Thèse soutenue

Etude numérique des isolants topologiques fractionnaires
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Cécile Repellin
Direction : Nicolas Regnault
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 25/09/2015
Etablissement(s) : Paris, Ecole normale supérieure
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Pierre Aigrain (Paris)
Jury : Président / Présidente : Anna Minguzzi
Examinateurs / Examinatrices : Nicolas Regnault, Anna Minguzzi, David Carpentier, Didier Poilblanc, Karyn Le Hur, Sylvain Nascimbène
Rapporteurs / Rapporteuses : David Carpentier, Didier Poilblanc

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les isolants topologiques sont des isolants qui ne peuvent être différenciés des isolants atomiques que par une grandeur physique non locale appelée invariant topologique. L'effet Hall quantique et son équivalent sans champ magnétique l'isolant de Chern sont des exemples d'isolants topologiques. En présence d'interactions fortes, des excitations exotiques appelées anyons peuvent apparaître dans les isolants topologiques. L'effet Hall quantique fractionnaire (EHQF) est la seule réalisation expérimentale connue de ces phases. Dans ce manuscrit, nous étudions numériquement les conditions d'émergence de différents isolants topologiques fractionnaires. Nous nous concentrons d'abord sur l'étude de l'EHQF sur le tore. Nous introduisons une méthode de construction projective des états EHQF les plus exotiques complémentaire par rapport aux méthodes existantes. Nous étudions les excitations de basse énergie sur le tore de deux états EHQF, les états de Laughlin et de Moore-Read. Nous proposons des fonctions d'onde pour les décrire, et vérifions leur validité numériquement. Grâce à cette description, nous caractérisons les excitations de basse énergie de l'état de Laughlin dans les isolants de Chern. Nous démontrons également la stabilité d'autres états de l'EHQF dans les isolants de Chern, tels que les états de fermions composites, Halperin et NASS. Nous explorons ensuite des phases fractionnaires sans équivallent dans la physique de l'EHQF, d'abord en choisissant un modèle dont l'invariant topologique a une valeur plus élevée, puis en imposant au système la conservation de la symétrie par renversement du temps, ce qui modifie la nature de l'invariant topologique.