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Abstract

3D-related applications are becoming more and more popular in our daily life, such

as 3D movies, 3D printing, 3D maps, 3D object recognition, etc. Many applications

require realistic 3D models and thus 3D reconstruction is a key technique behind

them. In this thesis, we focus on a basic problem of 3D reconstruction, i.e. stereo

matching, which searches for correspondences in a stereo pair or more images of a

3D scene. Although various stereo matching methods have been published in the

past decades, it is still a challenging task since the high requirement of accuracy and

efficiency in practical applications. For example, autonomous driving demands real-

time stereo matching technique; while 3D object modeling demands high quality

solution. This thesis is dedicated to develop efficient and accurate stereo matching

method.

The well-known bilateral filter based adaptive support weight method represents

the state-of-the-art local method, but it hardly sorts the ambiguity induced by

nearby pixels at different disparities but with similar colors. Therefore, we proposed

a novel trilateral filter based method that remedies such ambiguities by introducing

a boundary strength term. As evaluated on the commonly accepted Middlebury

benchmark, the proposed method is proved to be the most accurate local stereo

matching method at the time of submission (April 2013).

The computational complexity of the trilateral filter based method is high and

depends on the support window size. In order to enhance its computational effi-

ciency, we proposed a recursive trilateral filter method, inspired by recursive filter.

The raw costs are aggregated on a grid graph by four one-dimensional aggregations

and its computational complexity proves to be O(N), which is independent of the

support window size. The practical runtime of the proposed recursive trilateral fil-

ter based method processing 375 ∗ 450 resolution image is roughly 260ms on a PC

with a 3.4 GHz Inter Core i7 CPU, which is hundreds times faster than the original
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trilateral filter based method.

The trilateral filter based method introduced a boundary strength term, which

is computed from color edges, to handle the ambiguity induced by nearby pixels at

different disparities but with similar colors. The color edges consist of two types

of edges, i.e. depth edges and texture edges. Actually, only depth edges are useful

for the boundary strength term. Therefore, we presented a depth edge detection

method, aiming to pick out depth edges and proposed a depth edge trilateral filter

based method. Evaluation on Middlebury benchmark proves the effectiveness of

the proposed depth edge trilateral filter method, which is more accurate than the

original trilateral filter method and other local stereo matching methods.

iv



Résumé

Les applications basées sur 3D tels que les films 3D, l’impression 3D, la cartographie

3D, la reconnaissance 3D, sont de plus en plus présentes dans notre vie quotidienne;

elles exigent une reconstruction 3D qui apparaît alors comme une technique clé.

Dans cette thèse, nous nous intéressons à l’appariement stéréo qui est au cœur

de l’acquisition 3D. Malgré les nombreuses publications traitant de l’appariement

stéréo, il demeure un défi en raison des contraintes de précision et de temps de calcul:

la conduite autonome requiert le temps réel; la modélisation d’objets 3D exige une

précision et une résolution élevées.

La méthode de pondération adaptative des pixels de support (adaptaive-support-

weight), basée sur le bien connu filtre bilatéral, est une méthode de l’état de l’art,

de catégorie locale, qui en dépit de ses potentiels atouts peine à lever l’ambiguïté

induite par des pixels voisins, de disparités différentes mais avec des couleurs sim-

ilaires. Notre première contribution, à base de filtre trilatéral, est une solution

pertinente qui tout en conservant les avantages du filtre bilatéral permet de lever

l’ambiguïté mentionnée. Evaluée sur le corpus de référence, communément accep-

tée, Middlebury, elle se positionne comme étant la plus précise au moment où nous

écrivons ces lignes.

Malgré ces performances, la complexité de notre première contribution est élevée.

Elle dépend en effet de la taille de la fenêtre support. Nous avons proposé alors une

implémentation récursive du filtre trilatérale, inspirée par les filtres récursifs. Ici,

les coûts bruts en chaque pixel sont agrégés à travers une grille organisée en graphe.

Quatre passages à une dimension permettent d’atteindre une complexité en O(N),

indépendante cette fois de la taille de la fenêtre support. C’est-à-dire des centaines

de fois plus rapide que la méthode originale.

Pour le calcul des pondérations des pixels du support, notre méthode basée

sur le filtre trilatéral introduit un nouveau terme, qui est une fonction d’amplitude
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du gradient. Celui-ci est remarquable aux bords des objets, mais aussi en cas de

changement de couleurs et de texture au sein des objets. Or, le premier cas est

déterminant dans l’estimation de la profondeur. La dernière contribution de cette

thèse vise alors à distinguer les contours des objets de ceux issus du changement de

couleur au sein de l’objet. Les évaluations, sur Middlebury, prouvent l’efficacité de

la méthode proposée. Elle est en effet plus précise que la méthode basée sur le filtre

trilatéral d’origine, mais aussi d’autres méthodes locales.

vi
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Chapter 1

Introduction

Contents

1.1 Research Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview of our Approaches and Contributions . . . . . . . 7

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . 8

1.1 Research Topic

In recent years, 3D-related applications are becoming more and more popular in our

daily life. As illustrated in Figure 1.1, 3D entertainment trends into the explosive

spread of the entire field, i.e. 3D movies and 3D games; the use of 3D printing has

significantly increased in the industrial manufacturing and has also made inroads

into various households for personal use; the 3D map helps us get around more

conveniently, etc. Realistic 3D models, more specifically the 3D reconstruction

as the key technique to achieve them, are requisite in a plethora of applications

including the above.

Over past decades, a variety of 3D reconstruction methods have been developed,

which can be categorized into two classes: active methods and passive methods.

Active methods actively interfere with the reconstructed object, either mechanically

or radiometrically. A simple example of a mechanical method would use a depth

gauge to measure a distance to a rotating object put on a turntable. More applicable

radiometric methods emit radiance towards the object and then measure its reflected

part. Examples range from moving light sources, colored visible light, time-of-
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(a) 3D Game (b) 3D Movie

(c) 3D Printer (d) 3D Map

Figure 1.1: 3D-related applications need 3D models.

flight lasers to microwaves or ultrasound. On the other hand, passive methods

do not interfere with the reconstructed object, they only use a sensor to measure

the radiance reflected or emitted by the object’s surface to infer its 3D structure.

Typically, the sensor is an image sensor in a camera sensitive to visible light and

the input to these methods is a set of digital images or video, the output is a 3D

model.

Passive methods are widely applied in 3D reconstruction due to the less compli-

cated and lower cost system. It requires one, two or multiple digital still or video

cameras to obtain a sequence of images taken from different viewpoints. Different

applications demand the systems with different camera amounts. In the case of

a single camera based system, the camera captures consecutive images by moving

the camera around the object and a 3D model is reconstructed from the resulting

consecutive images. An challenge in this method is that the camera path must be

estimated since precise calibration of freely moving cameras is extremely difficult.

This problem of recovering scene geometry from the motion of points in the image

2
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Figure 1.2: Image based 3D reconstructed system presented in [1].

3
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plane of a moving camera is called structure from motion. It usually applies to

reconstruct static objects, e.g. buildings. A structure from motion system [1] is

presented in Figure 1.2. This system can be divided into three parts, (1) camera

calibration, including feature extraction and matching, relating images, projective

reconstruction and self-calibration, which estimates the camera parameters of each

view; (2) stereo matching, i.e. dense matching, which calculates dense depth maps

from related views; and (3) 3D modeling, i.e. 3D model building, which reconstructs

a 3D model from depth maps.

In the case of two cameras based stereo vision system, when a point is imaged

from two different viewpoints, its image projection undergoes a displacement from

its position in the first image to that in the second image. The amount of displace-

ment is inversely proportional to distance and may therefore be used to compute 3D

geometry. Given a correspondence between imaged points from two known view-

points, it is possible to compute depth by triangulation. The problem of establishing

correspondence is a fundamental difficulty, which is the stereo matching problem.

Different from the previous structure from motion system, this two cameras based

stereo vision system can be used to obtain the disparity map of a dynamic scene.

In the case of multiple cameras based multi-view stereo vision system, it can

apply to reconstruct dynamic objects, e.g. facial models with highly-transient ex-

pression, because multiple images can be simultaneously captured from multiple

viewpoints. Different from the two view stereo vision system, the multi-view stereo

vision system can obtain a completed 3D model of a dynamic object from more

views. A multi-view stereo vision system is presented in [2] using seven cameras,

which aims to reconstruct a realistic facial model. The reconstructed facial models

with highly-transient expression are presented in Figure 1.3. The framework of this

multi-view stereo vision system is similar to the previous structure from motion sys-

tem [1] and also includes three parts, i.e. camera calibration, stereo matching and

3d modeling. After camera calibration, depth maps of different views are computed

by stereo matching algorithm, and the depth maps are shown in Figure 1.4. Finally,

a high quality 3D facial model, as shown in Figure 1.5, is reconstructed from these

depth maps. Both camera calibration and stereo matching are two indispensable

4
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Figure 1.3: Top: Images of a subject slapping himself and causing a shock-wave in
the face. Bottom: the respective reconstructions obtained in [2]

Figure 1.4: pairwise stereo matching

and challenging parts of these systems [1] [2]. Many works on camera calibration

can be found in literatures [3] [4] [5] [6] and this dissertation concentrates on the

latter, i.e. stereo matching.

Shape from shading is a different kind of passive methods. The basic problem

behind this method is that, given a single intensity image of a smooth curved object,

then how to recovered the shape of the object. Given the intensity of a point in

the image and a known directional light source, Lambert law yields a one-parameter

family of solutions for the surface normal in literature [7]. Additional constraints are

needed to make the problem well-posed. It is generally solved by assuming similarity

of surface reflectance and orientation at nearby points.

5
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Figure 1.5: reconstructed 3D model

1.2 Objective

We focus in this dissertation on a basic problem of passive methods, i.e. stereo

matching, which remains one of the most active research topics in the comput-

er vision. Stereo matching aims to find corresponding pairs in two images of the

same scene captured in different views. The accuracy and efficiency are two met-

rics to evaluate a stereo matching method. Both of them are important as far as

real world applications concerned. For example, navigation for autonomous vehicle

needs real-time stereo vision techniques; while 3D object reconstruction needs high

quality solutions. The objective of this dissertation is to research on the efficient

and accurate stereo matching method.

Stereo matching methods can be broadly categorized into two classes: global

methods and local methods. Global methods produce accurate results, but are

quite time consuming due to iterative optimization process. Local methods are

efficient but tend to be less accurate. However, in recent years, the accuracy of local

methods is improving rapidly as the introduction of adaptive support weight based

methods [8] [9] [10]. Therefore, we investigated popular adaptive support weight

methods and proposed three methods, i.e. trilateral filter based method, recursive

trilateral filter based method, and depth edge based trilateral filter method, in order

to efficiently obtain an accurate depth map. The proposed methods, corresponding

to our three contributions, are briefly introduced in the following section.

6
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1.3 Overview of our Approaches and Contributions

In our first contribution, we proposed a novel trilateral filer based method. We an-

alyzed the well-known bilateral filter based adaptive support weight method, which

is the state-of-the-art local stereo matching method, and found it hardly sort the

ambiguity induced by nearby pixels at different disparities but with similar col-

ors. Therefore, we introduced a novel trilateral filter based method that remedies

such ambiguities by considering the possible disparity discontinuities through color

discontinuity boundaries, i.e. the boundary strength between two pixels, which is

measured by a local energy model. As evaluated on the commonly accepted Mid-

dlebury benchmark, the proposed method is proved to be the most accurate local

stereo matching method at the time of submission (April 2013).

In our second contribution, we proposed a recursive trilateral filter based method.

The computational complexity of the trilateral filter based method is O(Nr2), where

N denotes the image size and r denotes the support window radius. However, the

support window size should be large enough to better handle untexture regions,

e.g. 35 × 35 on the Middlebury stereo pairs. Therefore, the trilateral filter based

method is quite time consuming. In order to improve the computational efficiency,

we proposed a recursive trilateral filter method, inspired by recursive filter. In

this method, the reference image is represented in a four-connected and weighted

grid, whose vertices are image pixels and edges are weights, computed from the

difference of intensity, between two neighboring pixels. Then, the weighted costs

are aggregated on this grid graph by four passes, i.e. two horizontal passes and

two vertical passes. The computational complexity of the recursive trilateral filter

method is O(N), which is independent of the window size r. The runtime time of

recursive trilateral filter cost aggregation processing 375 ∗ 450 resolution image is

roughly 260ms on a PC with a 3.4 GHz Inter Core i7 CPU, which is hundreds times

faster than the original trilateral filter cost aggregation.

In our third contribution, we proposed a depth edge trilateral filter based

method. The previous trilateral filter based method introduced a boundary strength

term, which is the key part of this method. The boundary strength term is com-

7
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puted from a color edge map. However, we verified that, if the boundary strength

term is computed from a depth edge map, the final result is more accurate than

that computed from a color edge map. Motivated by this observation, we present a

depth edge detection method to obtain an accurate depth edge map, which replaces

the color edge map used in the trilateral filter based method. The experimental

evaluation on the Middlebury benchmark shows that the proposed depth edge tri-

lateral filter method outperforms the original trilateral filter method and also other

local stereo matching methods.

1.4 Organization of the thesis

The rest of this dissertation is organized as follows. In Chapter 2, we introduce

the fundamental theory of stereo vision, including pinhole camera model, epioplar

geometry, image rectification, stereo matching and triangulation. This chapter could

be skipped for readers who are familiar with these concepts. In Chapter 3, we review

various stereo matching methods, which are the key part of a stereo vision system.

In Chapter 4, we propose a novel trilateral filter based method, which is our first

contribution. This method is the most accurate local stereo matching method at

the time of submission (April 2013). However, this method is quite time consuming,

whose computational complexity is O(Nr2) where N denotes the image size and r

denotes the support window size. Therefore, we propose in Chapter 5 an efficient

recursive trilateral filter based method, which is our second contribution. This

method is 300× faster than the previous trilateral filter based method, while still

providing a high accuracy. In Chapter 6, we verified that depth edge map can

improve the accuracy of the trilateral filter based method, and thus propose a depth

edge based trilateral filter method, which is our third contribution. In Chapter 7, our

conclusions as well as some perspective for future research directions are proposed.

8
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Fundamental of stereo vision

Contents

2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Image Rectification . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

In this Chapter, we present the fundamental theory behind stereo vision, includ-

ing Pinhole Camera Model, Epipolar Geometry, Image Rectification, Stereo Match-

ing and Triangulation. The following discussion is at a general level and could be

skipped for readers who are familiar with these concepts. Interested readers could

refer to some books for more discussion about stereo vision [11] [12].

The framework of a typical stereo vision system is illustrated in Figure 2.1.

Stereo vision system is motivated from the human vision system, which can perceive

depth properties of a scene. The human vision system obtains two different images

of a scene from the slightly different views of the eyes and interprets the images for

depth perception. Similarly, stereo vision system consists of two cameras (two eyes),

which simultaneously capture the same scene from different views, and a hardware

(a brain), which compute the 3D information of the scene from these two views.

We sequentially explain each stage of the framework of stereo vision system

as follows. First of all, a point on the surface of an object is projected onto image

planes of two cameras, respectively. This projection from 3D point to 2D pixel can be

described by pinhole camera model, which is explained in Section 2.1. The essence of
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Figure 2.1: The framework of a typical stereo vision system.
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pinhole camera model is a 3×4 camera projection matrix, which consists of internal

camera parameters and external camera parameters. These camera parameters can

be computed by camera calibration techniques. After obtaining camera parameters,

the inherent problem in stereo vision comes out, i.e. correspondence problem, which

refers to the problem of ascertaining which parts of one image correspond to which

parts of the other image. It seems to require a 2D searching through the whole image.

However, after understanding Epipolar Geometry introduced in Section 2.2, it is

known that the 2D searching can be simplified to a 1D searching on a single Epipolar

line due to Epipolar constraint. Moreover, this searching problem can be further

simplified by Image Rectification technique, which is introduced in Section 2.3. After

image rectification, the corresponding pairs locate on the horizontal scan-line with

the same height and the Epipolar lines are rectified horizontal, because these two

images are transformed onto a common image plane. Then, stereo correspondences

are matched on the rectified images by stereo matching algorithms. We briefly

explain Stereo Matching in Section 2.4 and review the state-of-the-art algorithms in

Chapter 3 in detail. The output of stereo matching is a disparity map, which refers

to the apparent pixel location difference between a pair of stereo image. Finally, the

3D coordinate of each pixel on the disparity map can be computed by Triangulation

as presented in Section 2.5. In this framework, stereo matching is considered as the

most challenging and unsolved problem.

2.1 Pinhole Camera Model

The pinhole camera model represents a mathematical mapping between the coordi-

nate of a 3D point and its 2D projection on the image plane. This mathematical

mapping is illustrated in Figure 2.2. The camera aperture of the pinhole camera is

described as a point and no lenses are used to focus light.

The camera center C, where the camera aperture is located, is set to be the

origin of a Euclidean coordinate system. The axis Z, which points in the viewing

direction of the camera, is referred to as the principal axis. The image plane is

parallel to axes X, Y and is located at distance f from the camera center C in the

11
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Figure 2.2: pinhole camera model.

direction of the Z axis, i.e. the image plane is Z = f , where f is referred to as the

focal length. The point p, intersection of the principal axis and the image plane, is

referred to as the principal point or image center. Given a point X in the 3D world,

whose homogeneous coordinate is (X,Y, Z, 1)T . This point is mapped to the image

plane at point x, where a line joining the point X to the camera center C meets the

image plane. By similar triangles, the coordinate of x is as,

f

Z
=

x

X
=

y

Y
(2.1)

which gives us

x =
fX

Z

y =
fY

Z

(2.2)

Therefore, the homogeneous coordinates of the mapped point x on the image plane is

(fX/Z, fY/Z, 1)T . This projection can be written in terms of matrix multiplication

12
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as, 
x

y

1

=


fX

fY

Z

=


f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 (2.3)

The above expression, Equation (2.3), assumed that the origin of the 2D image

coordinate system coincides with where the Z axis intersects the image plane. How-

ever, it may not be. We need to translate the 2D point x to the desired origin. Let

this translation be defined by (px, py)
T . Thus, the coordinate of x is

x =
fX

Z
+ px

y =
fY

Z
+ py

(2.4)

This can be expressed in a similar form as Equation (2.3) in homogeneous coor-

dinates as


x

y

1

=


fX + Zpx

fY + Zpy

Z

=


f 0 px 0

0 f py 0

0 0 1 0



X

Y

Z

1

 (2.5)

In the above expression, Equation (2.5), the coordinate is expressed in millimetre

(mm). We need to know the resolution of the camera in pixels/mm. If the pixels are

square, the resolution will be identical in both x and y directions of the camera image

coordinates. However, for a more general case, the image Euclidean coordinates are

possibly having unequal scales in both axial directions and we assume rectangle

pixels with resolution mx and my pixels/mm in those two direction respectively.

