Thèse soutenue

Morphologie, Géométrie et Statistiques en imagerie non-standard

FR  |  
EN
Auteur / Autrice : Emmanuel Chevallier
Direction : Jesús Angulo López
Type : Thèse de doctorat
Discipline(s) : Morphologie mathématique
Date : Soutenance le 18/11/2015
Etablissement(s) : Paris, ENMP
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Centre de morphologie mathématique (Fontainebleau, Seine et Marne)
Jury : Président / Présidente : Fernand Meyer
Examinateurs / Examinatrices : Jesús Angulo López, Frédéric Barbaresco, Jasper Van de gronde, Christian Ronse
Rapporteurs / Rapporteuses : Michel Berthier, Isabelle Bloch, Gabriele Steidl

Résumé

FR  |  
EN

Le traitement d'images numériques a suivi l'évolution de l'électronique et de l'informatique. Il est maintenant courant de manipuler des images à valeur non pas dans {0,1}, mais dans des variétés ou des distributions de probabilités. C'est le cas par exemple des images couleurs où de l'imagerie du tenseur de diffusion (DTI). Chaque type d'image possède ses propres structures algébriques, topologiques et géométriques. Ainsi, les techniques existantes de traitement d'image doivent être adaptés lorsqu'elles sont appliquées à de nouvelles modalités d'imagerie. Lorsque l'on manipule de nouveaux types d'espaces de valeurs, les précédents opérateurs peuvent rarement être utilisés tel quel. Même si les notions sous-jacentes ont encore un sens, un travail doit être mené afin de les exprimer dans le nouveau contexte. Cette thèse est composée de deux parties indépendantes. La première, « Morphologie mathématiques pour les images non standards », concerne l'extension de la morphologie mathématique à des cas particuliers où l'espace des valeurs de l'image ne possède pas de structure d'ordre canonique. Le chapitre 2 formalise et démontre le problème de l'irrégularité des ordres totaux dans les espaces métriques. Le résultat principal de ce chapitre montre qu'étant donné un ordre total dans un espace vectoriel multidimensionnel, il existe toujours des images à valeur dans cet espace tel que les dilatations et les érosions morphologiques soient irrégulières et incohérentes. Le chapitre 3 est une tentative d'extension de la morphologie mathématique aux images à valeur dans un ensemble de labels non ordonnés.La deuxième partie de la thèse, « Estimation de densités de probabilités dans les espaces de Riemann » concerne l'adaptation des techniques classiques d'estimation de densités non paramétriques à certaines variétés Riemanniennes. Le chapitre 5 est un travail sur les histogrammes d'images couleurs dans le cadre de métriques perceptuelles. L'idée principale de ce chapitre consiste à calculer les histogrammes suivant une approximation euclidienne local de la métrique perceptuelle, et non une approximation globale comme dans les espaces perceptuels standards. Le chapitre 6 est une étude sur l'estimation de densité lorsque les données sont des lois Gaussiennes. Différentes techniques y sont analysées. Le résultat principal est l'expression de noyaux pour la métrique de Wasserstein.