and MCODE or ClusterONE were computed using Student’s two-sided
t-test with ↵ = 5%. The higher performance of Pepper is statistically significant except
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for density and precision in Human species. Moreover, unlike ClusterONE, MCODE
identifies protein complexes for only a small portion of the total number of proteins. In
Yeast, only approximately 40% of the proteins of the PPI network (2,449 out of 5,968
proteins) where assigned to a predicted complex whereas ClusterONE predicted a complex
for nearly 80% of the proteins (4,742). The Human PPI networks being less connected,
these proportions drop to 17% for MCODE and 36% for ClusterONE. Therefore, many
seed lists of proteins that can be assigned to a known protein complex cannot however be
mapped to an MCODE predicted complex. The results obtained with Pepper in Yeast
or Human always showed an increase in all of the classification performance measures as
compared to the original list of proteins or to the two tested methods. Interestingly, this
increase in performance is associated with an increase of the density in Yeast. In Human,
however, ClusterONE and Pepper find protein complexes with very similar densities.
Yet, Pepper significantly outperforms ClusterONE with an average increase of 16% in
accuracy and of 30% in sensitivity. These results suggest that extracting solutions solely
based on optimising topological measures can be improved by integrating the context
specificity of real experimental data.

4.4 Case study

An example of usage of Pepper is shown in figure 4.5 for a particular application on the
Human protein WDR92.

Input data

The experimental results of an AP-MS assay performed using WDR92 as a bait protein
were obtained from a previously published study (Choi et al., 2010). From the raw list of
proteins identified in the assay, 10 high confidence prey proteins (SAINT score greater or
equal to 99%) were selected (list available as Supplementary File). In all, 8 interactions
were found between all the proteins identified by the assay and three of the preys (ACTB,
CCAR1 and MYBBP1A) were not connected to any of the other preys.

Main prediction results

From the seed list, Pepper generated a consensus subgraph covering 75% of the initial
seed proteins with density and modularity values of respectively 0.47 and 0.032 ( figure
4.5B). The complex predicted by Pepper and the original network built from the seed
list are shown in figure 4.5F-G. Pepper predicted three expansions : RUVBL1, RUVBL2
and MAP3K3.

The expansion proteins predicted by Pepper greatly increased the connectivity of
the initial solutions, which was measurable for several topological features described in
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Figure 4.5: Pepper user interface. A view of the user interface of Pepper in Cytoscape
and the application to the WDR92 case study. (A) Necessary inputs are the organism (with
default PPI networks for Human, Yeast and Mouse) and the list of seed proteins. (B) The
predicted protein complexes, including first the final merged solution then all the Pareto optimal
solutions and its union, are directly visible in the first tab of the result panel. The second tab
shows the results of the post-processing scores including (C) topology feature di↵erences when
considering extracted subgraphs without or with Pepper expansions, (D) occurrence of proteins
of the solutions in reference protein complexes and (E) enriched GO terms. The set of proteins
of a given solution that co-occur in a particular reference protein complex or are annotated with
a specific GO term, are highlighted clicking on the annotation of interest in the result panel. The
network formed by adding known interactions between proteins of the seed list (F) and between
the proteins predicted by Pepper to form a complex (G) are visible at the end of the run. Green
nodes are prey proteins, the squared purple node is the bait and hexagonal nodes are expansions
predicted by Pepper with a color code (light to dark red) increasing with significance. Green
edges represent interactions between seed proteins whereas red edges connect expansion proteins
added by Pepper, both originating from the input PPI network.
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Section 4.2 (example of the clustering coe�cient in figure 4.5C). For instance, degree and
modularity values showed more than a two-fold increase. The expansions also slightly
increased the overall subnetwork closeness centrality. Finally, the clustering coe�cient
was more than three times higher with than without expansions. Proteins added by
Pepper significantly a↵ected the apparition of cliques (fully connected components) in
the subnetwork, thus increasing the complex connectivity.

No protein complex was found to be associated with the original list of seed proteins.
Matching Pepper’s predictions to the reference protein complexes resulted in 56 mapped
known complexes when considering all solutions (figure 4.5D). Among these, 43 were found
to overlap with at least one protein of the final solution. The best matching complex
was the URI complex (Unconventional prefolding RPB5 Interactor) with a matching
score of 0.1481, associated to two of the seed proteins and two of the expansions. While
the interpretation necessitates further experiments to validate whether this complex is
formed in the studied system, Pepper provides directions for validation by prioritizing
the candidates.

Among the significantly enriched cellular processes, several functions related to histones
acetylation and methylation were found and respectively linked to RUVBL1/2 (expansions)
and WDR92 (bait) proteins. Annotation of proteins and their cellular localization provided
information about the possible localization of the complex in the nucleus, which is consistent
with the putative association with the URI complex and the possible function in histone
modifications (figure 4.5E).

Finally, expansion proteins were found with post-processing scores of 0.21 for MAP3K3
and 0.42 and 0.44 respectively for RUVBL2 and RUVBL1 proteins. RUVBL1 actually
appears as a prey protein of WDR92 with a very low number of unique peptide (only
one) and a low SAINT score (0%) and therefore did not pass the detection threshold.
Furthermore, AP-MS using both RUVBL1 and RUVBL2 also identified WDR92 as a
prey. Altogether, these results strongly suggest that WDR92 forms a complex with both
of these proteins predicted as expansions by Pepper.

4.5 Discussion

The proposed method is a contribution to several aspects of science. First to graph theory,
as an algorithm to extract dense subgraphs with a maximum number of nodes of interest.
Second to bioinformatics, as a novel method for gene set analysis for which a highly
connected functional network can be associated. And third to biology, as a pipeline to
analyze proteomic data.

The use of a multi-objective genetic algorithm enabled us to solve the di�cult problem
of searching in a large space of possible solutions to extract several dominant solutions
maximizing both the density and the coverage of the initial list of interest. Evolutionary
algorithms have the main disadvantage of being random in nature and therefore providing
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results with small variations when ran multiple times. Pepper partially solves this problem
by merging several solutions using an e�cient and deterministic pruning algorithm.

The extensive evaluation of Pepper on real protein complex datasets of Yeast and
Human supports its ability to retrieve relevant biological structures in protein interaction
networks. This is further exemplified by the analysis of the FGFR3 signaling pathway
driving bladder cancer growth in the next chapter.

Further improvements of the algorithm includes the investigation of other objective
functions to optimize the relevance of the solution to the network structure, for instance,
the clustering coe�cient may be more suitable than the density to identify complexes or
pathways with high local densities. Pepper and the multi-objective genetic algorithm it
uses provide an excellent basis to solve other complex biological problems. Indeed, the
existing objectives can be easily complemented by a third function to be maximized, for
instance the number of alterations found in the proteins of the solution in order to identify
highly altered and context-specific signaling pathways. The addition or replacement of the
objective functions can potentially result in numerous other applications such as modeling
entire signaling pathways including the transcriptional regulation step or integrating
phospho-proteomic, genomic or transcriptomic data. All these potential applications only
require the design of new appropriate objective functions.
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Chapter 5
Joint proteomic and transcriptomic
characterization of the FGFR3 signaling
pathway driving bladder cancer

The project that I will describe in this chapter implicated numerous collaborators. The
results were obtained in close collaboration with the platform for proteomics of the Institut
Curie, directed by Damarys Loew. Cellular constructions and validations were done by
Johannes Aubertin and Mélanie Mahé.

