Thèse soutenue

Intégration de la maturité des connaissances dans la prise de décision en conception mécanique : application à un système solaire.

FR  |  
EN
Auteur / Autrice : Mehdi El amine
Direction : Nicolas PerryJérôme Pailhes
Type : Thèse de doctorat
Discipline(s) : Conception
Date : Soutenance le 16/12/2015
Etablissement(s) : Paris, ENSAM
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Institut de mécanique et d'ingénierie de Bordeaux - Institut de Mécanique et d'Ingénierie de Bordeaux
Jury : Président / Présidente : Laurent Geneste
Examinateurs / Examinatrices : Nicolas Perry, Jérôme Pailhes, Mohammed Sallaou
Rapporteurs / Rapporteuses : Fouad Bennis, Dominique Deneux

Résumé

FR  |  
EN

La réussite du développement des produits industriels a un enjeu économique considérable pour l’entreprise. Les décisions sur les concepts et sur l’architecture du produit ont un impact considérable sur le coût global du cycle de vie du produit. Les industriels sont alors de plus en plus encouragés à adopter des méthodes permettant de rationaliser les décisions de conception. Ces méthodes doivent être en adéquation avec le niveau de connaissance acquis sur les alternatives de conception, la nature des décisions à prendre et les outils d’évaluation disponibles. Ainsi, deux méthodes d’aide à la décision ont été développées dans cette thèse en fonction de la phase de conception étudiée.Une première méthode est proposée pour la phase amont de conception dans laquelle l’objectif de l’entreprise est de réduire le nombre de concepts proposés initialement pour concentrer ses efforts et ses ressources sur les concepts les plus prometteurs. Durant cette phase, les produits sont définis d’une manière très imprécise. Les concepteurs doivent alors faire beaucoup d'hypothèses lorsqu’ils proposent des modèles de comportement destinés à évaluer les concepts. Ces modèles, qui expriment une connaissance de nature explicite, sont insuffisants pour faire des choix de concepts. Pour remédier à cette difficulté, nous nous orientons dans notre étude vers la connaissance implicite (ou subjective), obtenue au travers de l'expérience et du savoir-faire acquis par les concepteurs. Afin d’intégrer cette connaissance dans la prise de décision, elle est d’abord formalisée au travers d’outils comme les fonctions de préférence. La méthode globale d’aide à la décision proposé permet de combiner à la fois cette connaissance implicite et la connaissance explicite (représentée par les modèles de comportement) pour évaluer chaque concept en termes d’aptitude à respecter les exigences minimales de validation et du niveau d’adéquation avec les objectifs de conception. Les objectifs et préférences des décideurs sont, quant à eux, structurés et formalisés au travers du modèle OIA (Observation-Interprétation-Agrégation) développé auparavant dans le laboratoire I2M-IMC.Une deuxième méthode a été proposée pour la phase aval de conception qui a pour objectif de fixer les paramètres du produit final (choix des matériaux, dimensions, etc.) après que le concept ait été choisi. Durant cette phase, le produit est défini d’une manière plus précise et les modèles de comportement sont plus représentatifs des phénomènes physiques pertinents du concept étudié. Ces modèles restent cependant basés sur des hypothèses qui conduisent parfois à une remise en question de leur exactitude, surtout pour certains paramètres de conception. Fixer les paramètres du produit en se basant uniquement sur ces modèles de comportement nécessite la prise en compte de leur niveau exactitude. Nous avons donc développé un indicateur d’exactitude de ces modèles qui intègre, d’une part, une évaluation objective qui est la mesure d’écart entre le modèle et un comportement de référence (supposé exact) et, d’autre part, sur une évaluation subjectif qui se base sur la mesure de distance avec la solution de référence (solution prototypée) et sur des fonctions de confiances établies par les concepteurs. La combinaison d’une évaluation objective et subjective de l’exactitude permet d’obtenir à la fin un indicateur général d’exactitude capable de couvrir l’intégralité de l’espace de conception. L’indicateur ainsi obtenu est utilisé dans une méthode d’aide à la décision qui qualifie chaque solution candidate en terme de risque engendré par les l’exactitude des modèles et de degré de satisfaction des objectifs de conception (en se basant la modèle OIA).