Thèse soutenue

Etude de la passivation de surface du silicium cristallin type P par dépôt de couches atomiques d'alumine pour application aux cellules solaires à haut rendement
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Matthieu Pawlik
Direction : Jean-Pierre VilcotCathy SionMathieu Halbwax
Type : Thèse de doctorat
Discipline(s) : Micro et Nanotechnologies,acoustique et télécommunications
Date : Soutenance le 23/04/2015
Etablissement(s) : Ecole centrale de Lille
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Institut d'Electronique, de Microélectronique et de Nanotechnologie - Institut d'électronique, de microélectronique et de nanotechnologie (IEMN)
Jury : Président / Présidente : Antoine Goullet
Rapporteurs / Rapporteuses : Anne Kaminski-Cachopo, Stéphane Bastide

Résumé

FR  |  
EN

La diminution du coût ainsi que l'augmentation du rendement des cellules solaires sont devenues les axes principaux de recherche depuis la crise qui a touché le marché du photovoltaïque en 2011. Une des principales stratégies est l’amincissement des cellules solaires dans le but de réduire les coûts des matériaux. Cependant, ceci diminue fortement le rendement de conversion suite à une plus forte influence des défauts structurels et électroniques, présents en surface. Ces défauts peuvent être « passivés » par l’Al2O3 déposé par technique PE-ALD. Ce matériau présente les meilleurs résultats de passivation de surface du silicium cristallin de type p. La couche de passivation nécessite un traitement thermique pour être effective. Ce phénomène se traduit par une augmentation de la durée de vie des porteurs de charge. Cette thèse, encadrée par les deux projets ANR PROTERRA et BIFASOL, ainsi qu’un financement de l’Ecole Centrale de Lille, présente l’optimisation des paramètres de dépôt de la couche de passivation d’Al2O3 ainsi qu’une étude approfondie du phénomène d’activation de la passivation, sur des échantillons avec et sans émetteur. L’analyse de la passivation a été réalisée grâce à des mesures couplées de durée de vie (PCD), électriques (C-V), de potentiel de surface (Sonde de Kelvin) et de spectrométrie (XPS, SIMS). Les sources de la passivation chimique et par effet de champ sont déterminées dans l'empilement Si/SiO2/Al2O3. Le rôle et la dynamique des hydrogènes contenus dans la couche d’alumine sont explicités. L’impact d’une encapsulation par du SiNx ainsi qu’un recuit de diffusion des contacts de 3s à 830°C est étudié