Therefore, to measure the point x in pixels, its coordinates should be multiplied by

mx and my respectively as,

x = mx
fX

Z
+mxpx

y = my
fY

Z
+mypy

(2.6)

13
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This can be expressed in matrix form as


x

y

z

=


mxf 0 mxpx 0

0 myf mypy 0

0 0 1 0



X

Y

Z

1

 =


ax 0 qx 0

0 ay qy 0

0 0 1 0



X

Y

Z

1

 (2.7)

where ax and ay represent the focal length of the camera in terms of pixel dimensions

in the x and y direction respectively. Sometimes if the image coordinate axes x and

y are not orthogonal to each other, then the skew parameter s is needed. Therefore,

the general matrix form of the mapping from 3D point to 2D pixel is


x

y

z

=


ax s qx 0

0 ay qy 0

0 0 1 0



X

Y

Z

1

 (2.8)

These parameters (ax, ay, s, qx, qy) are the internal camera parameters, which encom-

pass focal length (ax, ay), principle point (qx, qy) and skew coefficient s. Nonlinear

internal parameters such as lens distortion are also important although they cannot

be included in the linear camera model described by the internal parameter ma-

trix as Equation (2.8). Many modern camera calibration algorithms estimate these

nonlinear internal parameters.

The relationship between the 3D point (X,Y, Z, 1) and its 2D projection (x, y, z)

in Equations (2.8) is in the camera coordinate frame. In general, the camera coordi-

nate frame is not the world coordinate frame, but they are related by a rotation and

a translation, which are external camera parameters. Specifically, external camera

parameters define the position of the camera center and the camera’s heading in

world coordinates. Let X̃ denotes the coordinate of a point in the world coordinate

frame and X represents the same point in the camera coordinate frame as used in

Equation (2.8), then their relationship is X = RX̃ + t, where t represents a 3 × 1

translation matrix and R is a 3×3 rotation matrix. This relationship can be written

14
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in terms of matrix multiplication as,


X

Y

Z

1

=


r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




X̃

Ỹ

Z̃

1

 (2.9)

Therefore, in the world coordinate frame, the mapping from 3D point to 2D

pixel can be rewritten as,


x

y

z

=


ax s px 0

0 ay py 0

0 0 1 0



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




X̃

Ỹ

Z̃

1

 . (2.10)

This mapping has a concise form as x = K[R|t]X̃, where

K =


ax s px

0 ay py

0 0 1

, R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 and t =


tx

ty

tz

.
Let P = K[R|t] and the 3 × 4 matrix P is known as camera projection ma-

trix, which is the essence of pinhole camera model. The parameters in matrix K

are internal camera parameters and those in matrix R and t are external camera

parameters, which can be found by camera calibration technique [13] [14] [3].

2.2 Epipolar Geometry

Pinhole camera model represents the mapping from 3D world to 2D points on the

image plane. Stereo vision system includes two pinhole cameras, which simulta-

neously capture the same scene from two different views. The geometric relations

between these two views can be represented by Epipolar Geometry as shown in Fig-

ure 2.3. Suppose a point X in the 3D world is imaged in these two cameras, at

x1 in the left one and x2 in the right one. After camera calibration, the camera

parameters of left camera and right camera can be computed respectively and two
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Figure 2.3: Epipolar Geometry.

camera projection matrixes Pl and Pr are obtained. Then the coordinates of point

x1 and x2 can be calculated from the coordinate of X by Equation (2.10). Converse-

ly, if the coordinates of the point x1 and its correspondence x2 are found, then the

coordinate of X can be calculated by rays back-projection from the camera center

C1 and C2 to the projection x1 and x2. Therefore, matching a given point x1 in

one image with its correspondence point x2 in the other image is the key part of a

stereo vision system.

This correspondence matching problem seems to require a 2D search through

the whole image. However, the epipolar constraint reduces the search space to a

single line. The Epipolar Constraint is that the corresponding pixel x2 must lie on

the epipolar line of pixel x1. This constraint is described as follows. Suppose that

only the coordinate of x1 is known, the 3D point X must at the ray back-projected

from the camera center C1 to the point x1. From Equation (2.10), we known that

this ray back-projection can be obtained by solving x1 = PlX, where Pl is the left

camera projection matrix. The one-parameter family of solutions is as,

X(λ) = P+
l x1 + λC1 (2.11)
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where P+
l is the pseudo-inverse of Pl, i.e. PlP+

l = I and the left camera center C1

is the null-vector of Pl, i.e. PlC1 = 0. The ray is parameterized by the scalar λ and

contains two points, i.e. P+
l x1 (at λ = 0) and C1 (at λ = ∞). These two points

are imaged by the right camera, whose camera projection matrix is Pr, at PrP+
l x1

and PrC1 respectively. The ray is mapped to the right camera as a line, marked in

red color in Figure 2.3. This line is the epipolar line of x1, which joining the two

projected points PrP+
l x1 and PrC1, i.e. l = (PrC1)×(PrP

+
l x1). The corresponding

point x2 must lie on the epipolar line l. Therefore, we can conclude that, for any

pixel x in one image, its corresponding pixels x′ in the other image must lie on its

epipolar line l = (PrC1)× (PrP
+
l x). The left camera center C1 projects on the right

image plane at point e2 = PrC1, which is called epipolar point and each epipolar

line in the right image must pass through the epipolar point e2. The line joining

two camera center C1 and C2 is named baseline.

2.3 Image Rectification

Although the epipolar constraint simplifies the correspondence search along a single

line, the arbitrary orientation of the line makes it inconvenient for algorithms to

compare pixels. The image rectification technique is used to overcome this issue.

Image rectification is a transformation process used to project two images onto a

common image plane and pairs of conjugate epipolar lines become collinear, as shown

in Figure 2.4. The idea behind rectification is to define two new camera matrix P ′l
and P ′r obtained by rotating the old ones Pl and Pr around their camera center until

the image planes becomes coplanar, parallel to the baseline. Any pair of images can

be transformed so that epipolar lines are parallel and horizontal in each image, the

epipolar points are at infinity. The new camera matrix P ′l and P
′
r will have both the

same internal parameters, the same orientation but different position. As analyzed

in [15], the new camera matrixes are as

P ′l = A[R| −RC1]

P ′r = A[R| −RC2]
(2.12)
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Figure 2.4: Image Rectification.

The internal parameters matrix A is the same for both camera matrixes and can

be chosen arbitrarily. C1 and C2 denote two camera centers. The matrix R, which

gives the camera’s pose, is the same for both camera matrixes. It will be specified

by means of its row vectors R = [r1T , r2T , r3T ]T that are the X,Y and Z axes,

respectively. The new X axis is parallel to the baseline: r1 = (C1−C2)/||C1−C2||.

The new Y axis is orthogonal to X and to an arbitrary unit vector k, that fixes the

position of the new Y axis in the plane orthogonal to X: r2 = k × r1. The new Z

axis is orthogonal to XY : r3 = r1× r2.

In order to rectify the image, taking left image as an example, we need to

compute the transformation that maps the image plane of the old camera matrix

Pl = [Q1|q1], where Q1 is the 3 × 3 matrix and q1 is the 3 × 1 matrix, onto the

image plane of new camera matrix P ′l = [Q′1|q′1]. Then, the transformation matrix

for the left image from the old camera matrix to the new one is T = Q′1Q
−1
1 . The

transformation T is then applied to the original left image to produce the rectified

image.

18



Chapter 2. Fundamental of stereo vision

2.4 Stereo Matching

The goal of stereo matching is to identify corresponding pairs, e.g. x1 and x2, in

the left and right image. After image rectification, the stereo matching problem

becomes easier since the corresponding pairs locate on the scan-line with the same

height. The stereo matching is the most important part for a stereo vision system

and state-of-the-art stereo matching methods are reviewed in Chapter 3 in detail.

The output of stereo matching is a grey-scale image of the disparity values for each

point, also named as disparity map, where disparity refers to the distance between

two corresponding points of the left and right image.

2.5 Triangulation

Assume that the disparity map is obtained by stereo matching, then the 3D position

of each pixel of the disparity map can be determined by triangulation, as shown in

Figure 2.5. P denotes a point in 3D world, whose coordinate is (X,Y, Z) and it

projects on the left camera as p1 = (x1, y1) and on the right camera as p2 = (x2, y2).

Due to the image rectification described in Section 2.3, epipolar lines are horizontal

and correspondence pixels lie on the scanline with the same height, i.e. y1 = y2.

The baseline b represents the distance between two camera centers C1 and C2. f is

the camera focal length. Z denotes the depth of P from the camera and is what we

should compute. Then, an auxiliary line (the red line in Figure 2.5) passing through

C2, which is parallel to line PC1, is made and meets the right image plane at A.

Obviously, the triangle C2Ap2 is similar with triangle PC1C2, and then we have the

following equation as,
Z

b
=

f

x1 − x2
, (2.13)

and finally the depth of point P is derived as,

Z =
f × b
x1 − x2

, (2.14)
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Figure 2.5: Triangulation.

where x1− x2 is the disparity. From this equation, we know that the disparity map

is inversely proportional to the depth map.

2.6 Conclusion

In this Chapter, we introduced the fundamental theory behind stereo vision. First-

ly, we explain pinhole camera model, which is the mapping between a 3D point

and its 2D projections on the image plane. Then, the stereo matching problem

can be simplified by epipolar constraint that limits the matching problem along an

epipolar line. The stereo matching is further simplified by image rectification, which

transforms two views to share the common image plane. After image rectification,

the corresponding pairs locate on the scan-line with the same height. Then, corre-

sponding pairs are matched and a disparity map is calculated by stereo matching

algorithm. Finally, the 3D coordinates of each pixels on the disparity map can be

computed by triangulation.
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Stereo matching is the key part of stereo vision, which aims to find the cor-

responding pairs between two images of a 3D scene. According to the classical

taxonomy proposed by Scharstein and Szeliski [16], stereo matching methods can

be broadly categorized into two classes: global methods and local methods. Global

methods compute all disparities simultaneously by minimizing a defined 2D ener-

gy function through a global optimization algorithm, e.g., graph cut [17], belief
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propagation [18], scanline optimization [19] and dynamic programming [20]. Global

methods tend to produce more accurate matching results, but they are generally

computationally expensive due to the iterative nature of the underlying optimiza-

tion process. Local methods consider correlations between intensity patterns in

support windows. The raw matching costs of all pixels within a support window

are aggregated to the center pixel at each disparity; then an optimal disparity that

gives a minimum aggregated cost is selected through an efficient local optimization

process. Compared to global methods, local methods generally better satisfy the

requirement of high-speed applications, but mostly at the expense of accuracy. In

recent years, local methods have again become very popular, since some state-of-

the-art local methods [9] [21] [22] [8] [10] [23] achieve high accuracy comparable to

that of global methods.

The stereo matching methods, i.e. global methods and local methods, usually

preform four steps as, (1) matching cost computation, (2) cost aggregation, (3)

disparity optimization and (4) disparity refinement. The actual sequence of these

four steps taken depends on the specific algorithm. Global methods typically do

not perform the cost aggregation step, while some local methods do not perform

the disparity refinement step. We review state-of-the-art stereo matching methods

from these four aspects in the following sections.

3.1 Matching Cost Computation

Matching cost computation is the necessary step for both local methods and global

methods. A matching cost, which indicates the similarity of two pixels correspond-

ing to the same scene point, is computed at each pixel for all disparities under

consideration. Local methods usually aggregate the sum of the matching cost of

each pixel within a local window. This aggregation is named as cost aggregation,

which will be described in Section 3.2. Global methods use the differences pixel-wise

directly in disparity optimization step, which will be described in Section 3.3.

Various cost functions have been proposed to compute the matching costs such

as [24], Absolute Differences (AD), Squared Differences (SD), Truncated Absolute
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Difference of Color and Gradient (TADCG), Mutual Information (MI), transformed

based method, etc. To our knowledge, truncated absolute difference of color and

gradient is the most popular cost function and usually used in state-of-the-art stereo

matching methods [9] [21] [25] [22].

3.1.1 Absolute Differences and Squared Differences

The absolute differences (AD) and squared differences (SD) cost functions are simple

but usually used due to their low computational complexity. They are also used

in other applications, such as motion estimation for video compression [26] [27],

optical flow [28], object tracking [29], etc. They assume brightness constancy for

corresponding pixels in the left and right images.

The pixel-wise absolute difference between pixel p in the left image Il and pixel

p− d in the right image Ir is as

CAD(p, d) = |Il(p)− Ir(p− d)|, (3.1)

and the pixel-wise squared difference is in a similar way as

CSD(p, d) = (Il(p)− Ir(p− d))2. (3.2)

3.1.2 Truncated Absolute Difference of Color and Gradient

In order to handle the brightness inconstancy of corresponding pixels in both images,

gradient cue is considered, since gradient cue is more robust to additive brightness

changes than the color cue. Truncated absolute difference of color and gradient

(TADCG) is proposed, which consists of two parts, i.e. color part and gradient part.

The color part is the same as the absolute difference function shown in Equation

(3.1), while the gradient part is expressed as,

Cgradient(p, d) = |∇xIl(p)−∇xIr(p− d)| , (3.3)

23



Chapter 3. Literature Review

where ∇x is the derivative in the x direction. Then, these two parts are combined

with truncation to be the final truncated absolute difference of color and gradient

cost function as,

CTADCG(p, d) =(1− θ)×min(|Il(p)− Ir(p− d)| , τ1)

+ θ ×min(|∇xIl(p)−∇xIr(p− d)| , τ2),
(3.4)

where θ balances the color part and gradient part; τ1, τ2 are truncation values in

order to reduce the influence of occluded pixels.

The TADCG cost function is also used in optical flow estimation [30] [31].

3.1.3 Transformed based Function

In order to remove the noise and outliers, the input images are preprocessed by filters

in literatures [24] [32] [33]; then matching costs are computed on the transformed

images using absolute difference, squared difference or truncated absolute difference

of color and grandient, etc. We present two filters, i.e. mean filter and Laplacian of

Gaussian filter.

Mean filter is a simple, intuitive and easy to implement method of removing

noises and outliers. The idea behind mean filter is to replace each pixel value in an

image with the mean value within a window, including itself, as

IMF (x, y) =
1

(2n+ 1)2

n∑
i=−n

n∑
j=−n

I(x+ i, y + j), (3.5)

where the window size is (2n+ 1)× (2n+ 1).

Laplacian of Gaussian filter (LoG) performs smoothing, removing noise and

changes in bias. This filter is often used in local real-time methods [34] [35] and is

expressed as [32]

KLoG = − 1

πσ4

(
1− x2 + y2

2σ2

)
exp−x

2 + y2

2σ2
, (3.6)

where σ refers to the standard deviation. Then, the input image is convoluted with
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the above LoG filter as,

ILoG = I
⊗

KLoG (3.7)

where
⊗

denotes a convolution operator.

3.2 Cost Aggregation

Cost aggregation is the most important step for local methods, since both the accu-

racy and efficiency of local methods highly depend on cost aggregation. However,

cost aggregation is not performed in global methods. Researches on cost aggregation

date back to the 70s [36] [37] [38] [39]. In this step, a support window is selected for

each pixel and all matching costs within this window are aggregated as its overall

cost. That is, an entire window rather than a single pixel is considered for stereo

matching in order to obtain a more reliable result. We present in this section vari-

ous cost aggregation approaches and some of them have been analyzed in [40] [41],

including the fixed window approach [16], the shiftable window approach [42], the

variable window approach [43], the multiple window approach [34] and the adaptive

support weight based approach [9] [21] [22] [8] [10] [23]. The fixed window approach,

the shiftable window approach, the variable window approach and multiple window

approach are out of date, while the adaptive support weight based approach is the

state-of-the-art.

3.2.1 Out-of-date Approaches

3.2.1.1 Fixed Window Approach

The fixed window approach [16] is a traditional and the simplest approach. A

support window with fixed size is set for each pixel and all matching costs within

this window are aggregated as

Caggr(p, d) =
∑
q∈ωp

Craw(q, d) (3.8)
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(a) reference image (b) ground truth disparity map

(c) Disparity map by fixed window

Figure 3.1: Disparity map computed by fixed window approach. The fixed window
approach violate the basic assumption at disparity discontinuities that all support
pixels in the support window have the same disparity value as the center one.

where ωp denotes a support window centered at pixel p; q is a support pixel in ωp.

The raw cost Craw can be computed by different cost functions described in Section

3.1, e.g. absolute difference, square difference, truncated absolute difference of color

and gradient, etc. If the absolute difference (AD) based cost function is chosen, then

the aggregated cost is known as the sum of absolute difference (SAD).

This fixed window approach implicitly assumes that all support pixels in the fixed

window ωp have the same disparity value as the center one; but this assumption is

violated at disparity discontinuities. Kanade and Okutomi [44] claimed that the

fixed window approach is likely to fail when the support window covers a region

with non-constant disparity. The final disparity map computed by the fixed window

approach is shown in Figure 3.1 and it is observed that the depth discontinuity

borders are always inaccurate.
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Figure 3.2: Disparity map computed by normalized cross-correlation.

3.2.1.2 Normalized Cross-Correlation

The normalized cross-correlation (NCC) is another commonly used cost aggrega-

tion strategy, which is an optimal method for dealing with Gaussian noise. The

normalized cross-correlation cost is computed as follows,

Caggregated(p, d) =

∑
q∈ωp Il(q)Ir(q − d)√∑

q∈ωp Il(q)
2
∑

q∈ωp Ir(q − d)2
(3.9)

where ωp denotes a support window centered at pixel p; q is a support pixel in ωp.

The disparity map computed by this approach is presented in Figure 3.2. This

approach also set a fixed window for each pixel and compare two fixed window at two

images, which is the same as the previous fixed window approach. We can observe

that this approach also leads to inaccurate estimation at depth discontinuity borders

as the fixed window approach.

In order to handle the disparity discontinuity, shiftable window approach, mul-

tiple window approach and variable window approach are proposed and introduced

in the following subsections.

3.2.1.3 Shiftable Window Approach

In shiftable window approach [39] [42] [45], nine windows centered at different loca-

tions, as shown in Figure 3.3, are considered for each pixel, and an optimal window

that gives the smallest average cost is selected from these nine windows. The theory
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(a) window 1 (b) window 2 (c) window 3

(d) window 4 (e) window 5 (f) window 6

(g) window 7 (h) window 8 (i) window 9

Figure 3.3: The nine asymmetric support windows. The pixel for which disparity
is computed is highlighted in red. An optimal support window is adaptively picked
out from these nine candidates for each pixel.