5.1 Introduction

Fibroblast growth factors receptors (FGFRs) are implicated in fundamental cellular
processes such as proliferation, migration, di↵erentiation, angiogenesis and wound healing
(Korc and Friesel, 2009). Therefore, and as expected, the alteration of these receptor
tyrosine kinase (RTK) leads to diseases. Activating germline mutations of FGFR3 results
in dwarfism and severe skeletal disorders caused by an inhibition of bone cell growth (Naski
et al., 1996). The same mutations and constitutive activation of FGFR3 in their somatic
form drives specific human tumors and in particular is a major driver of bladder cancer
(Cappellen et al., 1999) in which it is among the most frequently mutated genes (30% to
60%). The ambiguous role of FGFR3 in the regulation of cellular proliferation and its
obvious dependency on cellular context is underlined by a recent description of FGFR3 as
a tumor suppressor gene in transformed epithelial cells (Lafitte et al., 2013). The ambiguity
in the consequence of FGFR3 mutations suggests a diversity of co-factors and e↵ectors
leading to opposing cell fates. Therefore, a thorough definition of its downstream signaling
pathway is key to the understanding of its oncogenic function in cancers.

In order to determine the oncogenic pathway driven by FGFR3 mutations in bladder
cancer, we devised a novel approach based on a joint proteomic and transcriptomic

149
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analysis. The idea is to resolve the entire pathway by identifying a protein-signaling
pathway connected to a set of transcription factors that convey the signal to the nucleus.
We first propose a model of the FGFR3 signaling pathway by extracting a set of FGFR3-
associated proteins from a Immuno-Precipitation (IP) followed by Mass-Spectrometry
(MS) experiment. The identified proteins are connected into a functional network using a
reference protein interaction network and an algorithm for pathway extension, Pepper
(Winterhalter et al., 2014). Then, using an siRNA-mediated knockout of FGFR3, the
genes responding the activation of FGFR3 are used to identify upstream regulators of the
transcriptomic response signature. Finally, the transcription factors linking the FGFR3
proteomic and transcriptomic response are discussed and their role are further analyzed to
understand the oncogenic function of FGFR3 in bladder cancer.

5.2 Deriving FGFR3-associated signaling proteins

In order to identify the downstream e↵ectors of FGFR3 oncogenic signaling in bladder
cancer, we established three model systems of FGFR3 constitutive activation. A tagging
FLAG sequence was introduced in the extracellular N-terminal domain of the FGFR3
coding sequence to avoid interference with the intracellular binding partners. These
FGFR3-tagged clones were stably expressed in the FGFR3-dependent bladder cancer cell
lines RT112 (Qing et al., 2009). Three types of coding sequences were transfected and
stably expressed as illustrated in figure 5.1. First, an isoform for which the serine at
position 249 is replaced by a cysteine, which is thought to constitute a di-sulfide bond,
thereby constitutively forming an active FGFR3S249C homodimer. Second, an isoform for
which the tyrosine at position 375 is replaced by a cysteine, which is though to have the
same e↵ect on the activity of the receptor. Finally, the wild type isoform (often noted
FGFR3-II or FGFR3-b) was transfected and expressed in high exogenous levels, which
when resulting in high protein level is thought to form homodimers by e↵ect of mass-action.

Immunoprecipitates of the FLAG-FGFR3 protein using anti-FLAG antibodies were
analyzed by Mass-Spectrometry (MS). Six replicates of each construct (2 removed for the
wild-type construction after quality check), as well as six control clones with non-FGFR3
coding transfections, were analyzed by MS. In all, 2,315 proteins for which at least one
unique peptide was correctly mapped were identified. Any proteins for which one peptide
was found in any of the control experiments were removed resulting in a set of 1,093
putative partners. The top proteins of each experiment are listed in table 5.1.

We first tested whether the three constructs identified di↵erent proteins, that is,
whether various activation of FGFR3 resulted in di↵erent signaling protein partners.
Firstly, no protein had a significantly di↵erent distribution of number of peptides between
each set of experiment (kruskal-wallis, FDR 10%). Therefore, no proteins could be
identified as a predictor of the type of FGFR3 transfected. Second, the jaccard coe�cient
of similarity (jaccard(a, b) = a\b

a[b) was computed between each pairs of experiment to
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Figure 5.1: The three FGFR3-tag constructions analyzed using Mass-Spectrometry. Top. Three
tagged (red) FGFR3 constructions were stably expressed in a bladder cancer cell line. Rough
positions of the introduced mutations in two first constructions (S249C and Y375C) are shown
by a red line. Putative di-sulfide bonds are shown by a thick yellow dashed line. The plasmid
membrane is shown by two black parallel lines. ig: immuno-globulin domain; tk: tyrosine kinase
domain.
Bottom. Top co-precipitated proteins identified by Mass-Spectrometry in each construction.
Showing as an example the 4 proteins to which the most unique peptides were matched.

measure the similarity in terms of protein content (all proteins with at least 3 unique
peptides). Figure 5.2 shows the distribution of the similarity of the set of identified proteins
among each experimental setting and between all pairs of single replicate experiments.
The sets of identified proteins are as similar (or dissimilar) among each type of clones
(intra-experiments) than between each experiment independently of the type of FGFR3
expressed (inter-experiments). As no di↵erence were observed between each constructions,
these were pooled and the final list of co-precipitated proteins was defined as the set of
proteins for which at least three peptides were found in at least two experiments. This
resulted in a set of 60 high confidence proteins, hereafter referred to as the core proteins.
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Figure 5.2: Distribution of jaccard coe�cients between each MS replicate. Jaccard coe�cients
were computed between all pairs of experimentally identified sets of FGFR3-co-precipitated proteins
(6 S249C, 6 Y375C and 4 WT). The distribution of the jaccard coe�cients are shown either for
each pairs of experiments of the same construction (noted: S249C, Y375C or WT) or for all
pairs of experiments.

5.3 Protein interaction-based FGFR3 signaling path-
way expansion

To analyze the set of identified proteins in a comprehensive way, the previously reported
physical interactions between these proteins were retrieved from a high confidence database,
HIPPIE (Schaefer et al., 2012). Two proteins only were already known to interact with
FGFR3, the solute carrier SLC25A6 identified in a large-scale proteomic screen and the
co-chaperone CDC37, which has been described as necessary to the stability and function
of FGFR3 (Laederich et al., 2011). In all, 20 interactions between the set of 60 high
confidence proteins were previously reported (see figure 5.3). Notably, interactions between
and with tubulin subunits (TUBA1A, TUBB6 and TUBB3), between proteins involved in
endocytosis (TFRC and RAB5B) with a potential role in transport of the receptor and
interactions between subunits of the SWI/SNF family of chromatin remodelers (SMARCA2
and SMARCA4) suggesting FGFR3 to eventually have an impact on the expression of
downstream genes. Overall, the small number of interaction found between the identified
proteins suggests that the list of partners is incomplete as it is often the case in proteomic
MS experiments (Gingras et al., 2007).

In order to obtain a comprehensive FGFR3 signaling pathway, we applied PEPPER
(Winterhalter et al., 2014) on the list of 60 high-confidence core proteins. PEPPER aims
at constructing a signaling pathway by densely connecting a set of seed proteins in a
large-scale protein interaction network. This resulted in a small network of 136 proteins
containing 57 of the core proteins and 1,738 referenced interactions. Interestingly, the 79
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Figure 5.3: Interaction previously reported between the 60 high confidence FGFR3 co-precipitated
proteins. The interactions originate from the HIPPIE database of curated protein-protein
interactions.

added proteins significantly overlapped with the proteins identified in the MS experiments
(38 overlapping with all proteins with at least one peptide, fisher’s exact test < 1% ; 12
overlapping with all proteins with at least one peptide and none found in any control
experiments, fisher’s exact test < 1%). The pathway extracted using PEPPER is shown
in figure 5.4 with proteins grouped by general cellular functions each of which contains at
least a high-confidence protein (square). The two most significantly represented functions
are related to general Receptor Tyrosine Kinase (RTK) signaling pathways such as the
Mitogen Activated Protein Kinase pathway (KEGG, fdr < 10�7), to the cell cycle (KEGG,
fdr < 10�4) and to the regulation of apotosis (GO, fdr < 10�10). The identification of
proteins involved in translation, post-translational modification and transport are most
probably a reflection of the route of FGFR3 from its synthesis to its activity as a growth
factor receptor. Interestingly, the presence of general and specific transcription factors,
co-factors and chromatin remodelers, suggest that FGFR3 controls a signaling pathway
that eventually leads to a gene-specific transcriptional control.

