Synthèse sans catalyseurs métalliques de systèmes multivalents à base d'iminosucres, nouveaux inhibiteurs de glycosidases
Auteur / Autrice : | Renaud Zelli |
Direction : | Alberto Marra |
Type : | Thèse de doctorat |
Discipline(s) : | Chimie organique, minérale et industrielle |
Date : | Soutenance le 20/11/2015 |
Etablissement(s) : | Montpellier, Ecole nationale supérieure de chimie |
Ecole(s) doctorale(s) : | École doctorale Sciences Chimiques Balard (Montpellier ; 2003-....) |
Partenaire(s) de recherche : | Laboratoire : Institut des Biomolécules Max Mousseron (Montpellier) |
Jury : | Président / Présidente : Patrick Rollin |
Examinateurs / Examinatrices : Alberto Marra, Patrick Rollin, Matthieu Sollogoub, Yves Blériot, Pascal Dumy | |
Rapporteur / Rapporteuse : Matthieu Sollogoub, Yves Blériot |
Mots clés
Mots clés contrôlés
Résumé
Les iminosucres sont des composés azotés polyhydroxylés mono- (pyrrolidine, piperidine, azepane) ou bicycliques (pyrrolizidine, indolizidine, nortropane) démontrant une forte activité inhibitrice envers les glycosidases, enzymes catalysant l'hydrolyse des liaisons glycosidiques des glycoconjugués. Le développement de nouveaux dérivés d'iminosucres est essentiel afin d'obtenir de nouveaux traitements contre des maladies comme le diabète de type II, la mucoviscidose ou les troubles du stockage lysosomale (maladies de Gaucher ou de Fabry par exemple). Des études récentes ont démontré que l'utilisation de systèmes multivalents d'iminosucres peut amener à des inhibitions plus fortes et plus sélectives envers les glycosidases comparés aux inhibiteurs monovalents. Cependant, une grande majorité de ces systèmes multivalents, incluant des systèmes multivalents basés sur une plateforme de type calixarène synthétisés au début de cette thèse, sont obtenus grâce à la cyclo-addition azoture alcyne catalysée par le cuivre(CuAAC). Malheureusement, cette réaction puissante mène à la contamination des systèmes multivalents par des quantités non négligeables d'ions cuivre toxiques. C'est pour cela que le principal but de ce doctorat a été de développer de nouvelles méthodes de ligations afin de former des architectures multivalentes d'iminosucres sans utiliser de catalyseurs métalliques toxiques.Premièrement, des ligations déjà exploitées pour la préparation de sucres multivalents comme l'addition radicalaire photoinduite d'un thiol sur un alcène terminal (couplage thiol-ène) et la ligation oxime ont été appliqués aux iminosucres avec succès. Ces approches ont alors permis de synthétiser des systèmes multivalents basés respectivement sur des plateformes de type calixarènes ou peptides cycliques.Dans un second temps, une nouvelle approche vers des systèmes multivalents de sucres et d'iminosucres a été développée en exploitant les remarquables stabilité et réactivité des fluorures de sulfonyle. Le couplage de ces derniers avec des partenaires portant une amine primaire a permis d'obtenir des clusters de sucres et d'iminosucres liés par une fonction sulfonamide avec de très bons rendements.Parallèlement, le couplage thiol-ène a permis la préparation simple et rapide de pseudo-disaccharides d'iminosucres, une nouvelle classe d'inhibiteur de glycosidases exhibant de meilleures activités et sélectivités que les iminosucres monosaccharidiques correspondants. Ce comportement est probablement du à la présence de l'unité saccharidique qui améliore l'analogie entre l'inhibiteur et les oligosaccharides naturels, substrats des glycosidases.