(a) left image (b) right image

Figure 3.4: An optimal support window is adaptively picked out for the pixel high-
lighted in red.
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Figure 3.5: Disparity map computed by shiftable window approach.

Figure 3.6: Nine window candidates marked in different color for the center pixel
highlighted in red.

behind this approach is that a window yielding a smaller average cost is more likely

to cover a region in which all pixels share a common disparity. In this way, the

disparity profile itself drives the selection of an appropriate window, as illustrated

in Figure 3.4. The disparity map computed by shiftable window approach is shown

in Figure 3.5.

3.2.1.4 Multiple Window Approach

Multiple window approach [34] aims to handle disparity discontinuity regions by

changing the window shape. Three configurations with different window amounts are

proposed in [34], i.e. 5 windows, 9 windows and 25 windows. Take the configuration

with 9 windows as an example, which is shown in Figure 3.6. Nine sub-window

candidates are set for each pixel, different sub-window candidates are marked by

different colors. Then, five windows are adaptively selected from these nine sub-

windows to be the final support window. In this adaptive selection, the center

sub-window is required; thus four sub-windows are picked out from the rest eight
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(a) shape 1 (b) shape 2 (c) shape 3

(d) shape 4 (e) shape 5 (f) shape 6

Figure 3.7: Selected windows in different shapes.

sub-windows. Therefore, windows in different shapes are selected depending on the

local image content. We present six different shapes in Figure 3.7. Ideally, pixels

in the selected windows should be located at the same disparity, as illustrated in

Figure 3.8. The disparity map computed by multiple window approach is shown in

Figure 3.9.

(a) left image (b) right image

Figure 3.8: An optimal support window is adaptively picked out for the pixel high-
lighted in red.
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Figure 3.9: Disparity map computed by multiple window approach.

(a) size 5× 5 (b) size 7× 7 (c) size 9× 9

(d) size 11× 11 (e) size 13× 13 (f) size 15× 15

(g) size 17× 17 (h) size 19× 19 (i) size 21× 21

Figure 3.10: Results with different window sizes.
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(a) left image (b) right image

Figure 3.11: Large window is set for untextured region.

(a) left image (b) right image

Figure 3.12: Small window is set for region with complex depth variation.

3.2.1.5 Variable Window Approach

Variable window approach [43] [37] handles the disparity discontinuities by changing

the window size and shape. The theory behind this approach is twofold, (1) a

window must be large enough to have sufficient intensity variation, but must be

small enough to contain only pixels at approximately equal disparity. We present the

results computed with different window sizes in Figure 3.10. It is observed that large

window performs better at untextured regions, since it contains more information, as

illustrated in Figure 3.11; and small window performs better at regions with complex

depth variation, since it avoids including pixels in different disparities, as illustrated

in Figure 3.12. Therefore, the window size should be adaptively changed according

the local image content; (2) near disparity boundaries, windows of different shapes

are needed to avoid crossing the boundary, thus the window shape should also be

adaptively changed. The idea of changing the window shape is the same as the

shiftable window approach.

The disparity map computed by variable window approach is presented in Figure

3.13. We can observe that this approach performs better on both untextured regions
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Figure 3.13: Disparity map computed by variable window approach.

and regions with complex depth variation.

3.2.2 State-of-the-art Approaches

Before describing the state-of-the-art approaches, we shortly conclude previous ap-

proaches. The fixed window approach and normalized correlation cross approach

violates the basic assumption 1 at disparity discontinuities. In order to handle

this problem, various cost aggregation strategies have been proposed, including the

shiftable window approach [39] [45] [42], the multiple window approach [34], the

variable window approach [43], etc. The main idea of these methods is to model the

optimal support window for each pixel by changing window size [43] [46] [47] [44]

and shape [34] [16] [48] [42] [43] [39] [45] [42].

The adaptive support weight approach represents the state-of-the-art cost aggre-

gation which is firstly proposed by Yoon and Kweon [8]. This approach dramatically

outperforms the previous cost aggregation approaches. The key idea is to estimate

an individual weight for each pixel within the support window and then aggregate

the weighted costs as

Caggr(p, d) =
∑
q∈ωp

w(p, q) · Craw(q, d), (3.10)

where ωp denotes a support window centered at pixel p; q is a support pixel in ωp.

1all pixels in the support window should share the same disparity value.
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(a) big window (b) small window (c) different shape

Figure 3.14: Adaptive support weight approach is more flexible and powerful than
simultaneously change the window size and shape. w denotes weight and 0 means
the weight value is 0.

w(p, q) is the weight of the support pixel q. Actually, the idea of aggregation costs

using adaptive weights for each pixel had been studied in literatures [49] [50], which

is a decade before the adaptive support weight approach [8].

The weight of a support pixel aims to represent the probability of this pixel

locating at the same disparity as the center one. That is, the more likely it locates

at the same disparity as the center pixel, the higher the weight attributed to it.

Essentially, assigning a different weight for each pixel within the support window is

more flexible and powerful than simultaneously changing the window size and shape,

as was the case in the previous traditional methods. This argument is illustrated in

Figure 3.14. In (a), a fixed window is chosen for the center pixel, where w denotes

the weight of each support pixel. If the weights of outer pixels are set to 0 as shown

in (b), then it is equivalent to choose a small window. If the weights of some outer

pixels are set to 0 as shown in (c), then it is equivalent to choose a window with

different shape. In a word, the window size and shape are changed as assigning

different weight for each pixel within a window.

The weight w is extremely important for the adaptive support weight approach,

since it decides the window size and shape. Various weight functions were proposed

in the literatures [8] [10] [9]. In the following subsections, we describe three state-

of-the-art weight functions, i.e. bilateral filter weight [8], geodesic weight [10], and

guided filter weight [9]. The computational complexity of bilateral filter weight
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and geodesic weight depend on the support window size; and thus, they are time

consuming. We also introduce acceleration schemes for them [22] [21] [23]. Guided

filter weight is quite efficient, whose computational complexity is independent with

the window size, due to box filtering.

3.2.2.1 Bilateral Filter based Approach

The bilateral filter [51] [52] is a edge preserving operator that has found widespread

use in many computer vision and graphics tasks like denoising [53] [54] [55] [56] [57],

texture editing and relighting [58], tone management [59] [60], demosaicking [61],

stylization [62] and optical flow estimation [63] [64].

The bilateral filter weight [8], which is based on bilateral filter, obeys two rules,

i.e. color rules and spatial rules, and contains two corresponding terms, i.e. color

term and spatial term.

Based on the assumption that two pixels with similar colors are more likely

to locate at the same disparity, the color rule assigns a weight to a support pixel

according to color similarity between this one and the center pixel. This color term

can be expressed as

wc(p, q) = e
−∆cpq

γc , (3.11)

where q is a pixel within the support window centered at the pixel p. The parameter

γc is set by users to adjust the color similarity term. The color distance ∆cpq

represents the Euclidean distance between the colors of p and q as

∆cpq =

√ ∑
j∈(r,g,b)

(Ij(p)− Ij(q))2. (3.12)

Based on the assumption that two pixels with spatial proximity are more likely

to locate at the same disparity, the spatial rule assigns a weight to a support pixel

according to spatial proximity between this one and the center pixel. The spatial

term can be expressed as

ws(p, q) = e
−∆spq

γs , (3.13)

where the parameter γs is set to adjust the spatial distance term and the spatial
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Figure 3.15: Disparity map computed by bilateral filter based ASW approach.

distance ∆spq represents the Euclidean distance between the coordinates (x, y) of p

and q as

∆spq =
√

(px − qx)2 + (py − qy)2. (3.14)

Bilateral filter fuse color term and spatial term by combining the respective

weighting functions as [8],

wbf (p, q) = wc(p, q) · ws(p, q) = e
−∆cpq

γc e
−∆spq

γs . (3.15)

The disparity map computed by bilateral filter based cost aggregation is pre-

sented in Figure 3.15. It is observed that it performs well at disparity discontinuity

regions and is more accurate than the previous approaches.

3.2.2.2 Acceleration Scheme for Bilateral Filter based Approach

One of the main disadvantage of the bilateral filter based approach is that it is

computationally expensive, since it is required to compute a weight for all pixel in

a support window. Let (2r + 1)× (2r + 1) denotes the window size and N denotes

the image pixel number, then (2r + 1) × (2r + 1) × N times weight calculation is

needed for the bilateral filter based cost aggregation. The computational complexity

of bilateral filter is O(Nr2), which depends on the window size. Meanwhile, the

support window has to be large, e.g. 35× 35 pixels in [8], in order to better handle

untextured regions.
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To improve the efficiency of bilateral filter, several acceleration methods have

been proposed in literatures [65] [66] [67] [68] [69] [70] [22] [21]. S. Mattoccia et

al. [65] proposed a Fast Bilateral Stereo method, which combines the efficiency of

integral images with an adaptive support weight strategy applied on a block basis.

Richardt et al. [66] used a bilateral grid [71] to approximate the bilateral filter.

Yang et al. [67] implemented a piecewise-linear bilateral filtering method [72] using

a recursive Gaussian filter and achieved a very low computational complexity, which

is independent of the support window size. However, according to the evaluation by

Hosni et al. [73], the above methods sacrifice quality for high computational speed

and their results are not as accurate as the original bilateral filter based method [8].

Recently, two acceleration methods have been proposed which are effective but

not at the expense of accuracy, i.e. grid graph based bilateral filter [22] and tree

graph based bilateral filter [21]. The computational complexity of both these two

methods are O(N), which is independent of the support window size. We describe

these two methods individually as follows.

Scheme I: Grid Graph based Bilateral Filer

Recursive bilateral filter based approach [22] is a kind of grid graph based bi-

lateral filter approach. In this approach, the guidance image I is represented as a

four-connected, weighted, undirected graph G = (V,E), shown in Figure 3.16, in

which V = {Vi} is a set of vertices (image pixels) and E = {Eij} is a set of edges.

Each edge, connecting two neighboring vertices, is mapped to a real-valued weight

wbf computed by bilateral filter weight function Equation (3.15), depending on the

similarity of these two vertices,

Ep,q = wbf (p, q) = wc(p, q)ws(p, q) = e
−∆cp,q

γc e
− 1
γs , (3.16)

where p and q are two neighboring pixels, thus ws(p, q) is a constant e−
1
γs .

After the grid construction, cost of each pixel is aggregated by two horizontal

passes and then two vertical passes. Horizontal passes are performed on each hori-

zontal scan-line and consist of one from left to right pass and then one from right

to left.
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Figure 3.16: the guidance image I is represented as a four-connected, weighted,
undirected graph G = (V,E).

Figure 3.17: horizontal pass, the raw costs are aggregated from left to right and
then from right to left.

In the first pass, from left to right pass, the aggregated cost of the first pixel is

initialed to be itself,

Caggr(V1) = Craw(V1). (3.17)

But, for rest pixels, the aggregated cost, e.g. Vi, is aggregated from its left

neighbor, e.g. Vi−1, as,

Caggr(Vi) = wbf (Vi−1, Vi)Caggr(Vi−1) + Craw(Vi). (3.18)

By doing so, the cost of each pixel is propagated to its right neighbor sequentially.

Then in the second pass, the cost is propagated from right to left in the same way.

After the above two horizontal passes, each pixel receives support from the rest

pixel on the horizontal scan-line, as shown in Figure 3.17. Then, vertical passes are

performed on each vertical scan-line, which is shown in Figure 3.18.
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Figure 3.18: vertical pass, the raw costs are aggregated from top to bottom and
then from bottom to top.

Finally, the cost of each pixel propagates to other pixels through this 4-connected

grid graph and one pixel receives the support from rest pixels of the whole image.

This cost aggregation strategy is a non-local cost aggregation strategy. Compared

to the original bilateral filter based ASW method, this cost aggregation strategy

is extremely faster, because it only needs two horizontal passes and two vertical

passes. While its accuracy is even better than the original bilateral filter based ASW

method, because in recursive bilateral filter method, each pixel receives support from

the rest of pixels on the whole image but in original bilateral filter method, each

pixel receives support from only a local window. The disparity map computed by

recursive bilateral filter based ASW method is presented in Figure 3.19.

Scheme II: Tree Graph based Bilateral Filter

Extending the grid graph based bilateral filter approach, a tree graph based

approach is proposed in [21], which aggregates the raw cost of each pixel on a

minimum spanning tree. A spanning tree is a subgraph of the grid graph and

connects all the vertices of the grid graph together. The grid graph can have many

different spanning trees. In the grid graph, a weight is assigned to each edge and

the sum of the weights in spanning trees can be computed. The minimum spanning

tree is one of the spanning trees with weight less than that of other spanning trees.
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Figure 3.19: Disparity map computed by recursive bilateral filter based ASW ap-
proach.

(a) leaf to root (b) root to leaf

Figure 3.20: The cost of each pixel is aggregated from leaf to root firstly and then
from root to leaf.
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The first step of the tree graph based approach [21] is to construct a Minimum

Spanning Tree (MST) by Kruskal’s algorithm [74]. Then, the raw cost of each pixel

is aggregated on the MST in two steps, i.e. from leaf to root and then from root to

leaf, as shown in Figure 3.20 (a) and (b) respectively.

The cost aggregation from leaf to root is performed as follows. Let Tr denote

a subtree of a node s and r denote the root node of Tr, then the supports node s

received from this subtree is the summation of (1) the supports node s received from

r and (2) w(s, r) times the supports node r received from its subtrees, where w(s, r)

denotes the weight between nodes s and r and is calculated by bilateral filter. Let

CA↑d denotes the aggregated cost values and P (vc) denotes parent of node vc, then

at each node v ∈ V ,

CA↑d (v) = Cd(v) +
∑

P (vc)=v

w(v, vc) · CA↑d (vc) (3.19)

Note that if node v is a leaf node that has no child, then CA↑d (v) = Cd(v) according to

Equation (3.19). After this leaf to root aggregation, the root node of MST receives

supports from all nodes on MST and the rest nodes receive supports from their

subtrees.

Then, cost aggregation from root to leaf is performed, in order to propagate the

information of one pixel to others which are at other subtrees. The aggregated cost

value CAd (v) for any node v on a MST can be obtained from its parent P (v) as

follows,

CAd (v) = CA↑d (v) + w(P (v), v) · [CAd (P (v))− w(v, P (v)) · CA↑d (v)]

= w(P (v), v) · CAd (P (v)) + [1− w2(v, P (v))] · CA↑d (v)]
(3.20)

The cost CAd obtained by Equation (3.20) is the final aggregated cost, which is

tracing from the root node of MST towards its leaf nodes as shown in Figure 3.20

(b). The disparity map computed by minimum spanning tree based ASW method

is presented in Figure 3.21.

In grid graph based bilateral filter approach [22] and tree graph based approach
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Figure 3.21: Disparity map computed by minimum spanning tree based ASW ap-
proach.

[21], the cost of each pixel propagates to the rest through grid graph and tree

graph, respectively. Therefore, these two approaches are non-local cost aggregations.

Comparing to the local cost aggregation methods [8] [10] [9], the advantages of the

non-local cost aggregation are, (1) the computational complexity is independent

of the support window size and they are extremely fast; (2) the cost of each pixel

propagating to the rest on a grid graph or tree graph is equivalent to choose a global

window, the whole image, for each pixel.

3.2.2.3 Geodesic based Approach

In the geodesic based approach [10], the weight w(p, q) in Equation (3.10) is inversely

proportional to the geodesic distance between the center pixel p and the support

pixel q as,

wgeo(p, q) = e
−Geo(p,q)

γ (3.21)

where the parameter γ adjust the geodesic distance term Geo(p, q), which is defined

as,

Geo(p, q) = min
P∈Pp,q

d(P ) (3.22)

where Pp,q denotes the set of all paths between p and q. A path P is defined as a

sequence of spatially neighboring points in eight connectivity. The cost d(P ) of a
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Figure 3.22: One eight-connectivity path joining p1 and p8. The total cost of the
path is computed by summing the pixel-to-pixel Euclidean distance in the RGB
color space.

Figure 3.23: Disparity map computed by geodesic weight based ASW approach.

path is computed as

d(P ) =
n∑
i=2

dC(pi, pi−1) (3.23)

with dC(pi, pi−1) being the Euclidean distance in the RGB color space of pixel pi

and pi−1. The geodesic distance is also known as shortest path, as illustrated in

Figure 3.22, and can be computed by Dijkstra’s algorithm [75]. The disparity map

computed by geodesic weight based ASW method is presented in Figure 3.23.

Acceleration Scheme for Geodesic Weight

The geodesic based approach [10] picked out the optimal path from all candidate

paths and correctly handle objects with complex outlines. The optimal path is
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(a) forward pass (b) backward pass

Figure 3.24: Efficient approximation of the geodesic based method.

actually the shortest path between two pixels. Therefore, this approach needs to

calculate the shortest path for each pixel, that is, N × (2r + 1) × (2r + 1) times

of shortest path calculation, where N denotes guidance image size and (2r + 1)

support window size. The computational complexity of this approach is O(Nr2),

which is quite time consuming. We describe two acceleration schemes for geodesic

based approach.

Scheme I: distance transformation based approach

Inspired by Borgefors algorithm [76], an approximation method of geodesic based

approach is proposed in [10]. The raw costs are aggregated in two row major order

passes, i.e. forward pass and backward pass, as shown in Figure 3.24. In the forward

pass, the cost of a pixel p is updated by

C(P ) := min
q∈Kp

C(q) + dC(p, q) (3.24)

where kernel Kp is a set of pixels consisting of p itself as well as its left, left upper,

upper and right upper neighbors, shown in Figure 3.24 (a). Once the forward pass is

computed, the backward pass is invoked. The backward pass traverses the window

in reverse direction, shown in Figure 3.24 (b). It thereby updates the costs using

Equation (3.24) in conjunction with the kernel K ′p, which is shown in Figure 3.24

(b). Forward and backward passes are iterated. The final costs C(p) represent the

estimate of the geodesic distance of p to the center pixel.

Scheme II: geodesic diffusion based approach

Anisotropic diffusion [77] is a edge-preserving technique similar to bilateral filter-

44



Chapter 3. Literature Review

Figure 3.25: A pixel p and the four direct neighbors q used for updating the intensity
value according to the diffusion coefficients c(p, q).

ing [51]. The advantage of anisotropic diffusion over bilateral filtering is that, being

a diffusion technique, only the comparison of each pixel with its immediate neigh-

bors is necessary, thus saving computation time. Therefore, anisotropic diffusion is

employed on stereo matching in [23] [78] [79].