Constitutive activating mutation of FGFR3 is a major driver of cell survival and
proliferation in bladder cancer cell lines. Therefore, we can assume that a large portion
of the proteins in the downstream pathway should have an impact on the cell viability
and proliferation. To determine the functional relevance of the FGFR3 signaling pathway,
we used the Achilles (Cheung et al., 2011) in vitro short hairpin RNA (shRNA) screen
for cancer gene vulnerability, which measures the impact of down-regulating 11,194 genes
on the survival of cancer cell lines and in particular of the RT112 bladder cancer cell
line. The impact of the entire FGFR3 signaling pathway on the survival of RT112 was
significantly higher (Student’s test, < 10�5) than the controls. The protein interaction
network in figure 5.4 shows the mean vulnerability score of all the proteins for which the



154 CHAPTER 5. FGFR3 SIGNALING PATHWAY

BLVRB

PYCR2

NT5E PYGB

PPA1EPRS SDHB

PYCRL

MAP3K3

MAP3K1

FGFR2

GRB2

MAP3K14

MAP3K7

AKT1

YWHAG

YWHAB

YWHAQ

YWHAZ

YWHAE

HTT

KIAA0101PKP3H2AFX

LRRC1

ALPP RAVER1

GBAS DDX3X HSP90AB1

TAB2

TRAF6

CSNK2A1

TRAF2

SRC

FGFR3

HSPA1L MYO18A RPS3SUMO1RIPK3 HSPA9

GABARAP VIMGABARAPL1SPTAN1 INF2

LLGL1MAP1LC3A TUBA8MAP1LC3BTUBB CAPZB

CALM3ACTB TUBB3TUBB6 KRT33BTUBA1A

ARRB2

AP2B1 CDC37

TFRC MYH10ARRB1

CLTC

MYO1C

RAB5B TOMM34

SEC23B

EIF5

EEF1A2

DDX5

HSP90AA1PRKDC

EIF4A2 RPS14DNAJC10

TP53

AR

HMGB1 BRCA1

SMAD3

SMAD2

ESR1 MYC

ESR2

NFKB2 IKBKB

IKBKG

RELA
NFKBIAIKBKE

NFKB1

SMARCA2

HDAC1
HDAC2

NPM1SNW1

SMARCA4

SMCHD1

HDAC5

RUVBL1

RUVBL2

CREBBP

SP1

EP300

SRRT

FLNA

PPP2R1A THOC2

LRP1HNRNPH2

ADAR
HNRNPU

HNRNPH1

HNRNPA2B1

HNRNPA1
SLC25A6CDC5L SUMO2HSPA1B

USP7

SCRIB HSPA5

VAPBHSPA8MCM5 TIAL1 SQSTM1PPP2R2B CHUK

protein transport 

Transcription factors Chromatin remodeler and 
Transcription co-factors 

Other cellular functions 

cell cycle and apotosis related 

post transcriptional procsses 

metabolism Cytoskeleton-related 

MAPK 
and RTK 
signaling 

Figure 5.4: FGFR3 signaling pathway. Interaction network of the proteins predicted to be part
of the FGFR3 signaling pathway. Proteins are grouped by cellular functions based on pathway and
ontology annotations. Nodes are shaped depending on their identification in the MS experiment
and colored by their impact on cell survival and viability ( colored using a red to blue gradient
denoting red for high impact and blue low, gray no data). Square nodes (and a diamond for
FGFR3) are high confidence proteins for which at least 3 unique peptides were found in at least
two experiments and none in the control experiments. Hexagons and octagons have a few peptides
in the FGFR3 experiment while only octagons also have peptides in the control experiments.
Finally, round nodes are proteins for which no peptides were identified in the FGFR3 experiment.

coding gene was tested in the screen.
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5.4 Master regulators of the FGFR3 signaling
pathway

The activation of growth factor receptors and its downstream signaling pathway eventually
impacts cellular behavior by regulating the transcriptional rate of specific genes. In
order to identify the final e↵ectors of signal transduction, we then aimed at identify the
transcription factors responsible for the response to the activation of FGFR3 in bladder
cancer cell lines. The strategy we employed to link the FGFR3 signaling pathway with
the transcriptional response to the pathway activation is described in figure 5.5a.

In essence, we derived a response signature of genes that have a di↵erent transcriptional
rate following an abrogation of the FGFR3 signaling using siRNA transient gene knockout.
Then, we searched for transcription factors (TF) potentially regulating these genes.
Regulons, defined as the set genes specifically regulated by a transcription factor, were
derived from public ChIP-seq and ChIP-on-chip datasets from the ENCODE project
(Gerstein et al., 2012) and the CHEA2 repository (Kou et al., 2013). The predicted
upstream TF were more than five-fold enriched in the set of TF identified in the FGFR3
pathway (fisher’s exact test p = 0.001719) with 10 overlaping TF. Figure 5.5b lists the
transcription factors that were predicted to be part both of the signaling pathway based
on the proteomic experiment and to be downstream regulators of FGFR3 signaling based
on transcriptomic experiments. The NF-B regulator complex was previously described
as a downstream regulator of FGFR3 (Salazar et al., 2014). Moreover, MYC and FGFR3
were identified as cooperating oncogenes (Zingone et al., 2010)

To further validate the list of putative downstream regulators, a public dataset of
FGFR3 shRNA silencing following transcriptomic profiling was used to derive a replicate
response gene signature. The estrogen nuclear receptors ESR1 and ESR2 were identified as
significant regulators of both gene signatures and were predicted to be part of the signaling
pathway from the MS experiment. While few biological experiment has directly proven
the estrogen receptor to be driving bladder cancer, major studies suggested its implication
in a subtype of luminal-like bladder cancer strongly resembling the luminal subtype of
estrogen-driven breast cancer (Cancer Genome Atlas Network, 2014; Choi et al., 2014).
Moreover, the FGFR3 homologous receptor FGFR2 has been recently implicated as a
co-factor of the estrogen pathway in luminal breast cancer and is among the high-confidence
partners of FGFR3 in our results (Fletcher et al., 2013). This is further substantiated
by the small, although significant, increase of the phosphorylation of ESR1 at serine 118
(relative to its transcriptional activation, Hasbi et al., 2004) in bladder cancer samples
with an FGFR3 mutation as presented in figure 5.6.

