Thèse soutenue

Formulations par équations intégrales de surface pour la simulation numérique du contrôle non destructif par courants de Foucault

FR  |  
EN
Auteur / Autrice : Audrey Vigneron
Direction : Marc Bonnet
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance en 2015
Etablissement(s) : Palaiseau, Ecole polytechnique

Mots clés

FR

Mots clés contrôlés

Mots clés libres

Résumé

FR  |  
EN

Cette thèse s'inscrit dans le contexte de la simulation numérique pour le contrôle non destructif (CND) par courants de Foucault et concerne le calcul des champs électromagnétiques induits par un capteur émetteur dans une pièce saine. Ce calcul constitue la première étape de la modélisation complète d'un procédé de contrôle dans la plateforme logicielle CIVA développée au CEA LIST. Aujourd'hui les modèles intégrés dans CIVA sont restreints à des pièces de géométrie canonique (calcul modal) ou axisymétriques. La demande de configurations plus diverses et complexes nécessite l'introduction de nouveaux outils numériques de modélisation. En pratique les capteurs peuvent être constitués d'éléments aux propriétés physiques et aux formes variées. Quant aux pièces à contrôler, elles sont conductrices et peuvent contenir des éléments diélectriques ou magnétiques. Du fait des différents matériaux présents dans une même configuration, différents régimes de modélisation (statique, quasi-statique, voire dynamique) peuvent cohabiter. Sous l'hypothèse de travail de milieux à propriétés linéaires, isotropes et homogènes par morceaux, l'approche par équations intégrales de surface (SIE) permet de ramener le problème volumique à un problème surfacique équivalent. Cependant les formulations SIE usuelles pour le problème de Maxwell souffrent en général d'un problème de robustesse numérique pour certains cas asymptotiques, en particulier à basse fréquence. L'objectif de cette étude est de déterminer une version stable pour une gamme de paramètres physique typique du CND. C'est dans ce cadre qu’un schéma itératif par blocs basé sur une décomposition liée à la physique du problème est proposé. Ce schéma est précis et bien conditionné pour le calcul des champs primaires. Une étude asymptotique du problème intégral de Maxwell est de plus effectuée. Celle-ci permet de formuler le problème intégral de l'approximation courants de Foucault comme une forme asymptotique de celui de Maxwell.