The anisotropic diffusion performs as follows. Each pixel p is updated according

to the intensity value of its four neighbors q0, q1, q2 and q3, as shown in Figure 3.25,

Inc (p) = In−1c (p)(1− λ
3∑
j=0

c(p, qj)
n−1) + λ

3∑
j=0

c(p, qj)
n−1In−1c (qj) (3.25)

where λ controls the influence of neighboring pixels and n is the iteration number.

The diffusion coefficient c(p, q) can be computed from the intensity difference of p

and q, which is the same as the color term in bilateral filter weight function (3.15),

as

c(p, q) = exp

(
−∆cpq

γc

)
(3.26)

Inspired by anisotropic diffusion approach, a geodesic diffusion based ASW ap-

proach [23] is proposed. In this approach, both costs and weights are diffused using

the above anisotropic diffusion strategy in four directions. D denotes the 3D raw

cost volume and DW the 3D aggregated cost volume. D is initialized with the pixel-
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Figure 3.26: A pixel p and the four direct neighbors q used for updating the intensity
value according to the diffusion coefficients c(p, q).

wise raw matching cost of each pixel, while in the DW , all positions are initialized

with ones. Diffusion is performed in two other similar structures (Dd and DdW ),

with the only difference being that they contain four data positions per pixel instead

of one. The four positions refer to the four neighbors. Each of the four positions in

Dd and DdW are initialized with the values in the corresponding position of D and

DW , respectively. Then the cost and weight of each pixel are iteratively diffused to

its four neighbors, as shown in Figure 3.26. The equations describing the diffusion

process are

Dn
dW (p, p̄d, i) = w(p, qi)w(p̄d, q̄di)

3∑
j=0

l((i− j) mod 4)Dn−1
dW (qi, q̄di , j) (3.27)

Dn
d (p, p̄d, i) =

∑3
j=0 l((i− j) mod 4)Dn−1

dW (qi, q̄di , j)D
n−1
d (qi, q̄di , j)∑3

j=0 l((i− j) mod 4)Dn−1
dW (qi, q̄di , j)

(3.28)

where i refers to the index of four neighbors, i.e. i = 0 refers to the left neighbor,

i = 1 the upper neighbor, i = 2 the right neighbor and i = 3 the lower neighbor.

The weight w(p, q) are computed by Equation (3.26). Function l(·) are the weight
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Figure 3.27: Disparity map computed by geodesic diffusion based ASW approach.

of each neighbor, defined as,

l(i) =


1 if i = 0

l0 if i = 1 or 3

0 if i = 2

(3.29)

After each iteration, the Dd and DdW contents are accumulated in D and DW ,

respectively,

Dn
W (p, p̄d) = Dn−1

W (p, p̄d) +
3∑
i=0

Dn
dW (p, p̄d, i), (3.30)

Dn(p, p̄d) = Dn−1(p, p̄d) +

3∑
i=0

Dn
d (p, p̄d, i)D

n
dW (p, p̄d, i) (3.31)

At the end of the diffusion process, the aggregated costs are normalized by

dividing each position in D by the corresponding position in DW . The disparity

map computed by geodesic diffusion based approach is presented in Figure 3.27. This

approach is implemented on GPU [23] and achieve a near real-time performance.

3.2.2.4 Guided Filter based Approach

Guided filter [80] is another edge-preserving filter. Different from the bilateral filter,

the guided filter is more efficient, since it is independent of the filter size and the

guided filter is proved in [80] to have better behavior near the edges. That is,

guided filter outperforms bilateral filter in terms of both the accuracy and efficiency.

47



Chapter 3. Literature Review

Figure 3.28: Disparity map computed by guided filter based ASW approach.

Inspired by guided filter, a guided filter based ASW approach is presented in [9].

In the case of grayscale guidance image I, the guided filter weight wgf (p, q) is

defined as,

wgf (p, q) =
1

|ω|2
∑

k:(p,q)∈ωk

(
1 +

(Ip − µk)(Iq − µk)
σ2k + ε

)
(3.32)

where µk and σk are the mean and the variance of guidance image I in a square

window ωk. ω denotes the number of pixels in this window and ε is a smoothness

parameter.

In the case of color guidance image I, the guided filter weight is similar as,

wgf (p, q) =
1

|ω|2
∑

k:(p,q)∈ωk

(1 + (Ip − µk)T (Σk + εU)(Iq − µk)) (3.33)

here Ip, Iq and µk are 3×1 (color) vectors and the covariance matrix Σk and identity

matrix U are of size 3× 3.

The guided filter weight wgf (p, q) replaces the weight w(p, q) in Equation (3.10).

Note that in practice the weights wgf (p, q) are not computed explicitly. Instead the

filtered image is obtained by running a sequence of box filters whose computational

complexity is independent of the window size. Therefore, the guided filter based

ASW approach is much efficient. The disparity map computed by geodesic diffusion

based approach is presented in Figure 3.28. De-Maeztu et al. [81] also proposed a

very similar guided filter-based approach for symmetrically aggregating costs.
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3.3 Disparity Optimization

3.3.1 Local Optimization

The disparity optimization method used in local methods is winner-taken-all strat-

egy [16] to select the optimal disparity D(p) out of a set of candidates, which gives

the minimum aggregated cost as,

D(p) = arg min
d

(Caggr(p, d)). (3.34)

This strategy is quite simple, thus the emphasis of the local methods is on matching

cost computation and cost aggregation steps.

3.3.2 Global Optimization

Global methods perform almost all of their work on the disparity optimization step

and often skip the cost aggregation step. The global methods are usually formulated

in an energy-minimization framework [16]. The objective is to find a disparity

function d that minimizes a global energy,

E(d) = Edata(d) + λEsmooth(d). (3.35)

where λ is a constant. The data term Edata measures how well the disparity d agrees

with the input image pair, which results from the differences in intensity between

corresponding pixels,

Edata(d) =
∑
p∈Il

Craw(p, d). (3.36)

where Il denotes the set of pixels in the left image and the raw cost Craw can

be computed by the cost function described in Section 3.1. The smoothness term

Esmooth(d) makes neighboring pixels in the same image tend to have similar dis-

parities and often restricted to only measuring the differences between neighboring
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pixels’s disparities. The smoothness term based on Potts model [82] is

Esmooth(d) =
∑
p,q∈N

K · T (d(p) 6= d(q)), (3.37)

where K is the constant, N denotes a neighboring system for the pixels in the left

image and function T (·) is 1 if its argument is true, and otherwise 0.

The optimal solution of the defined energy function Equation (3.35) can be find

out through global optimization algorithms, such as iterated conditional modes [83],

simulated annealing [84], graph cut [17] [85], belief propagation [18], tree-reweighted

message passing [86] [87], dual decomposition Markov random field [88]. Various

global optimization methods are compared and analyzed in [89].

3.4 Disparity Refinement

The disparity refinement is the last step of a stereo matching method, which is the

post-processing step in order to remove mismatches and handle occlusions. This

post-processing step usually performs three stages as follows. Firstly, both the left

and the right disparity maps are obtained by the above three steps, i.e. matching

cost computation, cost aggregation and disparity optimization. Secondly, invalid

pixels are picked out by left-right consistency check [90], since valid pixels have

the same disparity values in the left and the right disparity maps. Finally, the

invalid pixels are estimated by the neighboring valid pixels. In this section, we

introduce three disparity refinement methods, i.e. the unweighted median filtering

refinement method [16], the weighted median filtering refinement method [9], and

the reaggregation-based refinement method [21]. These three refinement methods

differ in the final stage, invalid pixels estimation.

3.4.1 Unweighted median filtering method

In the third stage, i.e. invalid pixels estimation, these invalid pixels are assigned to

the lowest disparity value of the spatially closest valid pixels, while lie on the same

scanline. This simple invalid pixels filling strategy can generate streak-like artifacts
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in the disparity map. The unweighted median filter is used in the literatures [16]

to filled these invalid pixels. It replaces the value of a pixel with the median of

its neighbors. For discrete signals, this median can be computed from a histogram

h(x, ·) that calculates the population around the position x = (x, y),

h(x, i) =
∑
x′∈ωx

δ(I(x′)− i) (3.38)

where ωx is a local window of pixel x and I is the pixel value, i is the discrete bin

index, and δ(·) is the Kronecker delta function, i.e. δ(·) is 1 when the argument

is 0, and is 0 otherwise. It is straightforward to pick the median value through

accumulating this histogram.

The high complexity of this method becomes the timing bottleneck and sacrifices

the speed of fast local cost aggregation. In order to improve its efficiency, constant

time unweighted median filtering methods are proposed in [91] [92].

(x, i) denotes 3D coordinates where x represents the 2D spatial coordinates and

i represents a 1D range coordinate. Define a signal f(x, i) in this 3D space,

f(x, i) = δ(I(x′)− i) (3.39)

Then the computation of the unweighted histogram is essentially a 2D box fil-

tering of f in the spatial domain,

h(x, i) =
∑
x′∈ωx

b(x, x′)f(x′, i) (3.40)

where b is a box kernel. The Equation (3.40) can be simply computed by performing

a 2D box filter on f(x, i) for each fixed i. Since box filtering can be efficiently per-

formed using integral images [93] [94] or moving sums in O(1) time, the unweighted

median filter is O(1) time.
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3.4.2 Weighted median filtering method

The unweighted median filtering treats each neighbor equally and blurs the disparity

discontinuity boundaries. In order to preserve the disparity discontinuity regions, a

edge-preserving filter, bilateral filtering, is mixed with the median filter to be the

weighted median filter. The pixels are weighted in the local histograms,

h(x, i) =
∑
x′∈ωx

w(x, x′)δ(I(x′)− i) (3.41)

where the weight is calculated by the bilateral filtering as

wx,x′ =
1

Kx
exp(−|x− x

′|2

σ2s
)exp(−|I(x)− I(x′)|2

σ2c
) (3.42)

where σs and σc adjust spatial and color similarity, K is a normalization factor, and

the filter dimensions is r × r.

The high complexity of weighted median filtering method becomes the timing

bottleneck. In order to improve its efficiency, a constant time weighted median

filtering method is proposed in [95].

The constant time weighted median filtering method is similar to the constant

time unweighted median filtering method described in Section 3.4.2. The box filter

b(x, x′) in Equation (3.40) is simply replaced with any other edge-aware weight

w(x, x′), e.g. bilateral filter [51], the guided filter [80], or the domain transform filter

[96]. To compute the weighted histogram Equation (3.41), we only need to perform

the specified edge-aware filter on f(x, i) for each fixed i. If the edge aware filter is

O(1) time, the resulting weighted median filter is O(1) time as well. Fortunately,

both the guided filter [80] and the domain transform filter [96] are O(1). The

bilateral filter [51] is implemented in O(1) in [67] [69].

3.4.3 Reaggregation-based method

The reaggregation-based method [21] is different from the weighted and unweighted

median filtering methods. In the invalid pixel estimation stage, a new matching cost
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(a) tsukuba (b) venus (c) teddy (d) cones

Figure 3.29: Standard four pairs provided by Middlebury Benchmark.

for each pixel p at each disparity level d is recomputed as,

Cnewd (p) =

 d−D(p) , p is stable and D(p) > 0

0 , else
(3.43)

Then, the cost aggregation step is performed on this new matching cost to obtain a

new aggregated cost, which is followed by the winner-take-all optimization to gen-

erate the final disparity map. This method is only used in the local stereo matching

method, because cost aggregation only exist in local stereo matching methods but

not in global methods.

3.5 Evaluation

The standard for stereo algorithm evaluation, widely accepted within the vision

community, is the Middlebury benchmark [97]. The benchmark for stereo algorithms

is done on the base of the taxonomy and quantitative evaluation of dense, two-frame

stereo algorithms introduced in [16]. Four standard stereo image pairs with ground

truth disparity maps are provided by the benchmark, which are presented in Figure

3.29. These stereo image pairs are preprocessed by image rectification as introduced

in Section 2.3. The ground truth disparity maps are obtained by structured light

technique.
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(a) Non-occluded ("nocc."). (b) Discontinuity ("disc."). (c) All ("all").

Figure 3.30: Three regions evaluated on Middlebury Beachmark.

Tested stereo matching algorithms have to provide four disparity maps computed

from these stereo image pairs. The computed disparity map dC(x, y) is compared

with the ground truth disparity map dT (x, y) and the percentage of bad pixels with

an error above a threshold δ is computed as,

B =
1

N

∑
(x,y)

(|dC(x, y)− dT (x, y)| > δ) (3.44)

where N is the total number of pixels. The evaluation of the stereo matching

algorithm is done by examining the percentage of bad pixels within three regions

in estimated disparity maps for all four stereo pairs, i.e. non-occluded regions,

discontinuity regions and occluded regions. These three regions are denoted as

"nocc.", "disc.", "all" in Table 3.1. We take the image "tsukuba" for example,

which is shown in Figure 3.29 (a). Its non-occluded region is shown in Figure 3.30

(a), in which the non-occluded regions are marked in white and occluded and border

regions are marked in black. The discontinuity region is shown in Figure 3.30 (b),

in which the depth discontinuity regions are marked in white, occluded and border

regions are marked in black and other regions are marked in gray. The all region is

shown in Figure 3.30 (c), in which the all regions are marked in white and border

regions are marked in black.

The overall scores of each stereo matching method are ranked within the online

evaluation list [97]. Until March 2015, there are more than 150 methods are eval-

uated on this benchmark. This thesis focus on local stereo matching methods and

we list partial related methods on Table 3.1. From this comparison, we can find
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Table 3.1: The quantitative comparison on local stereo matching methods.

Algorithm tuskuba venus teddy cones Avg. Avg.
nocc all disc nocc all disc nocc all disc nocc all disc Error Runtime(ms)

MST ASW [21] 1.47 1.85 7.88 0.25 0.42 2.60 6.01 11.6 14.3 2.87 8.45 8.10 5.48 170
GeoDif ASW [23] 1.88 2.35 7.64 0.38 0.82 3.02 5.99 11.3 13.3 2.84 8.33 8.09 5.49 36646

GF ASW [9] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55 735
RBF ASW [22] 1.85 2.51 7.45 0.25 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68 80
GEO ASW [10] 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32 5.80 103244
BF ASW[8] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67 56357

variable win[43] 4.01 5.90 13.0 8.80 10.1 12.4 15.4 23.3 24.9 9.07 18.0 15.3 13.3 -
shift win[16] 5.23 7.07 24.1 3.74 5.16 11.9 16.5 24.8 32.9 10.6 19.8 26.3 15.7 -
fixed win[40] 5.13 7.11 23.2 9.18 10.3 35.4 16.9 24.5 34.0 9.94 18.9 20.8 17.9 -

that the Adaptive Support Weight (ASW) methods dramatically outperform the

previous methods, i.e. fixed window approach, variable window approach, shiftable

window approach, etc. The bilateral filter based method [8] is the first ASW method

and is quite time consuming, since its computational complexity is depended on the

window size. The minimum spanning tree (MST) [21] based method and recursive

bilateral filter (RBF) [22] based method are two different acceleration schemes of

the bilateral filter based method. These two methods are quite efficient, whose av-

erage runtime on the standard four stereo pairs are about 100 ms, and they are also

quite accurate. Another two ASW methods, i.e. guided filter (GF) based method

[9] and geodesic (Geo) based method [10] are proposed and display high accuracy.

The guided filter based method is quite efficient (about 700ms), since it can be

implemented using box filtering, whose computational complexity is independent of

the window size; while the geodesic based method is as slow as the bilateral filter,

thus a geodesic diffusion (GeoDif) based method [23] is proposed to speed up the

geodesic based method by employing anisotropic diffusion, whose average runtime

is about 36 seconds.

Besides the above four standard stereo image pairs, another 33 stereo image pairs

with ground truth disparity map [98] [99] [100] are also provided, which is shown in

Figure 3.31, Figure 3.32, and Figure 3.33.
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(a) Map (b) Sawtooth (c) Bull (d) Poster (e) Barn1 (f) Barn2

Figure 3.31: stereo pairs provided by Middlebury Benchmark in 2001.

(a) Art (b) Books (c) Dolls (d) Laundry (e) Moebius (f) Reindeer

Figure 3.32: stereo pairs provided by Middlebury Benchmark in 2005.
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(a) Aloe (b) Baby1 (c) Baby2 (d) Baby3 (e) Bowling1 (f) Bowling2 (g) Cloth1

(h) Cloth2 (i) Cloth3 (j) Cloth4 (k) Flowerpots (l) Monopoly (m) Lampshade1 (n) Lampshade2

(o) Midd1 (p) Midd2 (q) Rocks1 (r) Rocks2 (s) Plastic (t) Wood1 (u) Wood2

Figure 3.33: stereo pairs provided by Middlebury Benchmark in 2006.
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Trilateral Filter based Method
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4.1 Motivation

Cost aggregation is the most important step for local stereo matching methods, since

both the accuracy and efficiency of local methods largely depend on cost aggregation.

As analyzed in Chapter 3, shiftable window approach [45] [42], multiple window

approach [34] and variable window approach [43] adaptively change the window

size and shape according the local image content. The adaptive support weight

methods [8] [9] assign a weight for each pixel in a support window and the weight of

a pixel represents the probability of it locating at the same disparity of the center

pixel. The adaptive support weight methods are more flexible and powerful than

the previous approaches, because they simultaneously change the window size and

shape. Bilateral filter based method [8] and guided filter based method [9] are two

outstanding adaptive support weight methods and also are state-of-the-art local

stereo matching methods. However, we find that these two methods hardly sort the
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Figure 4.1: (a) Reference image. Two nearby planks with similar colors but at
different disparities are shown in (b). An imaginary situation is presented in (c),
these two planks are substituted by one cross-shaped plank in the same disparity.
The bilateral filter weight of the pixel q in (b) is equal to that in (c), because the
color similarity and spatial distance are the same as compared to the center pixel p.
But these two weights should not be equal because the two pixels are at the same
disparity in (c) but not in (b). The boundary cue is helpful to remedy this flaw. As
shown in (d), zoomed in (e), the disparity discontinuity induces a color boundary
between the pixels p and q.

ambiguity induced by nearby pixels at different disparities but with similar colors,

which will be explained respectively.

Firstly, we explain the case of bilateral filter based method [8]. The assignment

of an adaptive weight obeys two basic rules that the support pixel, (1) whose color is

similar to the center pixel’s and (2) spatially close to the center pixel, is more likely

to locate at the same disparity as the center one, thus the weight should be high.