SMAD3, a downstream e↵ector of the TGF� signaling pathway, is predicted to be a
regulator of the transcriptional response by both knockout experiments. Moreover, the
prediction of SMAD3 as part of the signaling pathway is supported by the identification
of 24 corresponding unique peptides in the 16 FGFR3 IP experiments and only 4 in the
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Figure 5.5: Joining FGFR3 proteomic and transcriptomic analysis at the level of transcriptional
regulators.
a. FGFR3 Immuno-Precipitation (IP) followed by Mass-Spectrometry (MS) analysis identified a
set of proteins of the FGFR3 signaling pathway extended using the PEPPer algorithm. FGFR3
knockout followed by transcriptomic chip profiling identified sets of genes responding to the
silencing, hence the activation, of FGFR3. Master Regulator (MR) analysis determined a set of
putative upstream regulators of these genes.
b. The set of regulators identified by IPMS is significantly enriched in the set of master regulators
identified by the transcriptomic analysis (fisher’s exact test ↵ = 1%) . siRNA and shRNA,
significant regulators (fdr < 1%) upstream of the gene response signature obtained by siRNA
and shRNA silencing. A tick is added in the table if a corresponding transcriptional regulator
is identified in the column-specified experiment. For siRNA and shRNA experiments, a tick
corresponds to a significant overlap between the targets (regulon) of a given TF and the set
of genes in the corresponding FGFR3 response signature, independently of whether the TF is
activated or repressed by FGFR3-depletion.

control experiments. The relation between TGF� and FGFR3 has been superficially
studied in chondrocytes in which cross-talk between the two signaling pathways was
suggested. Interestingly, TGF� was shown to be required for the proliferation of normal
urothelial cells presenting a terminal di↵erentiation phenotype (Fleming et al., 2012), the
untransformed counterpart of the frequently FGFR3 mutated luminal-like bladder cancers.
Moreover, bladder cancer samples with an FGFR3 mutation have significantly higher
levels of SMAD3 proteins (see figure 5.7).
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Figure 5.6: ESR1 phosphorylation in FGFR3 wild type and altered samples. TCGA Reverse
Phase Protein Array quantification of the phosphorylation of ESR1 at Serine 118 depending on
the genetic status of FGF3 in 244 bladder cancer samples. Alteration of FGFR3 are here point
mutations or gene fusion.

SMARCA4, a chromatin remodeler, and TP53 were experimentally identified as
proteins involved in the signaling pathway of FGFR3 as well as significant regulators of its
downstream transcriptional response based on independent knockout and transcriptomic
experiments (see figure 5.5b). While it is di�cult to comprehend the role of epigenetic
regulators, the implication of the key tumor suppressor TP53 in FGFR3’s signaling is of
major functional relevance.

5.5 Regulation of TP53 by the FGFR3 signaling
pathway

As a key regulator of DNA-damage induced apoptosis, TP53 is altered and silenced in
most cancers and however infrequent in FGFR3 mutated tumors. The co-precipitation of
TP53 with FGFR3 indicates their implication in the same pathway and in particular the
potential regulation of TP53 by FGFR3.

In order to quantify the impact of FGFR3 on the activity of TP53, we tested
its transcriptional activity following the knockout. We selected refined sets of TP53
activated and repressed targets from a previous study (Mirza et al., 2003) and deduced an
increase transcriptional activity of TP53 following FGFR3 silencing by a general decreased
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Figure 5.7: SMAD3 protein expression in FGFR3 wild type and altered samples. TCGA Reverse
Phase Protein Array quantification of the SMAD protein depending on the genetic status of FGF3
in 244 bladder cancer samples. Alteration of FGFR3 are here point mutations or gene fusion.
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Figure 5.8: Expression of TP53 targets following FGFR3 knockout. Mean fold-change of genes
repressed and activated by TP53 following the siRNA knockout of FGFR3.
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expression of its repressed target genes and a mild over-expression of the genes activated
by TP53 (figure 5.8). Therefore, the inhibition of FGFR3 results in an increased TP53
transcriptional activity revealing a regulatory role of FGFR3 on TP53.

The identification of several TP53 peptides following FGFR3 precipitation indicates
the possibility of a physical interaction between these two proteins. To verify this physical
interaction, we immunoprecipitated the endogenous FGFR3 in two FGFR3-dependent
bladder cancer cell lines and tested the interaction western-blot. As indicated by the small
number of peptides identified in the IP-MS experiment, this low-throughput validation
revealed no direct interaction between FGFR3 and TP53 (figure 5.9). However, the
ubiquitin-specific-processing protease 7, USP7, a thoroughly described regulator of TP53
(Epping et al., 2010; Sarkari, Sheng, and Frappier, 2009), was identified as a high-confidence
FGFR3-associated protein in the mass spectrometry screen. The direct and physical
FGFR3-USP7 interaction was confirmed by the IP-western-blot experiment (figure 5.9)
implying that the regulation of TP53 by FGFR3 is potentially mediated by UPS7.

Figure 5.9: Western-blot analysis of the FGFR3-USP7 interaction. Endogenous FGFR3 was
immunoprecipitated from MGHU3 and RT112 cells with an antibody against FGFR3 and the
western-blot was stained with anti-FGFR3, anti-TP53 and anti-USP7 antibodies.

5.6 Discussion

The results show the benefit and relevance of integrating several large-scale datasets
from proteomic, transcriptomic and functional (shRNA screen) experiments. The
integration of massive and seemingly unrelated datasets revealed significantly overlapping
results in a common model of a driving signaling pathway. This work provides an
example of a procedure to e↵ectively integrate large-scale profiles using the underlying
biological structure from which all the datasets are indirectly imputable to. Moreover,
the construction of a signaling pathway provides a rationalized approach to the
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discovery of new therapies. For instance, the extensive identification of Tyrosine 3-
Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein (YWHAx) in the
protein-based signaling pathway and the strong impact of their silencing on the survival of
a related cell line suggest that these proteins, and in particular YWHAE, are potentially
e↵ective targets. Therefore, the use of Difopein, a peptide inhibitor of YWHA proteins, is
a potential drug to be used in FGFR3-dependent bladder cancers.

Through the integration of the proteomic identification of protein partners of FGFR3
and the transcriptomic impact of the activation of FGFR3, this work results in a first
model of the entire FGFR3 signaling pathway in bladder cancer. The proposed pathway
provides new leads to understand the carcinogenic role of the ambiguous growth factor
receptor FGFR3. In particular, the results implicate ESR1 as well as the TGF� pathway in
the oncogenic role of FGFR3. The presented experimental validation shows the implication
of a long acknowledged regulator of TP53, USP7, directly interacting with FGFR3.
Supplementary experiments are scheduled at the Institut Curie to further understand the
role of FGFR3 in the regulation of TP53. First investigations will aim at measuring the
e↵ect of the inhibition of FGFR3 on: the sub-cellular localization of TP53, the regulation
of TP53 target genes and the activation of apoptosis.

5.7 Material and methods

FGFR3 co-precipitated proteins

The FGFR3b isoform was epitope-tagged with a DYKDDDDK (FLAGTM)-sequence
inserted after the 27th amino acids. The FLAG-FGFR3 was inserted into a pIRESpuro3
vector under a CMV-promoter and site directed mutagenesis was used to obtain the S249C
and Y375C mutated forms. Following immunoprecipitation with anti-FLAG antibodies
coupled to agarose beads, elution was performed using high concentrations of FLAG-
peptides, migrated on 1D-acrylamide gel which was digested and from which pepitdes
were extracted and analyzed using LC-MS/MS. Spectrums and peptides were identified
using the MASCOT (Matrix Science) software aligning on the uniprot database (peptide
FDR 0.1%). Each construct was analyzed in 6 replicates. Two replicates of the wild-type
construction lacked the identification of any FGFR3 peptide and therefore were removed.

In all, 2,014 proteins were identified from which 921 putative contaminant proteins
with at least one peptide identified in a control experiment were removed resulting in
1,093 proteins. 60 Proteins with at least three peptides in at least two replicates (of any
construction) were considered as high-confidence protein partners of FGFR3. FGFR3 and
two other high confidence proteins were confirmed by Western Blotting (see figure 5.10).
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a. FGFR3

104 

 

Three of the potential interaction partners, cell division cycle 37 homolog (CDC37), 

transferrin receptor (TFRC) and lethal giant larvae homolog 1 (LLGL1) have been chosen for 

confirmation by western blotting. First, presence of FGFR3 has been confirmed in 

immunoprecipitates by western blotting, showing absence of FGFR3 in control experiments 

and presence of FGFR3 in all immunoprecipitates from FLAG-FGFR3b expressing lineages 

(Figure 46).  

