Thèse soutenue

Architectures hybrides pour le traitement quantique de l'information

FR  |  
EN
Auteur / Autrice : Kun Huang
Direction : Julien LauratHeping Zeng
Type : Thèse de doctorat
Discipline(s) : Optique Quantique
Date : Soutenance le 23/05/2015
Etablissement(s) : Paris, Ecole normale supérieure en cotutelle avec East China normal university (Shanghai)
Ecole(s) doctorale(s) : École doctorale Physique en Île-de-France (Paris ; 2014-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Kastler Brossel (Paris ; 1998-....)

Résumé

FR  |  
EN

Cette thèse s’intéresse à une approche dite hybride de l’information quantique. Deux approches traditionnellement séparées, variables discrètes et variables continues, sont combinées dans une même expérience nécessitant à la fois comptage de photons (nombre de photons) et détection homodyne (quadratures). Cette architecture hybride a d’abord été utilisée pour générer des états non-gaussiens de la lumière de grande fidélité, par exemple état de Fock et chat de Schrödinger optique,qui correspondent à deux types d’encodages utilisés en information quantique. L’utilisation de détecteurs supraconducteurs à forte efficacité a permis d’obtenir un taux de préparation sans précédent, ce qui facilite l’utilisation ultérieure de ces états. Ces deux types d’état sont ensuite été combinés pour réaliser pour la première fois une intrication hybride entre qubits optiques de nature différente. Son extension à des qutrits a également été obtenue.Ces nouvelles ressources ouvrent la voie à la mise en oeuvre de réseau quantique hétérogène où les opérations et les techniques propres aux variables discrètes et continues peuvent être efficacement combinées.Ce travail de thèse a également été consacré à la mise en oeuvre d’un système de conversion de fréquence à haute efficacité et faible bruit, basé sur deux lasers à fibres synchronisés.Ce convertisseur de fréquence quantique permet non seulement d’étendre les états quantiques à des longueurs d’onde difficilement accessibles avec la technologie actuelle, mais constitue également un détecteur de photons à haute performance, surtout dans le régime infrarouge.Basé sur ce système, plusieurs applications ont ensuite été démontrées, comme la détection infrarouge résolue en nombre de photons et l’imagerie infrarouge ultra-sensible.