Although these two simple rules can handle most depth ambiguities within a support

window, they unfortunately fail to sort the disparities in the following situation as

illustrated in Figure 4.1. Consider two nearby objects at different disparities but

with similar colors, e.g., two planks in Figure 4.1 (b). Now given two pixels at these

two objects, the center p and a support q, the weight of pixel q computed by the

bilateral filter weight function will be high, because of their similar colors and close

positions. Whereas, this weight should be low since two pixels locate at different

disparities. To further highlight this erroneous weight attribution by the bilateral

filter weight function, we present an imaginary situation in (c) where those two
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(a) case 1 (b) case 2 (c) case 3

(d) case 1 (e) case 2 (f) case 3

Figure 4.2: The guided filter weight function can distinguish case 1 with case 2, but
fails to distinguish case 2 with case 3.

planks in (b) are substituted by a cross-shaped plank in the same disparity plane.

The bilateral filter weight of the pixel q in (b) is equal to that in (c), because their

color similarity and spatial distance are the same. Obviously, these two weights

should not be equal, because the pixel q in (c) is at the same disparity as the

center pixel p but not in (b). Thus, the bilateral filter weight fails to represent the

probability of the pixel q locating at the same disparity as the center pixel p.

Guided filter based method [9] also fails to handle such ambiguity. For simplicity,

we use the gray-scale guidance image I for explanation. The guided filter weight is

as [9],

wgf (p, q) =
1

|ω|2
∑

k:(p,q)∈wk

(1 +
(Ip − µk)(Iq − µk)

σ2k + ε
) (4.1)

where µk and σk are the mean and the variance of I in a squared window ωk with

dimensions r×r, centered at pixel k. |ω| denotes the number of pixels in this window

and ε denotes the smoothness parameter.

Guided filter weight has edge-preserving property and is able to distinguish two

pixels with different colors and at different disparities. Let us consider two cases,

i.e. case 1 and case 2, as shown in Figure 4.2. In case 1, pixels p and q are with

the same color and at the same disparity; however, in case 2, they are with different
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colors and at different disparities. Theoretically, the weight of p and q should be

high in case 1 and low in case 2, because they are at the same disparity in case 1

but not in case 2. Actually, according the guided filter weight in Equation (4.1), the

numerator (Ip − µk)(Iq − µk) has a positive sign in case 1, because Ij is located on

the same side of the edge with Ii, as shown in Figure 4.2 (a), but a negative sign

in case 2. That is, the computed weight by guided filter weight function is high in

case 1 and low in case 2. Therefore, guided filter weight function can distinguish

two pixels with different colors and at different disparities.

However, guided filter weight function fails to distinguish two pixels with the

same color but at different disparities. Let us also consider two cases, i.e. case 1

and case 3. In case 1, two pixels with the same color and at the same disparity;

however, in case 3, they are with the same color but at different disparities. The

disparity discontinuity boundary leads to a sharp roof edge as shown in Figure 4.2

(c). The computed weight in case 1 is equal to that in case 3, because all parameters

in Equation (4.1) are equivalent 1. Therefore, guided filter weight function can not

distinguish two pixels with the same color but at different disparities.

In sum, both the bilateral filter based method and guided filter based method fail

to distinguish the depth ambiguity induced by nearby pixels with similar colors but

at different disparities. Nevertheless, we can observe that the disparity discontinuity

of the pixels p and q in Figure 4.1 (b) induces a color discontinuity between these two

planks and results in color boundaries nearby, as shown in Figure 4.1 (e). Conversely,

a color boundary, which can be detected by edge detection algorithm, indicates a

possible disparity discontinuity. Generally speaking, color boundaries can be divided

into two types, one is disparity discontinuity boundary, defined as depth boundary;

the other is disparity continuity, defined as texture boundaries. In the first case:

depth boundary, the support pixel is not at the same disparity with the center,

defined as negative support pixel, and the support weight should be decreased; in

the second case: texture boundary, the support pixel is at the same disparity with

the center, defined as positive support pixel, and the support weight should not
1Suppose that the mean µk and variance σk are the same in these two cases. Strictly speaking,

they are slightly different due to the color boundary, but the sign of the numerator (Ip−µk)(Iq−µk)
is not influenced.
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(a) original image (b) four objects (c) boundary cue (d) ground truth dis-
parity map

Figure 4.3: (a) image namely "Venus". In the right part of this image, there are
four objects as indicated in (b). From this image, we have an intuition that these
four objects are in four different depth, thus their contours, shown in (c), should be
the depth discontinuity boundaries. But, the ground truth disparity map (d) tells
us that only Obj.2 is in another depth and the other three objects are in the same
depth. That is, before we know the disparity map, it is hard to distinguish depth
boundaries out of texture boundaries.

be decreased. However, it is hard to distinguish a depth boundary from a texture

boundary through a 2D image, unless we know its disparity map or the real scene.

Take Figure 4.3 for example, in (a), we show a reference image namely "Venus",

provided by Middlebury benchmark. In the right part of this image, there are four

objects presented in (b). Observing this image, we have an intuition that, these four

objects (from obj.1 to obj.4) are placed from near to far, in four different disparities.

If these four objects are placed in different depths, their boundaries, shown in (c),

should be depth boundaries. But from the ground truth disparity map (d), we can

find that only Obj.1 locates in different disparity and the other three objects are in

the same disparity. That means, in effect, the boundaries among the latter three

objects are texture boundaries. Therefore, before we know the disparity map, it is

hard for us to distinguish depth boundaries from texture boundaries.

Therefore, there are two solutions: either all color boundaries are considered as

depth boundaries or as texture boundaries. We choose the first solution, no matter

whether there is a texture boundary or a depth boundary between two pixels, we

assign a small boundary strength weight for them. The reasons are as follows. Take

Figure 4.4 as an example, if boundary l is a depth discontinuity, those pixels in the

green region should be assigned small weights and we actually do that; if boundary

l is not a depth discontinuity, they should be assigned high weights, but we incor-
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Figure 4.4: If boundary l is a depth discontinuity boundary, we correctly assign
small weights for the pixels in the green region; if not, we incorrectly assign small
weights for those pixels. However, aggregating a incorrect pixel is more harmful
than missing a correct pixel.

rectly assign small weights to them. However, aggregating the cost of a incorrect

support pixel in the second solution brings mistake information and is more harmful

than missing the cost of a correct support pixel in the first solution. Therefore, if

there exists a color boundary between the support pixel and the center one, they

are less likely to locate at the same disparity and the support weight should be

decreased. Based on it, we firstly propose a trilateral filter based weight function

that extends the bilateral filter weight function by a third boundary strength term,

which measures the strength of possible disparity discontinuities between two pix-

els. The experimental evaluation on the Middlebury benchmark demonstrates the

effectiveness of the introduced boundary strength term and shows that the proposed

method outperforms other local methods in terms of accuracy.

This chapter is organized as follows, in Section 4.2, we presents the framework of

the proposed trilateral filter based adaptive support weight method. The trilateral

filter weight function is the key part of the proposed method and this weight function

is described in Section 4.3. The experimental results and analyses are given in

Section 4.4, and Section 4.5 concludes this chapter.

4.2 Trilateral Filter based Method

The proposed trilateral filter based adaptive support weight method comprises the

following five steps: 1) preprocessing; 2) matching cost computation; 3) cost ag-
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(a) Reference image (b) Raw cost volume (c) Aggregated cost volume

(d) Raw disparity map (e) Final result

Figure 4.5: The five steps in the pipeline are described as follows. Firstly, the
reference image (a) is pre-processed. Then, the raw cost volume (b) is computed
from the left and right images. Thirdly, the raw cost volume is aggregated at each
slice and the aggregated cost volume is shown in (c). Fourthly, the aggregated cost
volume is optimized by WTA optimization to generate the raw disparity map (d).
Finally, the raw disparity map is post-processed to obtain the final result (e).

gregation; 4) disparity optimization; and 5) disparity refinement. In this pipeline,

we propose a trilateral filter weight function in the cost aggregation step, while we

employ state-of-the-art techniques for the other four steps. These five steps are

presented in Figure 4.5.

(1) Preprocessing. In order to remove isolated pixels, we apply a standard

median filtering (3× 3 window) to preprocess the input raw images.

(2) Matching Cost Computation. We calculate the matching cost between

two pixels, using a popular matching cost function, the Truncated Absolute Dif-

ference of Color and Gradient. The raw matching cost Cd(p) between a pair of

candidate points, pixel p in the left image Il and pixel p − d in the right image Ir,

is as in [9],

Cd(p) =(1− θ)×min(|Il(p)− Ir(p− d)| , τ1)

+ θ ×min(|∇xIl(p)−∇xIr(p− d)| , τ2),
(4.2)
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where d is the disparity and ∇x is the derivative in the x direction; θ balances

the color and derivative terms; τ1, τ2 are truncation values in order to reduce the

influence of occluded pixels.

(3)Cost Aggregation. The ASW method is employed to aggregate the raw

matching costs within a support window. Generally, two different aggregation s-

trategies are used to compute the weight mask, the symmetric strategy, proposed

in [8], and the asymmetric strategy as in (2). We chose the asymmetric strategy as

suggested in [73]. The aggregated cost of a pixel p at a disparity d, CAd (p), is as in

[9, 73],

CAd (p) =
∑
q∈ωp

w(p, q) · Cd(q), (4.3)

where ωp denotes a support window centered at pixel p; q is a support pixel in

ωp. Popular ASW methods, i.e., [8, 9, 10, 101], mainly differ in the form of weight

function w(p, q), which is the key part of this type of methods. In this paper, we

introduce a novel trilateral filter weight function developed in Section 4.3.

(4)Disparity Optimization. We adopt a commonly used winner-take-all op-

timization strategy to select the optimal disparity D(p) out of a set of candidates,

which gives the minimum aggregated cost as in [16],

D(p) = arg min
d

(CAd (p)). (4.4)

(5)Disparity Refinement. In the final step, the generated disparity map D(·)

is post-processed to remove mismatches and handle occlusions as in [21]. Firstly,

the left and right images are used as reference images to obtain the left and right

disparity maps, respectively, by performing the four steps above. Then, these two

disparity maps are checked for consistency to select the stable and valid pixels. A

stable pixel should pass this consistency check and a valid pixel should satisfyD(·) >

0. A new matching cost for each pixel p at each disparity level d is recomputed as

[21],

Cnewd (p) =

 d−D(p) , p is stable and D(p) > 0

0 , else
(4.5)
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Then, the cost aggregation step is performed on this new matching cost to obtain a

new aggregated cost, which is followed by the disparity optimization step to generate

the final disparity map.

4.3 Trilateral Filter Weight Function

We briefly describe the previous bilateral filter weight function in Section 4.3.1 and

then present the proposed trilateral filter weight function in Section 4.3.2.

4.3.1 Bilateral Filter Weight Function

The bilateral filter weight function [8] obeys two important rules to measure the

probability of two pixels locating at the same disparity, namely color rule and spatial

rule.

Color rule. If two pixels have similar colors, they are more likely to locate at

the same disparity, thus their weight should be high.

Accordingly, the color similarity term is defined as

wc(p, q) = e
−∆cpq

γc , (4.6)

where q is a pixel within the support window centered at the pixel p. The parameter

γc is set by users to adjust the color similarity term. The color distance ∆cpq

represents the Euclidean distance between the colors of p and q as

∆cpq =

√ ∑
j∈(r,g,b)

(Ij(p)− Ij(q))2. (4.7)

Spatial rule. If two pixels are spatially close, they are more likely to locate at

the same disparity, thus their weight should be high.

Accordingly, the spatial distance term is defined as

ws(p, q) = e
−∆spq

γs , (4.8)

where the parameter γs is set to adjust the spatial distance term and the spatial
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distance ∆spq represents the Euclidean distance between the coordinates (x, y) of p

and q as

∆spq =
√

(px − qx)2 + (py − qy)2. (4.9)

Then, these two terms are combined as the final bilateral filter weight function

[8],

wbf (p, q) = wc(p, q) · ws(p, q) = e
−∆cpq

γc e
−∆spq

γs . (4.10)

4.3.2 Trilateral Filter Weight Function

The color rule and spatial rule can solve most depth ambiguities, but unfortunately

fail to assign an accurate weight to two nearby pixels at different disparities but

with similar colors as analyzed in Section 4.1. As a result, we propose the following

boundary rule to sort such ambiguities.

Boundary rule. If there is a boundary between two nearby pixels, they are

less likely to locate at the same disparity, thus their weight should be decreased.

This rule is based on the observation that a disparity discontinuity mostly leads

to a color boundary, and conversely, a color boundary suggests a potential disparity

discontinuity.

According to the boundary rule, we introduce a new boundary strength term as,

we(p, q) = e
−∆Epq

γe , (4.11)

where the parameter γe is set to adjust the boundary strength term and the bound-

ary strength distance ∆Epq is calculated using a local energy model [102].

Specifically, the local energy of an image is formed as a combination of the

oriented energies [103] over different orientations and the oriented energy represents

the energy at a given orientation calculated via orientation selective filters. Given

an image I, the local energy at a pixel p is as [102, 104],

E(p) =
∑
θ

√
(I(p) ∗ Fθ,odd)2 + (I(p) ∗ Fθ,even)2, (4.12)

where ∗ denotes the convolution operator; The odd-phase filter Fθ,odd and the even-
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Figure 4.6: Four oriented Odd-phase filters (θ = 22.5◦, 67.5◦ , 112.5◦, 157.5◦) are
shown in the top row and four corresponding oriented even-phase filters are shown
in the bottom row.

phase filter Fθ,even, shown in Figure 4.2, are a pair of quadrature filters at orientation

θ, which is calculated by the difference of offset Gaussian functions as used in [105].

The quadrature filters can be replaced by Gabor filter [106] [107] [108], log-Gabor

filters [109].

The local energy has a maximum response for the boundaries, whereas the zero-

crossings of the even-phase filter Fθ,even locate the positions of the boundaries. The

phase of a pixel p is defined as

φ(p) =

 1 , I(p) ∗ Fθ=θmax,even > 0

−1 , I(p) ∗ Fθ=θmax,even < 0
(4.13)

where θmax is the orientation that gives the maximum response as

θmax = max
θ

√
(I(p) ∗ Fθ,odd)2 + (I(p) ∗ Fθ,even)2. (4.14)

For two neighboring pixels i and j, the distance of their boundary strength

∆E(i, j) is expressed as

∆E(i, j) =

 E(i) + E(j) , φ(i) 6= φ(j)

0 , φ(i) = φ(j)
(4.15)

For arbitrary two pixels p and q, a line linking them can be defined. Suppose
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that there exist N pixels on this linking line, then the distance of their boundary

strength is

∆E(p, q) = max
m∈[1,··· ,N−1]

∆E(m,m+ 1). (4.16)

where m and m+ 1 represent two neighboring pixels.

If there is no boundary between two pixels, then the boundary strength term

exp(−∆Epq/γe) equals 1, because ∆E(p, q) = 0; The stronger the boundary is, the

smaller the boundary strength term is.

Then, we combine the proposed boundary strength term with the previous color

similarity term and spatial distance term as the trilateral filter weight function

wtf (p, q), using an empirical formula inspired by the cue combination strategy 2

proposed in [110] as,

wtf (p, q) = e
−∆cpq

γc e
−∆spq

γs +

√
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (4.17)

The proposed trilateral filter weight function can be divided into two parts, the

first part is the previous bilateral filter weight function

e
−∆cpq

γc e
−∆spq

γs , (4.18)

and the second part is the modification part, including the proposed boundary

strength term √
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (4.19)

The reason why we choose local energy model to compute the boundary strength

in Equation (4.12) is as follows. Oppenheim and Lim [111], suggest that phase in-

formation is crucial to the perception of visual features, e.g. edges. However, the

phase congruency as described in [112] is awkward to implement. Fortunately, the

phase congruency is proved [113] to be proportional to local energy and the local

maxima of phase congruency correspond to local maxima in local energy. The local

energy is easier to obtain. Therefore, we used the local energy (phase congruency) to

2this cue combination strategy is compared with another combination strategy in Appendix A.
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(a) Test Image (b) Output of Sobel (c) Output of local energy

Figure 4.7: Visual comparison of the Sobel operator and local energy.

compute the boundary strength, which proves to be more robust than the Sobel op-

erator against changes in illumination and contrast. We present a visual comparison

of the Sobel operator and local energy made in [112] in Figure 4.7. Figure (a) shows

the test image that contains a variety of features at different contrasts, including in

particular contours resulted from graded gray level changes. Figure (b) shows the

output of a simple gradient-based edge detector (here, the Sobel operator). Figure

(c) shows the output of the local energy (or phase congruency) detector. As it can

be seen, while Sobel has missed the contours from graded gray level changes, the

local energy detector shows its effectiveness on all the cases in that figure. Moreover,

the authors in [114] compared the local energy (phase congruency) with Canny and

Sobel using real-world driving scenes. They also concluded that local energy (phase

congruency) is more robust than Canny and Sobel. It works even under different

illuminations and weak image gradients.

4.4 Experimental Results

The proposed Trilateral Filter based method (TF) was implemented in C++ and

evaluated on Middlebury benchmark [97], using four standard pairs of stereo images,

namely "Tsukuba", "Venus", "Teddy", and "Cones". All the following experiments

were conducted on a PC with a 3.4 GHz Inter Core i7 CPU and 8 GB memory. The

experimental parameter setup is defined as follows: the parameters for matching

cost computation are {θ, τ1, τ2} = {0.11, 7, 2} in Equation (4.2) and the parameters
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Algorithm tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

Our TF 1.75 2.08 6.51 0.16 0.34 1.76 5.99 11.5 14.8 2.46 8.28 6.87 5.21

MST [21] 1.47 1.85 7.88 0.25 0.42 2.60 6.01 11.6 14.3 2.87 8.45 8.10 5.48

GeoDif [23] 1.88 2.35 7.64 0.38 0.82 3.02 5.99 11.3 13.3 2.84 8.33 8.09 5.49

GF [9] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

RBF [22] 1.85 2.51 7.45 0.25 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

GEO [10] 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32 5.80

BFSeg [101] 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77 6.44

BF [8] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67

Table 4.1: The quantitative comparison of our trilateral filter based ASW algorithm
with state-of-the-art methods on the Middlebury benchmark with error threshold 1.
Our algorithm outperforms others in most columns, especially in "disc." column.

for trilateral filter weight function are {γc, γs, γe} = {0.03, 0.02, 0.02}. The above

parameters were kept constant for all data sets.

In the first experiment, we compare the proposed trilateral filter based method,

as described in Section 4.2, with state-of-the-art local stereo matching methods on

Middlebury benchmark. The quantitative comparison is shown in Table 4.1. From

this comparison, we find that the proposed trilateral filter based method outper-

forms other methods and was the most accurate local method at the time of sub-

mission (April 2013). The disparity maps of the standard four stereo pairs computed

by trilateral filter based method are presented in Figure 4.8. On the Middlebury

benchmark, the errors are evaluated over three different areas in the reference im-

age, classified as non-occlusion (nocc.), discontinuous (disc.) and the entire image

(all). From Table 4.1, we can observe that our proposed method outperforms these

four methods, especially in the "disc." column. The term "disc." represents the

regions near depth discontinuities (white areas in Figure 4.9), which mainly contain

boundaries. The proposed algorithm obtains a better performance in "disc." column

due to the effective boundary strength term in our weight function, which is further

proved by the following comparison.