 

Figure 46: Anti-FGFR3 western blot of anti-FLAG immunoprecipitates. In both controls (C1 and C2), no FGFR3 

was detected. In contrast, in all immunoprecipitates from FLAG-FGFR3b expressing RT-112 cells, FGFR3 was 

detected. C1 and C2 = controls (empty pIRESpuro3); S1 and S2 = FLAG-FGFR3b S249C; Y1 and Y2 = FLAG-

FGFR3b Y375C; WT 1 and 2: FLAG-FGFR3b wild type. 

CDC37 has been identified in 5 out of 11 experiments (1/3 WT and 4/8 MT) of FLAG-FGFR3b 

immunoprecipitations, with a maximum of 5 peptides and sequence coverage of 16,7% 

(Figure 47).  

 

Figure 47: Sequence of CDC37. Regions shown in red denote peptides observed in MS/MS analysis of 

immunoprecipitates from RT-112 FLAG-FGFR3b cells. Overlapping peptides are shown in blue.  

Presence of CDC37 has been confirmed in immunoprecipitates by western blotting, showing 

absence of CDC37 in control experiments and presence of CDC37 in all immunoprecipitates 

from FLAG-FGFR3b expressing lineages, except WT1. It should be noted, that the 

immunoprecipitate of WT1 also contained the lowest amount of FGFR3 (Figure 46). 

b. TFRC
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Figure 50: Anti-TFRC western blot of anti-FLAG immunoprecipitates. In both controls (C1 and C2), no TFRC 

(95 kDa) was detected. In contrast, in all immunoprecipitates from FLAG-FGFR3b expressing RT-112 cells, 

TFRC was detected. C1 and C2 = controls (empty pIRESpuro3); S1 and S2 = FLAG-FGFR3b S249C; Y1 and Y2 = 

FLAG-FGFR3b Y375C; WT1 and 2: FLAG-FGFR3b wild type. 

Lethal giant larvae homolog 1 (LLGL1) has been identified in 4 out of 11 experiments (1/3 WT 

and 3/8 MT) of FLAG-FGFR3b immunoprecipitations with a maximum of 6 peptides and 

sequence coverage of 7.7% (Figure 51). 

 

Figure 51: Sequence of lethal giant larvae homolog 1 (LLGL1). Regions shown in red denote peptides 

observed in MS/MS analysis of immunoprecipitates from RT-112 FLAG-FGFR3b cells. Overlapping peptides 

are shown in blue. 

Presence of LLGL1 in immunoprecipitates has been examined by western blotting, showing a 

band with an approximate size less than 100 kDa in all immunoprecipitates (Figure 52). The 

antibody was kindly provided by D. Strand (Johannes Gutenberg Universität, Mainz, 

Germany). Human LLGL1 is detected at a molecular weight of 115 kDa and an unspecific 

band is sometimes observed at <100 kDa. Immunoprecipitates are frozen before evaluation 

c. CDC37
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Figure 48: Anti-CDC37 western blot of anti-FLAG immunoprecipitates. In both controls (C1 and C2), no CDC37 

(44 kDa) was detected. In contrast, in all immunoprecipitates from FLAG-FGFR3b expressing RT-112 cells, 

except WT1, CDC37 was detected. C1 and C2 = controls (empty pIRESpuro3); S1 and S2 = FLAG-FGFR3b 

S249C; Y1 and Y2 = FLAG-FGFR3b Y375C; WT 1 and 2: FLAG-FGFR3b wild type. 

Transferrin receptor (TFRC) has been identified in 8 out of 11 experiments (3/3 WT and 5/8 

MT) of FLAG-FGFR3b immunoprecipitations with a maximum of 4 peptides and sequence 

coverage of 7% (Figure 49). 

 

Figure 49: Sequence of transferrin receptor (TFRC). Regions shown in red denote peptides observed in 

MS/MS analysis of immunoprecipitates from RT-112 FLAG-FGFR3b cells. Overlapping peptides are shown in 

blue. 

Presence of TFRC has been confirmed in immunoprecipitates by western blotting, showing 

absence of TFRC in control experiments and presence of TFRC in all immunoprecipitates 

from FLAG-FGFR3b expressing lineages (Figure 50). 

 

Figure 5.10: Western blot validation of Mass Spectrometry results. a. Anti-FGFR3 western
blot of anti-FLAG immunoprecipitates. In both controls (C1 and C2), no FGFR3 was detected.
In contrast, in all immunoprecipitates from FLAG-FGFR3b expressing RT-112 cells, FGFR3
was detected. b. Anti-TFRC western blot of anti-FLAG immunoprecipitates. In both controls
(C1 and C2), no TFRC (95 kDa) was detected. In contrast, in all immunoprecipitates from
FLAG-FGFR3b expressing RT-112 cells, TFRC was detected. c. Anti-CDC37 western blot of
anti-FLAG immunoprecipitates. In both controls (C1 and C2), no CDC37 (44 kDa) was detected.
In contrast, in all immunoprecipitates from FLAG-FGFR3b expressing RT-112 cells, except WT1,
CDC37 was detected. C1 and C2 = controls (empty pIRESpuro3); S1 and S2 = FLAG-FGFR3b
S249C; Y1 and Y2 = FLAG- FGFR3b Y375C; WT 1 and 2: FLAG-FGFR3b wild type.

Pathway extension using PEPPer

The 60 high-confidence proteins were used with the latest highly curated HIPPIE protein
interaction network in the PEPPer cytoscape application to extend the FGFR3 signaling
pathway. Default parameters were used and to prevent any loss of information the non-
refined sub-network was used as the predicted pathway (called union in the application).
The presented sub-network was reformatted to have nodes representing proteins to be
shaped depending on their identification in the MS experiment (no peptides precipitated
with FGFR3: round; FGFR3 diamond, high-confidence: squares; no peptides in control:
hexagon; peptides in control: octagon).

Gene title for the RT112 shRNA Achilles screen was downloaded from the broad data
portal. For each gene, the values of all targeting shRNA was averaged and used to color
nodes in the sub-network. The relevance of the entire proposed pathway was tested by
comparing the distribution of the gene title values of all the genes in the sub-network to
the values of the shRNA targeting control genes (RFP, Lac2, GFP and Luciferase coding
genes).
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Master regulator analysis

Three replicate siRNA knockout experiments were profiled using a↵ymetrix Human exon
1 arrays along with 5 control lipofectamine-only experiments. The signature of FGFR3
responsive genes was obtained by selecting di↵erentially expressed genes using the limma
bioconductor package (FDR : 5%) (Smyth, 2005).

TF regulons were derived from two repositories of human and mouse ChIP-seq and
ChIP-on-chip data. The ENCODE ChIP-seq data was recovered from the UCSC genome
browser (Human hg19 February 2009 genome assembly) by selecting all narrow ChIP-seq
peak (ENCODE chip V3) within -5000 bp to 2000 bp around a Transcription Start Site
of a gene with a non-null Human genome organization Gene Nomenclature Committee
(HGNC, genenames.org) symbol. Additional ChIP-seq or ChIP-on-chip data was directly
downloaded from the ChEA2 database (amp.pharm.mssm.edu/ChEA2).

Upstream TF were identified by testing the enrichment of all TF regulons in genes
di↵erentially expressed following FGFR3 knockdown using Fisher’s exact test and corrected
for multiple hypothesis testing (keeping FDR at 1%).

http://amp.pharm.mssm.edu/ChEA2/
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This manuscript describes the analysis I carried out during my PhD to uncover the
pathways and networks driving the initiation and progression of bladder tumors. This
work fundamentally relies on a general model of signaling pathways in which signals
are transduced from receptors to the nucleus through a complex interplay of protein
interactions and results in context-dependent control of the expression of genes. The
overall strategy was to first focus on the latter well-studied step of gene regulation and
then to move up to the computationally less explored signal transduction level.

