Thèse soutenue

Modélisation de la cavitation par une approche à interface diffuse avec prise en compte de la tension de surface

FR  |  
EN
Auteur / Autrice : Takfarines Ait-Ali
Direction : Sofiane KhelladiFarid Bakir
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 29/09/2015
Etablissement(s) : Paris, ENSAM
Ecole(s) doctorale(s) : École doctorale Sciences des métiers de l'ingénieur (Paris)
Partenaire(s) de recherche : Laboratoire : Laboratoire de Dynamique des Fluides (Paris) - Laboratoire de Dynamique des Fluides
Jury : Examinateurs / Examinatrices : Sofiane Khelladi, Farid Bakir, Noureddine Hannoun
Rapporteurs / Rapporteuses : Xesùs Nogueira, Regiane Fortes-Patella

Résumé

FR  |  
EN

La cavitation est la transformation d'un liquide en vapeur qui est causée par une chute de pression en dessous de la pression de saturation vapeur. Ce phénomène se manifeste le plus souvent dans les turbomachines qui sont en interaction avec des liquides. On peut citer les pompes hydrauliques, les injecteurs, les inducteurs ou encore les hélices de bateaux. Vue les effets néfastes qu'elle engendre : bruit, vibrations, détérioration du métal et baisse des performances (chute des rendements et pertes de charges), sa prise en compte est indispensable dans le design des turbomachines. Cette thèse a pour objectif de modéliser ce phénomène de manière à reproduire la nucléation, la convection et l'implosion des bulles de cavitation. Nous nous basons sur un modèle à interface diffuse (le modèle d'équilibre homogène) sur lequel nous greffons un modèle de tension de surface basé sur les équations de Navier Stokes & Korteweg compressibles. Nous réalisons en somme une étude sur l'influence de la tension de surface sur le phénomène de collapse. Nous utilisons un code de volumes finis dont la discrétisation spatiale est assurée par méthode des moindres carrés mobiles. Combinée à un solveur de Riemann de type SLAU, le modèle numérique permet d'outre passer les difficultés liés à la nature du phénomène de cavitation qui sont principalement les forts gradients qui subsistent à travers l'interface liquide-vapeur. L'autre point traité dans la thèse est la détermination d'un coefficient capillaire numérique qui correspond à une tension de surface réelle en fonction de l'épaisseur de l'interface artificiellement élargie pour un maillage donné.