In order to demonstrate the effectiveness of our boundary strength term, we

compare our trilateral filter weight function with the bilateral filter weight function

particulary, since the only difference of these two functions is the boundary strength
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones

(e) Bad pixels (f) Bad pixels (g) Bad pixels (h) Bad pixels

Figure 4.8: Disparity maps computed by trilateral filter based method.

Figure 4.9: The term ’disc.’ in Table 4.1 means the regions near depth discontinuities
(white areas), occluded and border regions (black), and other regions (gray). In
’disc.’ column, errors are only evaluated in the white areas, which mainly contain
boundaries.
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Algorithm tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

Our TF 1.93 2.62 7.86 0.46 1.09 5.15 7.94 14.6 18.3 3.36 10.5 9.21 6.94

BF [8] 2.58 3.14 8.87 0.95 1.72 6.77 8.92 15.9 19.3 4.88 12.4 11.7 8.10

Table 4.2: The quantitative comparison of the trilateral filter weight function with
the bilateral filter weight function on the Middlebury benchmark with error thresh-
old 1. In order to better observe the performance of our trilateral filter cost ag-
gregation, the pipeline of these methods are set the same, without post-processing
step.

term. In this comparison, we set a fixed pipeline for these two weight functions, i.e.

preprocessing, matching cost computation, cost aggregation and WTA optimization

as described in Section 4.2, and the parameters in the matching cost computation

step are set the same. We do not perform the post-processing step in order to better

compare the effectiveness of two weight functions, since the post-processing step

covers the performance of the cost aggregation step. The quantitative comparison

is presented in Table 4.2 and the visual comparison is presented in Figure 4.10,

the error pixels are marked in red. From this comparison, we can observe that

the proposed trilateral filter weight function outperforms the bilateral filter weight

function, which proves the effectiveness of the boundary strength term once more.

In Chapter 5, the effectiveness of the trilateral filter based method will be further

evaluated on a large dataset.

4.5 Conclusion

We proposed a novel trilateral filter based method by introducing a new bound-

ary strength term. Comparing to bilateral filter based method, the trilateral filter

based well handle the ambiguity caused by nearby pixels with similar color but at

different disparities, which due to the boundary strength term. In the calculation of

the boundary strength term, we employ the local energy model, which is proved to

be more robust than the gradient-based edge detector, e.g. Sobel detector, canny

detector, against changes in illumination and contrast. As evaluated on the Mid-

dlebury benchmark, the proposed trilateral filler based method is the most accurate
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(a) Tsukuba by TF (b) Venus by TF (c) Teddy by TF (d) Cones by TF

(e) Tsukuba by BF (f) Venus by BF (g) Teddy by BF (h) Cones by BF

Figure 4.10: Disparity maps computed by trilateral filter based method.

local stereo matching method at the time of submission (April 2013).
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5.1 Motivation

We proposed a trilateral filter based adaptive support weight method in Chapter

4, which is more accurate than other state-of-the-art local methods at the time of

submission (April 2013). However, the computational complexity of the trilateral

filter based method is O(Nr2), where N denotes the image size and r denotes the

support window radius. The support window has to be large, e.g. 35 × 35 in [8],
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in order to better handle untextured regions. Therefore, this method is quite time

consuming.

In the literatures, several methods have been proposed to speed up the bilateral

filter weight function, which can be employed to accelerate the proposed trilateral

filter based method. Richardt et al. [66] used a bilateral grid [71] to approximate

the bilateral filter. Yang et al. [67] implemented a piecewise-linear bilateral filtering

method [72] using a recursive Gaussian filter and achieved a very low computational

complexity, which is independent of the support window size. However, according

to the evaluation by Hosni et al. [73], the above methods sacrifice quality for high

computational speed and their results are not as accurate as the guided filter based

method [9] and bilateral filter based method [8].

Recently, two kinds of non-local cost aggregation methods have been proposed,

i.e. grid graph based cost aggregation [22] [25] [20] and tree graph based cost

aggregation [21]. In the grid graph based cost aggregation [25] [22], the cost of

each pixel is aggregated horizontally (from left to right and then from right to left)

and then vertically (from top to bottom and then from bottom to top). Therefore,

the complicated cost aggregation is changed to 1D aggregation in four passes, two

horizontal and two vertical. By doing so, the cost of each pixel propagates to other

pixels through a 4-connected grid graph. In the tree graph based cost aggregation

[21], a minimum spanning tree (MST) is computed from the 4-connected grid. The

MST represents a global optimal path for the whole image. Then the weighted cost

of each pixel is aggregated on the MST in two pass (from leaf to root and then from

root to leaf). The cost of each pixel propagates to the other pixels through this tree

path. Compared to the traditional local cost aggregation methods [8] [10] [9], the

advantages of the non-local cost aggregation are, (1) the computational complexity

is independent of the support window size and they are extremely fast; (2) the cost

of each pixel propagating to the others on a grid graph or tree graph is equivalent to

choose a global window (the whole image) for each pixel. Inspired by the non-local

cost aggregation methods, we present in this chapter a recursive trilateral filter

weight function, which dramatically improves the computational efficiency of the

trilateral filter weight function (300× faster), while still providing the best accuracy
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among current ASW methods, whose average error rate is 4.95% on the Middlebury

benchmark.

This chapter is organized as follows. We present the proposed recursive trilateral

filter based method in Section 5.2. We briefly describe the recursive filter in Section

5.2.1 and presented the recursive bilateral filter in Section 5.2.2, which are the

fundamental of the proposed recursive trilateral filter. Then, the recursive trilateral

filter is presented in Section 5.2.3, while its computational complexity is analyzed in

Section 5.2.4. The experimental results and analyses are given in Section 5.3, and

Section 5.4 concludes this Chapter.

5.2 Recursive Trilateral Filter

The pipeline of the recursive trilateral filter based method is the same as that of

the trilateral filter based method, which is described in Section 4.2 in Chapter 4.

The recursive trilateral filter based method also consist of five steps, 1) preprocess-

ing; 2) matching cost computation; 3) cost aggregation; 4) disparity optimization;

and 5) disparity refinement. The difference between these two methods is the cost

aggregation step.

5.2.1 Recursive Filter

Recursive filter is an efficient filtering scheme for one dimensional kernels. Let x

denote the one-dimensional input of a causal recursive system of order n, and y

denote the output, then the general recursive system is as [115],

yi =

n−1∑
l=0

alxi−l −
n∑
k=1

bkyi−k. (5.1)

According to the above general formula, the output of the 1st-order recursive

filter can be simplified as,

yi = a0xi + c1yi−1. (5.2)

where c1 = −b1.
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5.2.2 Recursive Bilateral Filter

As presented in Chapter 4, the bilateral filter based cost aggregation is expressed

as,

Caggr(p, d) =
∑
q∈ωp

wbf (p, q) · Craw(q, d), (5.3)

where the bilateral filter weight is,

wbf (p, q) = wc(p, q) · ws(p, q) = e
−∆cpq

γc e
−∆spq

γs . (5.4)

The recursive implementation of the bilateral filter based cost aggregation is as

follows.

Let x denote a scanline of a 2D image, according to Equation (5.3) and (5.4),

the 1D bilateral filtered value of x at pixel q is

yq =

q∑
p=0

wc(p, q)ws(p, q)xp. (5.5)

Then, the color similarity term measuring the color distance between two pixels

is redefined as [22],

wc(p, q) = wc(p, p+ 1)wc(p+ 1, p+ 2)...wc(q − 1, q)

=

q−1∏
i=p

wc(i, i+ 1),
(5.6)

where i and i + 1 represent two neighboring pixels and the color distance between

them as

wc(i, i+ 1) = wc(i+ 1, i) = e
−

∆ci,i+1
γc . (5.7)

The spatial distance term is redefined in the same way as

ws(p, q) =

q−1∏
i=p

ws(i, i+ 1), (5.8)
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where the spatial distance between two neighboring pixels is a constant,

ws(i, i+ 1) = ws(i+ 1, i) = e
−

∆si,i+1
γs = e

− 1
γs . (5.9)

Using the new color similarity term and spatial distance term, the 1st-order

recursive bilateral filter weight function is obtained with a small modification of the

coefficients (a0 and c1) of the 1st-order recursive system as [22],

yi = a0xi + wc(i, i− 1)c1yi−1. (5.10)

The output of this modified recursive system can then be proved to be [22],

yi = a0

i∑
k=0

wc(i, k)ci−k1 xk

= a0

i∑
k=0

wc(i, k)ws(i, k)xk

(5.11)

where the constant c1 is actually the spatial distance between two neighboring pixels.

Therefore, the recursive implementation as Equation (5.10) yields an exact bilater-

al filter weight function with the redefined color similarity term and the constant

spatial distance term.

The final 2D bilateral filter result can then be computed by performing the above

1D recursive implementation horizontally and vertically.

5.2.3 Recursive Trilateral Filter

The proposed trilateral filter weight function

wtf (p, q) = e
−∆cpq

γc e
−∆spq

γs +

√
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (5.12)

consists of two parts, the bilateral filter part

e
−∆cpq

γc e
−∆spq

γs , (5.13)
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and modification part √
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (5.14)

These two parts can be calculated separately and then added.

Let x denote a scanline, then the 1D trilateral filter value of x at pixel q is,

yq =

q∑
p=0

wc(p, q)ws(p, q)xp

+

q∑
p=0

w′c(p, q)w
′
s(p, q)w

′
e(p, q)xp,

(5.15)

where the parameter γc in w′c(p, q) = e
−∆cpq

2γc is multiplied by 2 to take into account

the square root operation in the modification part, and the parameters in w′s(p, q)

and w′e(p, q) also do the same.

Inspired by the recursive implementation of the bilateral filter based cost ag-

gregation in Section 5.3, the recursive implementation of the modification part as

Equation (5.14) is achieved as follows.

We redefine the boundary strength term as,

w′e(p, q) = w′e(p, p+ 1)w′e(p+ 1, p+ 2)...w′e(q − 1, q)

=

q−1∏
i=p

w′e(i, i+ 1),
(5.16)

where the boundary strength distance between two neighboring pixels was defined

as,

w′e(i, i+ 1) = w′e(i+ 1, i) = e
−

∆Ei,i+1
2γe . (5.17)

The color similarity term and spatial distance term are the same as defined in

the recursive bilateral filter weight function; but the parameter γc and γs are now

multiplied by 2 due to the square root operation in the modification part as Equation

(5.14).

Using the new boundary strength term, the recursive implementation of the
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modification part is defined as,

yi = a0xi + w′c(i, i− 1)w′e(i, i− 1)c2yi−1. (5.18)

This formula is proved using mathematical induction to be (the detailed proof is

provided in the Appendix B),

yi = a0

i∑
k=0

w′c(i, k)w′e(i, k)w′s(i, k)xk (5.19)

Therefore, the recursive implementation as Equation (5.18) yields an exact modifi-

cation part with the new boundary strength term.

The 2D recursive results of the bilateral filter part and modification part can then

be computed by performing the above 1D recursive implementation horizontally and

vertically, respectively. Then, the final trilateral filter result is achieved in adding

the results of these two parts.

5.2.4 Complexity Analysis

In the proposed trilateral filter weight function, we detect the boundaries using

four pairs of quadrature filters at first to calculate the boundary strength term

as Equation (4.12). These filters are pre-computed and constants for all test im-

ages. The convolution operation can be divided into three steps, discrete Fourier

transform (DFT), multiplication and inverse discrete Fourier transform (iDFT). The

computational complexity of both DFT and iDFT is O(Nlog2(N)), where N de-

notes the image size. Thus the computational complexity of boundary detection is

O(Nlog2(N)).

Then, the recursive implementation of the bilateral filter part and modification

part are performed individually. The computational complexity of the bilateral

filter part is O(N) as analyzed in [22], and the computational complexity of the

modification part is O(N) as well, because the computational complexity of the

extra boundary strength term calculation as Equation (4.11) and Equation (4.15) is

linear to the image size N . Thus, except the boundary detection, the computational
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complexity of the recursive implementation of the trilateral filter is O(N), which is

independent of the support window size.

5.3 Experimental Results

The proposed Recursive Trilateral Filter based method (RTF) was implemented in

C++ and evaluated on both the Middlebury benchmark [97] and the real-world

stereo sequence. All the following experiments were conducted on a PC with a 3.4

GHz Inter Core i7 CPU and 8 GB memory.

5.3.1 Experimental Settings

As described in Section 3.5, Middlebury benchmark contains not only four standard

pairs of stereo images, namely "Tsukuba", "Venus", "Teddy", and "Cones", but

also another 33 pairs of stereo images with ground truth disparity maps [16] [98]

[99] [100]. They are listed in Figure 3.31, Figure 3.32 and Figure 3.33. Therefore,

we evaluated the proposed recursive trilateral filter based method not only on the

four standard pairs for comparison with state-of-the-art methods, but also on the

whole dataset of 37 pairs for a more comprehensive evaluation.

The experimental parameter setup is defined as follows: the parameters for

matching cost computation are {θ, τ1, τ2} = {0.11, 7, 2}; parameters for recursive

trilateral filter cost aggregation are {γc, γs, γe} = {0.13, 0.03, 0.05}. The above pa-

rameters were kept constant for all data sets.

5.3.2 Evaluation on Accuracy

According to Hosni et al. [73] [116] comparison, the Guided Filter based method

(GF) [9] and the Bilateral Filter based method (BF)[8] outperform the Geodesic

based method (Geo) [10], the Dual-Cross-Bilateral Grid based method (DCBGrid)

[66], etc. They concluded that GF and BF are more accurate than the others. In

this paper, we not only compare the proposed methods with GF [9] and BF [8],

but also with four other recently proposed cost aggregation methods, the Geodesic

Diffusion based method (GeoDif) [23], the Recursive Bilateral Filter based method
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(RBF) [22], the Minimum Spanning Tree based method (MST) [21] and the Domain

Transformation based method (DTAggr) [25], which employs a domain transform

filter [96].

We carried out three experiments to compare the proposed RTF method with the

state-of-the-art methods. In the first experiment, we evaluate it on the Middlebury

benchmark using 37 pairs of stereo images. To better compare the cost aggregation

step of each comparative method, we chose a three-step pipeline for them, i.e.,

matching cost computation, cost aggregation and WTA optimization, without the

influence of pre-processing and post-processing. Note that the raw disparity maps

are directly delivered by the WTA optimization strategy, thus without any post-

processing, e.g., median filtering. The parameters for the matching cost computation

step are set to the same values. For the cost aggregation parameters, we tested more

than twenty parameter settings for each method and chose the optimal one, which

leads to the lowest average error on the 37 pairs. The error metric is the same as

in previous works [16] [73], i.e., measuring the percentages of the erroneous pixels

in the non-occlusion regions with error threshold 11. Their quantitative comparison

is shown in Table 5.1, while their visual comparison is presented in Figure 5.1. To

better observe the raw disparity maps computed by each method, the error pixels

are marked in red in Figure 5.1. This comparison is analyzed from three aspects as

follows.

Firstly, the proposed boundary strength term is effective. From Table 5.1, we

observe that RTF (TF, resp.) is more accurate than RBF (BF, resp.) in terms of

average errors and also in most stereo pairs. These facts thus highlight the interest

of the boundary strength term, since RTF (TF, resp.) differs from RBF (BF, resp.)

only by the boundary strength term. In the visual comparison in Figure 5.1, we

marked the regions containing nearby pixels with similar colors but at different

disparities by a blue box. In comparing RTF (TF, resp.) with RBF (BF, resp.) in

these regions in a blue box, we find that RTF (TF, resp.) produced less error pixels.

Secondly, we explain the difference between TF and RTF. TF is based on a
1The benchmark only provides the non-occlusion ground truth maps of the four standard pairs.

Thus, we generated the non-occlusion ground truth maps of other pairs by left-right consistency
checking on the left and right ground truth disparity maps.
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Table 5.1: The quantitative comparison on the errors of raw disparity maps of 37
stereo pairs.