By taking advantage of both the high availability of transcriptomic experiments and
the numerous developments in regulatory network inference, I was able to develop and
improve current algorithms to characterize driver transcriptional programs. However,
despite the ample interest to this field, my major concern was the low reliability of each
of the predicted regulatory interactions when taken separately. Therefore, I focused on
developing approaches that can cope with this local uncertainty by taking advantage of
higher-level information.

The lack of reference algorithmic systems to explore the space of signal transduction
pathways required the design of entirely novel methods to analyze proteomic experiments.
The use of evolutionary computations allowed me to easily implement new search algorithms
with simply designed objectives. Although the proposed method is clearly shown to be
e↵ective by its direct application to bladder cancer, this approach is at its infancy and
leaves plenty of room for improvements, hopefully for e�cient deterministic algorithms.

The set of proposed algorithms was used to delineate pathways controlling malignant
proliferation and di↵erentiation in bladder cancers as well as those of normal urothelial
cells. Firstly, this illustrate the usability and benefit of the methods developed during
this work. Second, it allowed the discovery of new cancer genes and to improve our
understanding and knowledge of the signaling pathway downstream of formerly known
or recently discovered oncogenes. In particular, the biological results recurrently point
towards a puzzling conclusion that di↵erentiation-dependent pathways and transcriptional
programs drive a specific type of bladder cancer.

This work resulted in three main contributions to computational biology and cancer
biology:

• Providing tools to identify and analyze cancer-driving networks. I
developed several algorithms for network reconstruction and analysis, which were embedded
in two software packages. CoRegNet is a Bioconductor package to infer gene regulatory
network, extract transcriptional programs from them, integrate external regulatory data,
estimate transcription factor activity and to visualize the initial and produced knowledge
in a single data/network visualization tool. Pepper is a Cytoscape application to extract
the densely connected interaction network that is the most relevant to a particular set
of proteins of interests, finding its application in both identifying protein complexes and
signaling pathways.

• Highlight new pathways and producing information on known pathways
driving specific subtypes of bladder cancer. The use of the aforementioned tools
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on bladder cancer datasets - genomic, transcriptomic and proteomic profiles - resulted
in the discovery of new bladder cancer driver genes responsible for the activation of
subtype-specific proliferation-related transcriptional programs. Moreover, these tools and
strategies further specified the signaling pathways and generally the downstream e↵ectors
and carcinogenic functions of bladder cancer oncogenes.

• Presenting evidences that tumors use very similar circuits than the one
found in normal cells. Based on the analysis of the regulatory circuits contributing to
normal and malignant proliferation and di↵erentiation as well as the means by which these
are blocked in such states, my results support the parallel between tumors and normal
regenerative processes at the level of cellular regulatory circuits.

Among the most promising outcomes of cancer genomics and its related molecular
profiling, is the definition of diagnostic and prognostic tools in the form of predictive
genetic, transcriptional or protein (expression or post-translational level) markers. Even
more compelling by its direct clinical benefit, systematic profiling hopes to identify new
pairs of therapeutic targets and companion diagnostics, which aims at predicting the
response to a particular therapy and is sometimes called theragnosis.

With approximately 20,000 coding genes, 250,000 to one million proteins and now
more than 100 million potential Single Nucleotide Polymorphisms reported in dbSNP
(ncbi.nlm.nih.gov/SNP/), the ultra-high dimensionality of human molecular profiles
impugns the capacity of classical statistical approaches until the number of profiled tumors
exceeds the number of measured signals. Until then, pragmatic approaches are required
both to design large-scale experiments and to analyze these datasets in an integrative and
rational way regarding the underlying biological process. For instance, while searching for
a biomarker of the activation of a particular pathway, its seems more likely to reproducibly
identify an increase in mRNA level of a gene that is actually regulated by the studied
pathway than simply the gene with the best statistics in a given dataset. The complete
definition of sample-specific driving pathways has huge clinical applicative potential. The
identification of a driving genetic event can point towards all the downstream e↵ectors as
potential biomarkers, targets for drug as well as therapeutic pitfalls as exemplified by the
ine↵ective anti-EGFR treatment in RAS mutated tumors.

This work illustrates the necessity of developing computational approaches that bear in
mind the underlying mechanistic of the studied biological processes. As a closing remark,
I also hope it will form an algorithmic basis for, or at least persuade of the benefit of,
joining proteomic, transcriptomic and genomic analysis.

http://www.ncbi.nlm.nih.gov/SNP/
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Schäfer, M. and S. Werner (2008). “Cancer as an overhealing wound: an old hypothesis
revisited”. In: Nature Reviews Molecular Cell Biology 9.8, pp. 628–638. (Cited on
page 113 ).

Schneider, T. D. and R. M. Stephens (Oct. 1990). “Sequence logos: a new way to display
consensus sequences.” In: Nucleic Acids Research 18.20, pp. 6097–6100. (Cited on
page 62 ).

Schroeter, E. H., J. A. Kisslinger, and R. Kopan (1998). “Notch-1 signalling requires ligand-
induced proteolytic release of intracellular domain”. In: Nature 393.6683, pp. 382–386.
(Cited on page 9 ).

Sedgewick, A. J. et al. (July 2013). “Learning subgroup-specific regulatory interactions
and regulator independence with PARADIGM.” In: Bioinformatics 29.13, pp. i62–i70.
(Cited on page 69 ).

Sengupta, N, E. Siddiqui, and F. H. Mumtaz (Aug. 2004). “Cancers of the bladder.” In:
Journal of the Royal Society for the Promotion of Health 124.5, pp. 228–229. (Cited on
page 32 ).

Setty, M. et al. (Aug. 2012). “Inferring transcriptional and microRNA-mediated regulatory
programs in glioblastoma”. In: Molecular Systems Biology 8, pp. 1–16. (Cited on
page 74 ).

Shannon, P. et al. (Nov. 2003). “Cytoscape: a software environment for integrated models
of biomolecular interaction networks.” In: Genome Research 13.11, pp. 2498–2504.
(Cited on page 60 ).

Sjodahl, G et al. (June 2012). “A Molecular Taxonomy for Urothelial Carcinoma”. In:
Clinical Cancer Research 18.12, pp. 3377–3386. (Cited on pages 35, 36, 38, 103 ).

Smyth, G. (2005). “limma: Linear Models for Microarray Data”. English. In: Bioinformatics
and Computational Biology Solutions Using R and Bioconductor. Ed. by R. Gentleman
et al. Statistics for Biology and Health. Springer New York, pp. 397–420. (Cited on
page 162 ).

Solinas-Toldo, S. S. et al. (Nov. 1997). “Matrix-based comparative genomic hybridization:
biochips to screen for genomic imbalances.” In: Genes, chromosomes & cancer 20.4,
pp. 399–407. (Cited on page 41 ).

Someren, E. P. van et al. (Feb. 2006). “Least absolute regression network analysis of the
murine osteoblast di↵erentiation network”. In: Bioinformatics 22.4, pp. 477–484. (Cited
on page 72 ).



184 BIBLIOGRAPHY

Song, L et al. (Oct. 2011). “Open chromatin defined by DNaseI and FAIRE identifies
regulatory elements that shape cell-type identity”. In: Genome Research 21.10, pp. 1757–
1767. (Cited on page 46 ).

Sordella, R. et al. (2004). “Gefitinib-sensitizing EGFR mutations in lung cancer activate
anti-apoptotic pathways”. In: Science (New York, N.Y.) 305.5687, pp. 1163–1167.
(Cited on page 55 ).

