Nouvelle génération de transformateurs de chaleur, sélection de fluides de travail et optimisation des équipements du cycle en employant des technologies innovantes
Auteur / Autrice : | Rami Khadra |
Direction : | Didier Mayer |
Type : | Thèse de doctorat |
Discipline(s) : | Energétique et Procédés |
Date : | Soutenance le 17/12/2015 |
Etablissement(s) : | Paris, ENMP |
Ecole(s) doctorale(s) : | École doctorale Sciences des métiers de l'ingénieur (Paris) |
Partenaire(s) de recherche : | Laboratoire : Centre Efficacité Énergétique des Systèmes. Paris |
Jury : | Président / Présidente : Khalil El Khoury |
Examinateurs / Examinatrices : Didier Mayer, Khalil El Khoury, Pierre Neveu, Vincent Gerbaud, Kevin Cronin | |
Rapporteur / Rapporteuse : Pierre Neveu, Vincent Gerbaud, Kevin Cronin |
Mots clés
Résumé
Ce travail contribue aux efforts de l'Union Européenne pour réduire les émissions de CO2. Son objectif est d'aider les industries produisant de la chaleur fatale à récupérer cette énergie perdue, d'augmenter sa température et de la réutiliser in situ. Les transformateurs de chaleur (Absorption Heat Transformers ou AHT), machines à absorption consommant très peu d'électricité, sont alors ici étudiés. Les AHTs existants rencontrent des problèmes comme la corrosion, la cristallisation, la toxicité et les niveaux de pression éloignés de la pression atmosphérique. Ceux-ci sont causés par les fluides conventionnels (Eau/LiBr et Ammoniaque/Eau) et s'aggravent à des températures supérieures à 120°C. Des modèles de conception ainsi que des solutions techniques, applicables avec tous mélanges de fluides organiques, sont alors proposés dans cette thèse. Ces modèles sont validés avec des données de la littérature et implémentés dans des outils d'aide à la décision.Tout d'abord, un modèle de sélection de paires de fluides organiques (parmi une liste de fluides) est développé. Les contraintes prises en compte sont, entre autres, les types et les profils de températures des sources et puits de chaleur, et les propriétés du fluide. Pour chaque type de fluide, la méthode la plus adaptée au calcul des propriétés physiques des fluides est choisie.En second lieu, pour effectuer la séparation des 2 constituants du mélange de fluides organiques, le générateur (composant recevant la chaleur fatale) et le condenseur de l'AHT sont fusionnés pour former une colonne de distillation. Un modèle d'une colonne de distillation nommée « hybride » est alors développé en adaptant la méthode de Ponchon-Savarit et en la combinant avec la méthode ETD (Equal Thermodynamic Distance). Cette colonne associe les avantages des 2 types de colonnes adiabatiques et diabatiques. Elle allie réduction de production d'entropie et meilleure exploitation des sources de chaleur à températures glissantes. La conception mécanique de la colonne hybride est aussi incluse.Troisièmement, pour atteindre la température théorique maximale du mélange de fluide déjà choisi, l'absorbeur de l'AHT (où la chaleur à haute température est libérée) est divisé en sections adiabatiques suivies par des sections diabatiques. De plus, les modèles détaillés des colonnes à bulles (fonctionnant en co-courant ou en contre-courant) ainsi que de la colonne à garnissage sont présentés et comparés entre eux.Les principaux résultats de ces travaux consistent en une nouvelle méthodologie de choix de fluides organiques pouvant remplacer les mélanges classiques surtout à températures élevées (supérieures à 130 °C). En ce qui concerne la colonne de distillation, il est montré que la colonne adiabatique constitue un meilleur choix lorsqu'une source de chaleur latente est disponible tandis qu'avec une source de chaleur sensible, la colonne hybride engendre moins de pertes exergétiques. En passant à l'absorbeur, le nouveau mode d'opération de celui-ci permet à l'utilisateur d'atteindre des températures plus élevées que celles réalisées avec les technologies actuellement disponibles. Enfin, les modèles développés permettent de choisir les technologies de distillation (adiabatique, diabatique ou hybride) et d'absorption (colonne à bulles ou à garnissage) les plus appropriées en s'adaptant à différentes problématiques industrielles.