Non-Local Cost Aggregation Local Cost Aggregation

Our RTF DTAggr [25] MST[21] RBF [22] Our TF BF[8] GF[9] GeoDif[23]

Tsukuba 2.77 3.29 2.89 3.21 2.41 2.65 2.68 3.59

Map 3.04 3.09 4.27 5.69 1.30 1.56 1.25 9.23

Sawtooth 0.79 1.08 1.56 1.35 0.61 0.80 0.91 1.82

Venus 0.56 1.13 1.39 1.21 0.74 0.71 1.25 2.11

Bull 0.24 0.36 0.33 0.33 0.21 0.22 0.25 0.44

Poster 1.22 2.11 2.31 2.61 1.07 1.11 1.75 3.50

Barn1 0.67 1.04 1.41 1.53 0.45 0.54 0.74 1.70

Barn2 0.98 1.29 1.34 1.35 1.06 1.09 1.14 1.47

Cones 3.60 3.99 4.73 4.54 3.07 3.42 3.43 4.83

Teddy 7.21 8.49 8.70 8.83 8.18 8.43 8.68 9.40

Art 8.71 9.77 8.28 10.40 8.80 8.52 8.83 9.25

Books 6.77 7.39 8.56 7.27 8.09 8.55 8.92 8.41

Dolls 4.46 4.91 3.70 5.17 4.00 4.50 4.54 5.17

Laundry 13.39 12.66 14.28 13.73 14.31 12.68 14.69 15.00

Moebius 8.81 8.61 7.53 8.77 8.71 9.10 9.24 9.21

Reindeer 5.48 5.31 7.69 5.92 5.90 5.62 6.31 5.05

Aloe 3.74 4.45 3.82 4.36 4.24 4.79 5.17 4.07

Baby1 3.71 4.33 5.62 3.99 3.87 3.66 4.25 3.87

Baby2 3.56 4.08 9.09 3.87 3.04 3.20 3.78 4.02

Baby3 4.87 5.83 5.23 5.25 5.01 5.14 5.35 5.52

Bowling1 13.65 14.42 15.40 14.49 14.67 14.54 14.98 15.64

Bowling2 6.29 7.54 6.66 7.38 6.45 6.21 6.54 6.83

Cloth1 0.23 0.19 0.43 0.20 0.53 0.51 0.98 0.20

Cloth2 2.07 2.27 1.93 2.21 2.05 2.26 2.73 2.62

Cloth3 1.60 1.43 1.50 1.48 1.51 1.63 1.85 1.70

Cloth4 1.18 1.15 1.13 1.47 1.04 1.19 1.40 1.38

Flowerpots 13.13 13.52 12.96 13.73 12.69 12.37 12.29 12.23

Lampshade1 10.09 11.40 10.00 11.00 14.08 14.41 14.21 15.95

Lampshade2 18.83 20.87 22.43 19.65 22.81 22.59 22.71 24.12

Midd1 37.79 39.77 32.08 39.50 41.46 42.01 41.93 43.26

Midd2 35.10 37.29 34.10 36.57 40.50 41.12 41.09 42.15

Monopoly 27.25 28.02 22.16 27.58 27.48 27.87 28.41 29.31

Plastic 32.11 29.86 41.48 32.07 39.07 39.49 39.34 40.78

Rocks1 1.66 1.74 1.50 1.72 1.70 2.15 2.22 1.75

Rocks2 1.47 1.40 1.08 1.54 1.22 1.40 1.33 1.46

Wood1 2.70 3.36 5.87 3.27 4.00 4.28 4.19 3.12

Wood2 1.22 1.38 0.70 1.72 1.31 1.37 1.31 1.50

Avg. Error 7.86 8.35 8.49 8.51 8.59 8.70 8.94 9.50
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(a) Cones (b) RTF (c) RBF [22] (d) TF (e) BF [8]

(f) DTAggr [25] (g) GF [9] (h) MST [21] (i) GeoDif[23]

(j) Cloth4 (k) RTF (l) RBF[22] (m) TF (n) BF[8]

(o) DTAggr[25] (p) GF[9] (q) MST[21] (r) GeoDif[23]

Figure 5.1: Visual comparison with state-of-the-art methods on 37 stereo pairs.
The error pixel is marked in red. The regions marked by a blue box contain nearby
pixels with similar colors but at different disparities. TF and RTF produce fewer
error pixels in these regions than BF and RBF, respectively. The parameter setting
in each method is as follows. RTF: {γc, γs, γe} = {0.8, 0.03, 0.07} , RBF: {γc, γs} =
{0.3, 0.05}, TF: {γc, γs, γe, r} = {0.08, 0.02, 0.06, 17}, BF: {γc, γs, r} = {30, 7, 17} ,
DTAggr: {σr, σs} = {0.12, 13}, GF: {r, ε} = {9, 0.0005}, MST: σ = 0.06, GeoDif:
{σ, l, iteration} = {130, 0.1, 15}.
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traditional local cost aggregation technique. The weighted costs of the support

pixels within a local window are aggregated to the center. Therefore, for each

center pixel, its aggregated cost is only determined by neighboring pixels within

a fixed window. In the other three local cost aggregation methods, BF, GF and

GeoDif, the aggregated cost of each pixel is also only influenced by neighboring

pixels. However, RTF is based on the non-local cost aggregation technique, which is

different from the previous local cost aggregation technique. In RTF, the guidance

image is represented as a undirected graph G = (V,E). The vertices V are all the

image pixels, while the edges E are all the edges between the neighboring pixels. All

the pixels are connected by a 4-connected grid and the weighted cost of each pixel is

aggregated first horizontally (from left to right and then from right to left) and then

vertically (from top to bottom and then from bottom to top). This causes the cost

of each pixel to be propagated to the other pixels through a 4-connected grid path.

Therefore, for each pixel, its aggregated cost is influenced by all the other pixels of

the image. We conduct an experiment to change the support window sizes of TF

method and the results are presented in Table 5.2. From this evaluation, we conclude

that when the window size is increasing, it takes more time for cost aggregation and

also we can obtain more accurate results. Compared to TF, RTF set a global window

window for all images, therefore, this is the reason why RTF is more accurate than

TF. The other two methods, RBF and DTAggr, are based on the same aggregation

strategy, while MST is based on a similar one. In MST, a minimum spanning

tree is computed from the 4-connected grid, which is a subgraph of the grid graph.

The minimum spanning tree determines a global optimal path and the weighted

cost of each pixel is propagated to the other pixels through this optimal tree path.

Compared to the local cost aggregation technique, the advantages of the non-local

cost aggregation technique are twofold. Firstly, the cost of each pixel is propagated

to the whole image and eliminates the window size limitation of traditional local

methods. Therefore, non-local cost aggregation methods consider more information

for each pixel than local methods. From Table 5.1, we observe that non-local cost

aggregation methods are usually more accurate than local cost aggregation methods.

Secondly, the non-local cost aggregation methods, RTF, RBF, MST, DTAggr are

88



Chapter 5. Recursive Trilateral Filter based Method

Table 5.2: Evaluation on TF method with different window size.

Window tuskuba venus teddy cones Avg. Avg.

Radius nocc all disc nocc all disc nocc all disc nocc all disc Error Time(s)

13 2.00 2.33 7.01 0.15 0.33 1.62 6.30 12.16 15.0 2.39 8.77 6.80 5.41 45.8

15 1.87 2.20 6.54 0.15 0.33 1.69 6.18 11.8 15.0 2.43 8.51 6.83 5.30 61.6

17 1.75 2.08 6.51 0.16 0.34 1.76 5.99 11.5 14.8 2.46 8.28 6.87 5.21 79.8

19 1.54 1.87 6.45 0.16 0.35 1.78 5.92 11.4 14.7 2.50 8.18 6.92 5.15 102.3

21 1.51 1.84 6.56 0.17 0.35 1.88 5.76 11.2 14.5 2.54 8.13 6.98 5.11 126.0

23 1.50 1.82 6.65 0.17 0.37 1.83 5.70 11.0 14.4 2.57 8.12 7.05 5.10 155.5

25 1.48 1.81 6.59 0.17 0.36 1.85 5.66 11.0 14.4 2.57 8.09 7.07 5.08 187.2

27 1.49 1.81 6.66 0.18 0.36 1.98 5.58 10.9 14.2 2.58 8.08 7.08 5.07 222.8

much faster than the local cost aggregation methods, TF, BF, GF, GeoDif. This

will be studied in greater depth in Section 5.3.3.

Thirdly, we compare the proposed RTF method with the most related method,

GeoDif [23]. In GeoDif, the weighted cost of each pixel is iteratively diffused to

neighboring pixels and an optimal path (similar to geodesic distance) between t-

wo neighboring pixels is dynamically decided in each iteration. The weight in this

method is calculated using Euclidean distance in the RGB color space of two neigh-

boring pixels, which is similar to the gradient difference. However, in the proposed

method, the local energy (phase congruency) detector is employed to compute the

boundary strength, while the trilateral filter weight of two pixels is calculated from

the boundary strength along the line connecting them. The local energy (phase

congruency) detector has proved to be more robust than the gradient-based edge

detector against changes in illumination and contrast. Therefore, the local energy

based method is more robust than the gradient information based GeoDif method.

Although GeoDif does not use gradient based edge detectors, its weight calcula-

tion only includes the gradient information. From Table 5.1, we observe that the

proposed RTF method is more accurate than GeoDif. C. Pham et al. [25] also

concluded that GeoDif is even worse than GF and BF in terms of accuracy, which

is consistent with our comparison presented in Table 5.1. On the other hand, the

proposed RTF is almost 10 times faster than GeoDif, their efficiencies are compared

in Section 5.3.3.

18.43% refers to the error percentage on that single frame.
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In the second experiment, we evaluate the proposed RTF method using the

real-world stereo sequence. We chose the commonly used sequence, namely, Book

Arrival2, which contains 100 frames, because the ground truth disparity maps of

this sequence are provided and we can quantitatively compare these methods. In

this experiment, we only compare the cost aggregation step of each method without

influence due to pre-processing and post-processing as in the first experiment. The

parameters of the matching cost computation step are set to the same values. The

optimal parameters of each cost aggregation step are selected after a large number

of tests. The best result on all the 100 frames computed by each method is reported

in Table 5.3 and the visual comparison is shown in Figure 5.2. The error pixels

are marked in red. The quantitative comparison shows that the proposed methods

perform well and that the rank of each method is almost consistent with the evalua-

tion on 37 stereo pairs, as listed in Table 5.1. To evaluate each method on handling

noise, we add the pepper noise3 on the stereo sequence, as shown in Figure 5.2 (k).

The quantitative comparison and the visual comparison are presented in Table 5.3

and Figure 5.2, respectively. As can be seen, MST seems to be the best method for

dealing with pepper noise, since its average error percentage has slightly increased

from 11.47% (original sequences) to 11.63% (noisy sequences). The reason is that

the pepper noises, i.e. isolated black pixels, are virtually the leaves of the minimum

spanning tree and thus influence other pixels slightly. With an average error rate

increased from 11.27% to 11.70%, RTF has a similar ability to handle noise as RBF,

whose average error rate has increased from 11.75% to 12.38%. The reason is that

isolated noisy pepper pixels have no effect on the boundary term, which is based on

local energy edge detection. Nevertheless, the overall behavior of RTF in terms of

handling noise can be judged as satisfactory, because its average error rate (11.70%)

is just slightly worse than that of MST (11.63%).

In the third experiment, we evaluate the proposed method with pre-processing

and post-processing, and compare it with the state-of-the-art methods. The quan-

titative comparison is shown in Table 5.4. As can be seen from this table, RTF

2Image resolution is 512× 384 pixels and disparity range is 18.
3Coordinates of pepper noises are random and noise density is 5%.
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Table 5.3: The quantitative comparison on stereo video (100 frames).

Algorithm Average Error

No Noise with Noise

Our RTF 11.27 11.70

MST[21] 11.46 11.63

DTAggr[25] 11.58 12.40

RBF[22] 11.75 12.38

Our TF 12.24 12.55

GF[116] 12.40 12.81

BF[8] 12.90 13.11

GeoDif[23] 14.03 15.60

Table 5.4: The quantitative comparison on the Middlebury benchmark with error
threshold set to 1.

Algorithm tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

Our RTF 1.62 2.14 5.78 0.21 0.50 1.86 5.44 11.2 13.1 2.44 8.18 6.84 4.95

Our TF 1.75 2.08 6.51 0.16 0.34 1.76 5.99 11.5 14.8 2.46 8.28 6.87 5.21

DTAggr [25] 1.75 2.10 7.09 0.24 0.45 2.59 5.70 11.5 13.9 2.49 7.82 7.30 5.24

MST [21] 1.47 1.85 7.88 0.25 0.42 2.60 6.01 11.6 14.3 2.87 8.45 8.10 5.48

GeoDif [23] 1.88 2.35 7.64 0.38 0.82 3.02 5.99 11.3 13.3 2.84 8.33 8.09 5.49

GF [9] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

RBF [22] 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

GEO [10] 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32 5.80

BFSeg [101] 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77 6.44

BF [8] 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67
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(a) No Noise (b) Ground Truth (c) RTF(8.43%4) (d) RBF(9.67%) (e) TF(10.05%)

(f) BF(10.28%) (g)
DTAggr(8.76%)

(h) GF(10.04%) (i) MST(9.33%) (j)
GeoDif(12.20%)

(k) With Noise (l) Ground Truth (m) RTF(10.07%) (n) RBF(11.75%) (o) TF(10.15%)

(p) BF(10.38%) (q)
DTAggr(10.77%)

(r) GF(10.29%) (s) MST(9.51%) (t)
GeoDif(14.36%)

Figure 5.2: Visual comparison with state-of-the-art methods on stereo sequence. In
the top two rows, the raw disparity maps are generated from the original stereo
sequence, whereas in the bottom two rows, the raw disparity maps are computed
from the noise stereo sequence. The parameter setting of each method is as follows.
RTF: {γc, γs, γe} = {0.8, 0.1, 0.01} , RBF: {γc, γs} = {0.1, 0.3}, TF: {γc, γs, γe, r} =
{0.3, 0.03, 0.03, 25}, BF: {γc, γs, r} = {100, 35, 25} , DTAggr: {σr, σs} = {0.5, 85},
GF: {r, ε} = {15, 0.01}, MST: σ = 0.15, GeoDif: {σ, l, iteration} = {200, 0.1, 35}.
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Table 5.5: The evaluation on the robustness of parameter γc.

γc tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

0.07 1.86 2.39 5.71 0.33 0.71 2.02 5.89 11.7 13.6 2.67 8.53 7.37 5.23

0.09 1.78 2.29 5.69 0.28 0.63 2.05 5.62 11.5 13.3 2.60 8.43 7.25 5.11

0.11 1.67 2.18 5.67 0.24 0.55 2.04 5.47 11.3 13.1 2.48 8.33 6.93 5.00

0.13 1.62 2.14 5.78 0.21 0.50 1.86 5.44 11.2 13.2 2.44 8.18 6.85 4.95

0.15 1.61 2.13 6.00 0.20 0.46 1.78 5.45 11.2 13.2 2.44 8.16 6.88 4.96

0.17 1.61 2.15 6.05 0.19 0.44 1.80 5.50 11.2 13.4 2.47 8.18 7.01 4.99

0.19 1.62 2.18 6.26 0.19 0.41 1.85 5.55 11.2 13.5 2.48 8.17 7.01 5.03

0.21 1.66 2.24 6.54 0.18 0.40 1.92 5.58 11.2 13.7 2.51 8.15 7.08 5.09

0.23 1.67 2.26 6.64 0.17 0.39 1.92 5.60 11.2 13.7 2.59 8.20 7.32 5.14

RBF [22] 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

outperforms other methods in terms of average error rate, and shows better accura-

cies in most columns, especially in the column named "disc.", which represents the

regions near depth discontinuities mainly containing boundaries. This accuracy gain

in the "disc." column gives hints as to the effectiveness of the boundary strength

term. Figure 5.3 gives a visual comparison with the state-of-the-art methods along

with the ground truth.

5.3.3 Discussion on Parameters for Cost Aggregation

In this section, we evaluate the robustness of the parameters for recursive trilateral

filter cost aggregations on the four standard stereo pairs. The three parameters

are {γc, γs, γe} = {0.13, 0.03, 0.05}. We conduct three experiments to individually

evaluate these three parameters.

In the first experiment, we fixed two parameters γs = 0.03 and γe = 0.05 and

change the value of γc from 0.07 to 0.23. The results are presented in Table 5.5. In

the second experiment, we fixed γc = 0.13 and γe = 0.05 and change the value of γs

from 0.02 to 0.06. The results are presented in Table 5.6. In the third experiment,

we fixed γc = 0.13 and γs = 0.03 and change the value of γs from 0.01 to 0.09. The

results are presented in Table 5.7. Observing these three experiments, we conclude

that these three parameters are robust, and all these results are more accurate then

RBF method.
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(a) Truth (b) RTF (c) RBF (d) TF (e) BF

(f) DTAggr (g) MST (h) GF (i) GeoDif

Figure 5.3: Visual comparison with state-of-the-art methods.
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Table 5.6: The evaluation on the robustness of parameter γs.

γs tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

0.02 1.74 2.31 6.02 0.25 0.61 2.10 5.55 11.3 13.3 2.50 8.29 7.01 5.09

0.03 1.62 2.14 5.78 0.21 0.50 1.86 5.44 11.2 13.2 2.44 8.18 6.85 4.95

0.04 1.57 2.09 6.08 0.20 0.45 1.89 5.46 11.1 13.2 2.47 8.25 6.93 4.97

0.05 1.55 2.06 6.27 0.20 0.43 2.01 5.51 11.2 13.4 2.49 8.30 7.01 5.03

0.06 1.48 1.99 6.37 0.21 0.43 2.18 5.58 11.2 13.4 2.50 8.25 7.01 5.06

RBF [22] 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

Table 5.7: The evaluation on the robustness of parameter γe.

γs tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

0.01 1.71 2.26 6.05 0.22 0.59 1.72 5.53 11.4 13.2 2.45 8.19 6.85 5.01

0.03 1.69 2.21 5.87 0.21 0.51 1.73 5.49 11.3 13.2 2.47 8.25 6.92 4.99

0.05 1.62 2.14 5.78 0.21 0.50 1.86 5.44 11.2 13.2 2.44 8.18 6.85 4.95

0.07 1.64 2.15 6.02 0.21 0.49 1.96 5.42 11.2 13.1 2.43 8.17 6.84 4.96

0.09 1.63 2.16 6.07 0.20 0.48 1.97 5.43 11.1 13.2 2.45 8.19 6.91 4.98

RBF [22] 1.85 2.51 7.45 0.35 0.88 3.01 6.28 12.1 14.3 2.80 8.91 7.79 5.68

5.3.4 Evaluation on Efficiency

In this section, we compare the computational efficiency of the comparative methods,

i.e. RTF, RBF [22], MST [21], DTAggr [25],TF, GF [9], BF [8] and GeoDif [23].

These methods were all implemented in C++ and tested on the same PC using

single core. We compare the runtime of the cost aggregation step of each method on

the four standard pairs provided by the Middlebury benchmark, which is presented

in Table 5.8. This comparison is analyzed in the following five aspects.

Firstly, the non-local cost aggregation methods RTF, RBF [22], MST [21], D-

TAggr [25] are extremely fast as shown in Table 5.8. The reason is as follows. The

computational complexity of RTF is analyzed in Section 5.2.4, which proves to be

on O(N) after boundary detection operation. The computational complexity of the

other three non-local methods [22] [21] [25] is also on O(N), which is also indepen-

dent of the support window size. Specifically speaking, cost aggregation in RTF,

RBF and DTAggr needs four passes, i.e., two horizontal passes and two vertical

passes, while cost aggregation of MST needs two passes, i.e., from leaf to root and
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Table 5.8: The runtime (milliseconds) comparison on cost aggregation.

Algorithm Tuskuba Venus Teddy Cones Avg. Time

RBF[22] 24 63 116 116 80

DTAggr[25] 43 133 244 241 165

MST[21] 83(51) 160(85) 216(92) 220(95) 170(81)

Our RTF 142(80) 241(93) 337(92) 333(92) 264(90)

GF-Gray[116] 189 577 1090 1084 735

GF-Color[116] 3087 9916 18722 18717 12610

GeoDif[23] 9602 28905 54033 54046 36646

BF[8] 22000 48358 77557 77513 56357

Our TF 45202(80) 78589(90) 97607(91) 97620(92) 79754(88)

then from root to leaf. Note that the minimum spanning tree should be constructed

in MST [21] and that the average execution time of MST construction is 81ms as

shown in Table 5.8. Therefore, these non-local cost aggregation methods are quite

efficient.

Secondly, RTF (264ms) is almost 3 times slower than RBF (80ms). This can

be explained by two reasons. Firstly, in contrast to RBF, the boundary detection

operation is needed in RTF. The average execution time on boundary detection

is about 90ms; secondly, RTF includes one more part, i.e. the modification part

described in Equation (5.18); thus the RTF based cost aggregation (174ms) is about

2 times slower than the RBF based cost aggregation (80ms).