Southgate, J. J. et al. (Sept. 1994). “Normal human urothelial cells in vitro: proliferation
and induction of stratification.” In: Laboratory Investigation 71.4, pp. 583–594. (Cited
on page 37 ).

Southgate, J., J. R. W. Masters, and L. K. Trejdosiewicz (Apr. 2002). “Culture of Human
Urothelium”. In: Culture of Epithelial Cells, Second Edition. New York, USA: John
Wiley & Sons, Inc., pp. 381–399. (Cited on pages 37, 114 ).

Staack, A. et al. (Apr. 2005). “Molecular, cellular and developmental biology of urothelium
as a basis of bladder regeneration”. In: Di↵erentiation 73.4, pp. 121–133. (Cited on
page 31 ).

Stark, C et al. (Dec. 2010). “The BioGRID Interaction Database: 2011 update”. In: Nucleic
Acids Research 39.Database, pp. D698–D704. (Cited on page 143 ).

Stransky, N. et al. (Nov. 2006). “Regional copy number–independent deregulation of
transcription in cancer”. In: Nature Genetics 38.12, pp. 1386–1396. (Cited on pages 83,
87, 89, 90, 120 ).

Stynen, B et al. (June 2012). “Diversity in Genetic In Vivo Methods for Protein-Protein
Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-
Luciferase System”. In: Microbiology and Molecular Biology Reviews 76.2, pp. 331–382.
(Cited on page 58 ).

Subramanian, A. et al. (2005). “Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles”. In: Proceedings of the National
Academy of Sciences 102.43, p. 15545. (Cited on pages 65, 74 ).

Supper, J. et al. (Jan. 2013). “Detecting and visualizing gene fusions”. In: Methods 59.1,
S24–S28. (Cited on page 50 ).

Sutherland, H. and W. A. Bickmore (July 2009). “Transcription factories:gene expression
in unions?” In: Nature Reviews Genetics 10.7, pp. 457–466. (Cited on page 47 ).

Suzuki, M. M. and A. Bird (June 2008). “DNA methylation landscapes: provocative
insights from epigenomics”. In: Nature Reviews Genetics 9.6, pp. 465–476. (Cited on
page 46 ).

Taboada, B, C Verde, and E Merino (July 2010). “High accuracy operon prediction
method based on STRING database scores”. In: Nucleic Acids Research 38.12, e130–
e130. (Cited on page 96 ).

Tamborero, D., A. Gonzalez-Perez, and N. Lopez-Bigas (Sept. 2013). “OncodriveCLUST:
exploiting the positional clustering of somatic mutations to identify cancer genes.” In:
Bioinformatics 29.18, pp. 2238–2244. (Cited on page 45 ).



BIBLIOGRAPHY 185

Tang, K.-W. et al. (2013). “The landscape of viral expression and host gene fusion and
adaptation in human cancer.” In: Nature Communications 4, p. 2513. (Cited on page 50
).

Tang, X. et al. (Aug. 2014). “A joint analysis of metabolomics and genetics of breast
cancer.” In: Breast cancer research : BCR 16.4, p. 415. (Cited on page 53 ).

Temin, H. M. and H. Rubin (1958). “Characteristics of an assay for Rous sarcoma virus
and Rous sarcoma cells in tissue culture”. In: Virology 6.3, pp. 669–688. (Cited on
page 17 ).

Thiery, J. P. et al. (Nov. 2009). “Epithelial-Mesenchymal Transitions in Development and
Disease”. In: Cell 139.5, pp. 871–890. (Cited on pages 18, 104, 126 ).

Thisse, B. and C. Thisse (Nov. 2005). “Functions and regulations of fibroblast growth
factor signaling during embryonic development”. In: Developmental Biology 287.2,
pp. 390–402. (Cited on page 17 ).

Tibshirani, R. et al. (May 2002). “Diagnosis of multiple cancer types by shrunken centroids
of gene expression.” In: Proceedings of the National Academy of Sciences 99.10, pp. 6567–
6572. (Cited on pages 50, 51, 90 ).

Ulitsky, I. and R. Shamir (2007). “Identification of functional modules using network
topology and high-throughput data.” In: BMC Systems Biology 1, p. 8. (Cited on
page 67 ).

Vallot, C et al. (Jan. 2011). “A Novel Epigenetic Phenotype Associated With the Most
Aggressive Pathway of Bladder Tumor Progression”. In: JNCI Journal of the National
Cancer Institute 103.1, pp. 47–60. (Cited on page 35 ).

Vandin, F, E Upfal, and B. J. Raphael (Feb. 2012). “De novo discovery of mutated driver
pathways in cancer”. In: Genome Research 22.2, pp. 375–385. (Cited on page 70 ).

Vandin, F., E. Upfal, and B. J. Raphael (Mar. 2011). “Algorithms for Detecting Significantly
Mutated Pathways in Cancer”. In: Journal of Computational Biology 18.3, pp. 507–522.
(Cited on page 67 ).

Varley, C. L. et al. (Aug. 2008). “FOXA1 and IRF-1 intermediary transcriptional regulators
of PPAR�-induced urothelial cytodi↵erentiation”. In: Cell Death and Di↵erentiation
16.1, pp. 103–114. (Cited on pages 92, 105, 109, 114, 116, 125 ).

Varley, C. et al. (May 2005). “Autocrine regulation of human urothelial cell proliferation
and migration during regenerative responses in vitro”. In: Experimental Cell Research
306.1, pp. 216–229. (Cited on pages 31, 114 ).

Varley, C. L. and J. Southgate (Sept. 2008). “E↵ects of PPAR agonists on proliferation
and di↵erentiation in human urothelium”. In: Experimental and Toxicologic Pathology
60.6, pp. 435–441. (Cited on pages 37, 109, 114 ).

Varley, C. L. et al. (Apr. 2004). “Role of PPARgamma and EGFR signalling in the
urothelial terminal di↵erentiation programme.” In: Journal of Cell Science 117.Pt 10,
pp. 2029–2036. (Cited on pages 37, 114, 123 ).



186 BIBLIOGRAPHY

Varley, C. L. et al. (Aug. 2006). “PPARgamma-regulated tight junction development
during human urothelial cytodi↵erentiation.” In: Journal of cellular physiology 208.2,
pp. 407–417. (Cited on page 114 ).

Varley, C. L. et al. (Dec. 2010). “Activation of peroxisome proliferator-activated receptor-
gamma reverses squamous metaplasia and induces transitional di↵erentiation in normal
human urothelial cells.” In: The American journal of pathology 164.5, pp. 1789–1798.
(Cited on page 37 ).

Vaske, C. J. et al. (June 2010). “Inference of patient-specific pathway activities from
multi-dimensional cancer genomics data using PARADIGM”. In: Bioinformatics 26.12,
pp. i237–i245. (Cited on pages 69, 74 ).

Veer, L. v. et al. (2002). “Gene expression profiling predicts clinical outcome of breast
cancer”. In: Nature. (Cited on page 39 ).

Velnar, T, T Bailey, and V Smrkolj (Oct. 2009). “The Wound Healing Process: An
Overview of the Cellular and Molecular Mechanisms”. In: Journal of International
Medical Research 37.5, pp. 1528–1542. (Cited on page 113 ).

Vijver, M. J. van de et al. (Dec. 2002). “A gene-expression signature as a predictor of
survival in breast cancer.” In: The New England journal of medicine 347.25, pp. 1999–
2009. (Cited on page 39 ).

Wakabayashi, K. i. et al. (June 2009). “The Peroxisome Proliferator-Activated Receptor
/Retinoid X Receptor Heterodimer Targets the Histone Modification Enzyme PR-
Set7/Setd8 Gene and Regulates Adipogenesis through a Positive Feedback Loop”. In:
Molecular and Cellular Biology 29.13, pp. 3544–3555. (Cited on page 14 ).

Warde-Farley, D et al. (June 2010). “The GeneMANIA prediction server: biological network
integration for gene prioritization and predicting gene function”. In: Nucleic Acids
Research 38.Web Server, W214–W220. (Cited on page 60 ).

Wasserman, W. W. and A. Sandelin (Apr. 2004). “Applied bioinformatics for the
identification of regulatory elements”. In: Nature Reviews Genetics 5.4, pp. 276–
287. (Cited on page 62 ).

Watson, J. D., T. A. Baker, and S. P. Bell (2014). Molecular Biology of the Gene. Pearson.
seventh edition. Benjamin Cummings. (Cited on pages 8–10 ).

Webster, M. K. and D. J. Donoghue (1997). “FGFR activation in skeletal disorders: too
much of a good thing”. In: Trends in Genetics 13.5, pp. 178–182. (Cited on page 36 ).

Weinberg, R. (May 2013). The Biology of Cancer, Second Edition. Garland Science. (Cited
on page 6 ).

Weinstein, J. N. et al. (Sept. 2013). “The Cancer Genome Atlas Pan-Cancer analysis
project.” In: Nature Genetics 45.10, pp. 1113–1120. (Cited on page 42 ).

Whitfield, M. L. et al. (June 2002). “Identification of genes periodically expressed in the
human cell cycle and their expression in tumors.” In: Molecular biology of the cell 13.6,
pp. 1977–2000. (Cited on page 49 ).



BIBLIOGRAPHY 187

Williams, S. V., C. D. Hurst, and M. A. Knowles (Feb. 2013). “Oncogenic FGFR3 gene
fusions in bladder cancer.” In: Human Molecular Genetics 22.4, pp. 795–803. (Cited
on pages 25, 36 ).

Winterhalter, C et al. (Aug. 2014). “Pepper: cytoscape app for protein complex expansion
using protein-protein interaction networks.” In: Bioinformatics. (Cited on pages 78,
134, 150, 152 ).

Wishart, D. S. (Mar. 2008). “Quantitative metabolomics using NMR”. In: TrAC Trends
in Analytical Chemistry 27.3, pp. 228–237. (Cited on page 53 ).

Witsch, E, M Sela, and Y Yarden (Apr. 2010). “Roles for Growth Factors in Cancer
Progression”. In: Physiology 25.2, pp. 85–101. (Cited on page 6 ).

Wood, R. J. (Feb. 2008). “Vitamin D and adipogenesis: new molecular insights”. In:
Nutrition Reviews 66.1, pp. 40–46. (Cited on page 13 ).

Wu, X.-R. et al. (June 2009). “Uroplakins in urothelial biology, function, and disease.” In:
Kidney international 75.11, pp. 1153–1165. (Cited on page 31 ).

Wulfkuhle, J. et al. (Nov. 2004). “Genomic and proteomic technologies for individualisation
and improvement of cancer treatment”. In: European Journal of Cancer 40.17, pp. 2623–
2632. (Cited on page 53 ).

Xenarios, I. et al. (2002). “DIP, the Database of Interacting Proteins: a research tool for
studying cellular networks of protein interactions”. In: Nucleic Acids Research 30.1,
pp. 303–305. (Cited on page 59 ).

Xie, Z et al. (Jan. 2010). “hPDI: a database of experimental human protein-DNA
interactions”. In: Bioinformatics 26.2, pp. 287–289. (Cited on pages 97, 114 ).

Yu, Z. et al. (June 2009). “The epidermal di↵erentiation-associated Grainyhead gene
Get1/Grhl3 also regulates urothelial di↵erentiation”. In: The EMBO Journal 28.13,
pp. 1890–1903. (Cited on pages 116, 125 ).

Zack, T. I. et al. (Sept. 2013). “Pan-cancer patterns of somatic copy number alteration”.
In: Nature Genetics, pp. 1–10. (Cited on page 25 ).

Zhang, B. et al. (July 2014a). “Proteogenomic characterization of human colon and rectal
cancer”. In: Nature, pp. 1–21. (Cited on pages 53, 54 ).

Zhang, S. et al. (Feb. 2014b). “The pivotal role of pyruvate dehydrogenase kinases in
metabolic flexibility”. In: Nutrition & Metabolism 11.1, pp. 1–9. (Cited on page 111 ).

Zhou, W. et al. (Apr. 2014). “Cancer-Secreted miR-105 Destroys Vascular Endothelial
Barriers to Promote Metastasis”. In: Cancer Cell 25.4, pp. 501–515. (Cited on page 7
).

Zhu, Y., X. Shen, and W. Pan (2009). “Network-based support vector machine for
classification of microarray samples”. In: BMC Bioinformatics 10.Suppl 1, S21. (Cited
on page 66 ).

Zingone, A et al. (Apr. 2010). “leu201050a”. In: Leukemia 24.6, pp. 1171–1178. (Cited on
page 155 ).

Zitzler, E., M. Laumanns, and L. Thiele (2001). “SPEA2: Improving the strength Pareto
evolutionary algorithm”. In: Technical Report, pp. 1–21. (Cited on pages 133, 135 ).



188 BIBLIOGRAPHY

Zuberi, K et al. (June 2013). “GeneMANIA Prediction Server 2013 Update”. In: Nucleic
Acids Research 41.W1, W115–W122. (Cited on page 60 ).


	Preamble
	Introduction
	Cell behavior, signaling and transcription
	Cell surface receptors and signal transduction
	DNA binding and Transcriptional activation
	The particularity of Nuclear receptors
	Early and late response

	Carcinogenesis and deregulation
	Neo-plastic transformation
	Cancer is a genetic disease
	The diversity of genetic alterations
	Carcinogenesis or the deregulation of signaling circuits

	Urothelial carcinoma
	Epidemiology and clinical aspects
	Contrasting bladder cancer progression pathways

	Unravelling oncogenic pathways
	Large scale tumor profiling
	Signaling pathways, from interactions to networks
	Unraveling cancer driving pathways


	Results
	CoRegNet: reconstruction and integrated analysis of co-regulatory networks
	Introduction
	Reconstruction of large-scale cooperative regulatory networks using LICORN
	Hybrid-LICORN
	Regulatory influence
	Transcriptional programs
	Integration of regulatory evidence
	Visualization of transcriptional programs
	Discussion

	Transcriptional Programs driving bladder cancer
	Introduction
	Bladder cancer subtype specific transcription factor influence
	Bladder cancer driver transcriptional programs
	Characterization of PPAR-driven carcinogenesis
	Discussion

	Deregulation of normal Transcriptional Programs in bladder cancer
	Introduction
	Reconstruction of the normal urothelial cell proliferation and differentiation regulatory network
	Global contribution of normal urothelial regulatory networks to bladder cancer
	Contribution of normal Master Regulators to bladder cancer 
	Defining the role of ELF3, a master regulator of differentiation in bladder cancers
	Discussion

	Pepper: Protein Complex Expansion using Protein-Protein interaction networks
	Introduction
	Methods
	Performance comparison
	Case study
	Discussion

	Joint proteomic and transcriptomic characterization of the FGFR3 signaling pathway driving bladder cancer
	Introduction
	Deriving FGFR3-associated signaling proteins
	Protein interaction-based FGFR3 signaling pathway expansion
	Master regulators of the FGFR3 signaling pathway
	Regulation of TP53 by the FGFR3 signaling pathway
	Discussion
	Material and methods


	Conclusion
	Bibliography
	Appendix
	Hybrid method inference for the construction of cooperative regulatory network in human
	Network transformation of gene expression for feature extraction
	CoRegNet: reconstruction and integrated analysis of co-regulatory networks
	Pepper: Protein Complex Expansion using Protein-Protein interaction networks
	Other articles