Thirdly, recursive implementation dramatically improves computational efficien-

cy. Computational complexity of TF, BF depends on support window size and these

two methods are very slow. From Table 5.8, we observe that the RTF (RBF, resp.)

is hundreds times faster than TF (BF, resp.), which demonstrates the effectiveness

of recursive implementation.

Fourthly, RTF is more efficient than GeoDif [23], which is the method most re-

lated to our work. GeoDif needs more than twenty iterations to obtain a satisfactory

result as reported in [23]. Thus, this method is not as efficient as RTF, which only

needs four 1D aggregation passes.

Finally, GF is slower than the non-local cost aggregation methods RTF, RBF

[22], MST [21], DTAggr [25]. Although the computational complexity of GF is
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proved in [116] to be independent of window size, this cost aggregation needs 6 box

filtering on each slice if guided by the gray scale image and 18 box filtering on each

slice if guided by color image, according to its matlab code provided by the authors

[9]. If we take "cones" as an example, GF needs 6 ∗ 60 box filtering 5 if guided by

gray scale image and 18 ∗ 60 box filtering if guided by color image. This explains

why GF is slower than the non-local cost aggregation methods.

5.4 Conclusion

The trilateral filter based method as presented in Chapter 4, whose computational

complexity is O(Nr2), is quite time consuming. In order to improve its compu-

tational efficiency, we proposed a recursive trilateral filter based method, whose

computational complexity is independent of the support window size r. Evaluated

on the stereo pairs provided by middlebury benchmark, whose resolution is about

450 ∗ 350, the runtime of the proposed trilateral filter cost aggregation is roughly

260 milliseconds, which is 300 times faster than the brute force implementation of

the trilateral filter based method. Moreover, the accuracy of the recursive trilateral

filter based method still outperforms other local stereo matching methods.

5The maximum disparity of "cones" is 60.
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6.1 Motivation

As presented in Chapter 4, the trilateral filter based method extends the bilateral

filter based method by introducing a new boundary strength term, in order to handle

the ambiguity induced by nearby pixels at different disparities but with similar

colors. The boundary strength term is computed from the color edge map, as shown

in Figure 6.1 (b), which is detected from the intensity image (Figure 6.1 (a)) by

local energy edge detector. The edges on the color edge map can be divided into two

types, one is disparity discontinuities, defined as depth edges; the other is disparity

continuities, defined as texture edges. Actually, only depth edges are needed in the

trilateral filter based method, but it is hard to distinguish depth edges from texture

edges, as analyzed in Section 4.1. There are two solutions, either all color edges are
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(a) intensity image (b) Color edge map (c) Disparity map by TF

Figure 6.1: (a) intensity image. (b) color edge map detected from the intensity
image and used to compute the boundary strength term in the original trilateral
filter based method. (c) The computed disparity map from the color edge map based
trilateral filter method without disparity refinement step (post-processing step).

considered as depth edges or as texture edges. We choose the first solution, because

aggregating incorrect pixels in the second solution brings mistake information and

is more harmful than missing correct pixels in the first solution. The disparity

map computed from the original trilateral filter based method without disparity

refinement step is presented in Figure 6.1 (c).

We have an intuition that if depth edges can be found and used to calculate

boundary strength term, then the accuracy of the trilateral filter based method is

perhaps improved. In order to verify this intuition, we conduct an experiment using

the ground truth disparity map provided by Middlebury benchmark, as shown in

Figure 6.2 (a). The ground truth depth edge map is detected from this ground truth

disparity map using edge detector, as shown in Figure 6.2 (b). This ground truth

depth edge map is used to compute the boundary strength term of the trilateral

filter based method and the final disparity map is present in (c).

Comparing to the disparity map computed by original TF method in Figure 6.1

(c), the disparity map computed from the ground truth depth edge map based TF

method, as shown in Figure 6.2 (c), is visually more accurate. We also quantitative-

ly compared these two methods using the standard four pairs on the Middlebury

benchmark and conducted two experiments, i.e. one is with disparity refinement

step and one is without disparity refinement step. The quantitative comparison is

presented in Table 6.1, where "GT" represents the ground truth depth edge map
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(a) ground truth disparity
map

(b) ground truth depth edge
map

(c) Disparity map

Figure 6.2: (a) ground truth disparity map. (b) Ground truth depth edge map
detected from the ground truth disparity map and used to calculated the boundary
strength term of the trilateral filter based method. (c) The computed disparity
map from the ground truth depth edge map based trilateral filter method without
disparity refinement step.

Table 6.1: The quantitative comparison on the Middlebury benchmark with error
threshold set to 1.

Algorithm tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

GT with refine 0.77 1.09 3.80 0.05 0.19 0.58 5.45 11.0 13.4 2.09 7.50 5.95 4.32

TF with refine 1.75 2.08 6.51 0.16 0.34 1.76 5.99 11.5 14.8 2.46 8.28 6.87 5.21

GT without refine 1.19 1.66 4.57 0.18 0.65 2.29 6.78 13.3 15.5 2.49 9.20 7.02 5.40

TF without refine 1.96 2.58 7.92 0.48 1.08 5.11 7.95 14.6 18.3 3.54 10.7 9.46 6.98

based TF method and "TF" represents the original TF method using color edge

map.

From this comparison, we conclude that, when the ground truth depth edge

map is used to calculate the boundary strength term, the accuracy will be highly

enhanced. Motivated by this observation, we present a depth edge detection method

to calculate the depth edge map. The experimental evaluation on the Middlebury

benchmark shows that using the calculated depth edge map, the trilateral filter

based method leads to a more accurate result than the original one and thereby

demonstrates the effectiveness of the proposed depth edge detection method.

The remainder of this chapter is organized as follows, Section 6.2 presents the

proposed depth edge detection method. The experimental results and analysis are

given in Section 6.3 and Section 6.4 concludes the paper.
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(a) Disparity map by TF (b) Initial depth edge map

Figure 6.3: (a) is the disparity map computed from the trilateral filter based method
with disparity refinement step and (b) is the initial depth edge map computed
directly from (a) the disparity map by edge detector.

6.2 Depth edge detection method

In this section, we present the proposed depth edge detection method, which makes

use of two cues, the depth edge cue and the color edge cue, which are described as

follows.

Depth edge cue. A disparity map, shown in Figure 6.3 (a), can be computed

by the trilateral filter based method described in Section 4.2. An initial depth edge

map can be detected from this disparity map by edge detector, which is shown in

Figure 6.3 (b). This initial depth edge map contains depth edges, but the position

of some depth edges are not accurate or even incorrect, marked in the red box in

Figure 6.3 (b). These incorrect edges should be detected and removed.

Color edge cue. A color edge map, which is shown in Figure 6.1 (b), can be

detected from the intensity image, shown in Figure 6.1 (a), by edge detector. This

color edge map contains depth edges and texture edges. The position of all edges are

accurate, but depth edges are mixed with texture edges and it is hard to distinguish

them, which is analyzed in Section 4.1.

Our solution is to combine the color edge cue (color edge map) with the depth

edge cue (initial depth edge map) in order to obtain an accurate depth edge map,

which is named as final depth edge map. The proposed depth edge detection method

consists of three parts, i.e. edge segmentation, edge intersection and edge linking,

which are presented in the following subsections, respectively.
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(a) junction pixel (b) ending pixel

Figure 6.4: The junction pixel and ending pixel are marked in red.

Figure 6.5: A 3 × 3 window is set for the center pixel. The value of pixels in the
window are binary.

6.2.1 Edge segmentation

Edge segmentation [117] aims to set different edge segments with different labels.

We segment both the initial depth edge map and color edge map using the following

edge segmentation method.

Firstly, find junction pixels (Figure 6.4 (a)) and ending pixels (Figure 6.4 (b))

on both edge maps. To identify whether a pixel is a junction or ending, a 3 × 3

window is set for it as shown in Figure 6.5. Two arrays are constructed from this

window as,

a = [I1, I2, I3, I4, I5, I6, I7, I8]

b = [I2, I3, I4, I5, I6, I7, I8, I1]
(6.1)

where Ii denotes the value of ith pixel in the window. Note that both the initial

depth edge map and color edge map are binary maps; thus, the value of ith pixel,

Ii, equals 1 if it is a edge pixel or 0 if not.

The sum of the crossing of these two arrays are computed as

y =
8∑
i=1

|ai − bi|, (6.2)

If the result y equals 6 or 8, then the center pixel is a junction; while if it equals 2,

then the center pixel is a ending.
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Figure 6.6: Intersected depth edge map.

Then, the edge segmentation is developed in three steps, (1) from every ending

pixel track until encounter an ending or junction and set a label for them; (2) from

every junction track out on any edges that have not been labeled yet until encounter

another junction, and set a label for them; (3) scan through the image looking for

any unlabeled pixels, which correspond to isolated loops that have no junctions, and

set a label for them.

6.2.2 Edge intersection

In the edge intersection step, the initial depth edge map Dmn, which is shown in

Figure 6.3 (b), and the color edge map Cmn, which is shown in Figure 6.1 (b), are

logically combined to find their intersections Ymn, named as intersected edge map,

using dot production as

Ymn = Dmn · Cmn. (6.3)

where mn denotes the image dimension.

Observing the intersected edge map Ymn, which is shown in Figure 6.6, we can

find that most depth edges are picked out. However, this intersection operation only

compares the positions of pixels and ignore the orientation information, thus incurs

some incorrect pixels. For example, a vertical edge pixel on the initial depth edge

map intersects with a horizontal edge pixel at the same position on the color edge

map, producing an incorrect pixel. This kind of incorrect pixels can be removed
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(a) final depth edge map (b) ground truth depth edge map

Figure 6.7: (a) the detected depth edge map, which is a binary edge map; (b) the
ground truth depth edge map, detected from the ground truth disparity map.

by checking their orientations as follows. For a pixel p on the intersected edge map

Ymn, its segment on the initial depth edge map can be found by edge segmentation

technique as described in Section 6.2.1. Then, a curve is fitted to a subsegment of

this segment within a local region, using third degree polynomial. The slopes of the

fitted curve at pixel p can be computed by derivative and its orientation, θdepth,p,

can be found by arctangent operation. Similarly, the orientation of p on the color

edge map, θcolor,p, can also be computed. If the difference of these two orientations

beyond a threshold δ,

|θcolor,p − θdepth,p| > δ (6.4)

then the pixel p is consider as a mismatch and should be excluded.

6.2.3 Edge linking

The intersected edge map is discontinuous and should be linked. In the edge linking

step, we link the discontinuous edges to obtain the final depth edge map.

The ending pixels on the intersected edge map are detected by the ending pixel

detection method presented in Section 6.2.1. These ending pixels are expected to

be linked. For a ending pixel p, we search its nearest ending pixel q, within a local

region. Then, we check p and q on the color edge map whether they are at the same

segment or not. If they are, then the pixels between these two ending pixels on the

color edge map are picked out to fill the holes on the intersected edge map; If not,
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we keep searching another ending pixel, until we linked most edges. The final depth

edge map is presented in Figure 6.7 (a).

Comparing to the ground truth depth edge map shown in Figure 6.7 (b), the final

depth edge map contains most depth edges. In the ground truth depth edge map,

some depth edges, e.g. edges marked in red color, can not be detected, because these

depth edges actually caused by a continuous slanted plane in different disparities

and there are no color edges corresponding to this kind of depth edges. Therefore,

except this kind of depth edges, other depth edges can be detected by our depth

edge detection method.

6.3 Experimental results

We implemented the proposed depth edge detection method using C++ and evaluat-

ed the depth edge based trilateral filter method on the common accepted Middlebury

benchmark [97].

As described in Chapter 4, the trilateral filter based method consist of five

steps as (1) preprocessing, (2) matching cost computation, (3) cost aggregation, (4)

disparity optimization and (5) disparity refinement. All the experiments follow this

fixed pipeline with five steps.

Ma et. al. [95] claimed that guided filter based cost aggregation [16] is more

accurate than the simplest box-filter based cost aggregation [16], but after the dis-

parity refinement step, the results of these two cost aggregations are almost the

same. Thus, they concluded that the disparity refinement step covers the perfor-

mance of the cost aggregation step. This paper focuses on depth edge detection

method, which is used on the cost aggregation step. Therefore, in order to fairly

evaluate the performance of the proposed method, we do not perform the disparity

refinement step or any other post-processing step, e.g., median filtering. In Table

6.2, we present the quantitative comparison of the proposed depth edge based trilat-

eral filter method with two state-of-the-art cost aggregation methods, Guided Filter

(GF) based method [9] and Trilateral Filter (TF) based method [118]. In this com-

parison, we conduct considerable tests to tune parameters for each cost aggregation
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Table 6.2: The quantitative comparison of our depth edge based trilateral filter cost
aggregation and two state-of-the-art cost aggregation methods on the Middlebury
benchmark with error threshold set to 1. These results are computed directly from
cost aggregation without disparity refinement and any other post-processing.

Algorithm tuskuba venus teddy cones Avg.
nocc all disc nocc all disc nocc all disc nocc all disc Error

Ours 1.92 2.65 7.35 0.39 1.09 4.38 7.63 14.3 17.7 3.01 10.0 8.37 6.56
TF[118] 1.96 2.58 7.92 0.48 1.08 5.11 7.95 14.6 18.3 3.54 10.7 9.46 6.98
GF[9] 2.67 3.50 9.58 1.18 2.17 11.8 8.64 15.8 18.9 3.39 11.3 9.13 8.17

Table 6.3: The quantitative comparison of the proposed depth edge based trilat-
eral filter ASW method with other state-of-the-art methods on the Middleburry
benchmark with error threshold set to 1, with refinement step.

Algorithm tuskuba venus teddy cones Avg.
nocc all disc nocc all disc nocc all disc nocc all disc Error

GT Depth Edge 0.77 1.09 3.80 0.05 0.19 0.58 5.45 11.0 13.4 2.09 7.50 5.95 4.32
Ours 1.57 1.99 5.88 0.13 0.38 1.49 6.04 11.7 15.0 2.39 8.27 5.70 5.13

TF[118] 1.75 2.08 6.51 0.16 0.34 1.76 5.99 11.5 14.8 2.46 8.28 6.87 5.21
GF[9] 1.51 1.85 7.61 0.20 0.39 2.42 6.16 11.8 16.0 2.71 8.24 7.66 5.55

and the best results are presented. The visual comparison can be found in Figure

6.8. From this comparison, it is observed that our depth edge based trilateral filter

method is more accurate than the original trilateral filter method, which proves

the effectiveness of the depth edge detection method; moreover, it also outperforms

another state-of-the-art method, guided filter based method.

Also, we evaluate the depth edge based trilateral filter method with disparity

refinement step, in order to evaluate its overall performance. The quantitative re-

sults are listed in Table 6.3, the proposed method outperforms other state-of-the-art

methods. The disparity maps computed by the proposed method are presented in

Figure 6.9. Importantly, the ground truth depth edge map based trilateral filter

method ("GT" in Table 6.3) ranks 2nd on the Middlebury benchmark and is even

more accurate (error percentage is 4.32%) than most global methods. This demon-

strates the potential of the proposed method and its performance can be improved

by a better depth edge detection method.

107



Chapter 6. Depth Edge Trilateral Filter based Method

(a) Ground Truth (b) Ours (c) TF (d) GF

Figure 6.8: Visual comparison the raw disparity maps generated by different cost
aggregation methods. These raw disparity maps are computed from the cost aggre-
gation step without refinement and any other post-processing.

Figure 6.9: Final disparity maps computed by the proposed method.
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6.4 Conclusions

The trilateral filter based method [118] is an outstanding ASW method. In this

dissertation, we presented an effective depth edge detection method to obtain a

depth edge map, which replaces the color edge map that used in the trilateral filter

based method [118]. Evaluated on the Middlebury benchmark, we can find that the

results from the proposed depth edge based trilateral filter method is more accurate

than those from the original trilateral filter method, which proves the effectiveness of

the proposed method. Importantly, we replaced the color edge map by the ground

truth depth edge map and the average error of the final disparity map is 4.32%,

which ranks 2nd on the Middlebury benchmark. That means, if we can calculate

a more accurate depth edge map, we can obtain more accurate results. It proves

that our method has potential to outperform other stereo matching methods. In the

future, the improvement of the depth edge detection method will be further studied.
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7.1 Conclusions

This thesis mainly concentrates on improving the accuracy and efficiency of the

stereo matching method. We investigated various stereo matching methods and

found that the adaptive support weight method is a milestone in stereo vision field.

The bilateral filter based adaptive support weight method represents the state-of-

the-art local stereo matching method. However, this method fails to handle the

ambiguity induced by nearby pixels at different disparities but with similar colors.

In order to solve this case, we proposed a novel trilateral filer based method which

extends the bilateral filter based method by introducing a boundary strength term.

This is our first contribution. We evaluated the proposed trilateral filter based

method on the commonly accepted Middlebury benchmark and compared it with

state-of-the-art methods. The proposed method proves to be the most accurate

local stereo matching method at the time of submission (April 2013).

The trilateral filter based method is quite time consuming, since its computa-

tional complexity depends on the support window size r, which is O(Nr2). In order

to improve its efficiency, we proposed a recursive trilateral filter based method,

inspired by the recursive filter. This is our second contribution. The proposed

recursive trilateral filter based method aggregates the raw cost on a four connect-
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ed grid graph by four one-dimensional cost aggregation passes. Its computational

complexity proves to be O(N), which is independent of support window size. The

practical runtime on processing 375∗450 resolution image is roughly 260ms on a PC

with a 3.4 GHz Inter Core i7 CPU, which is 300× faster than the previous trilateral

filter based method. Moreover, the proposed recursive trilateral filter based method

still outperforms other local stereo matching methods in terms of accuracy.

Finally, we further studied the trilateral filter based method. The boundary

strength term is the key part of this method, which is computed from a color edge

map. However, we verified that, if the boundary strength term is computed from a

depth edge map, the final result will be improved. Motivated by this observation, we

presented a depth edge detection method to obtain an accurate depth edge map and

proposed a depth edge based trilateral filter method. Evaluated on the Middlebury

benchmark, the proposed depth edge based trilateral filter method outperforms the

original trilateral filter method and also other local stereo matching methods.

In sum, we proposed accurate and efficient stereo matching methods, which can

be used to obtain an accurate depth map in a fast time. The stereo matching

problem is a basic problem in 3D reconstruction. For example, as presented in

Figure 1.4 in Chapter 1, we can obtain a depth map from two related images, then

we can calculate five depth maps from seven input images. Then this five depth

maps are fused to obtain a high quality 3D model. In this process, the accuracy

and efficiency of calculating the depth map decides the effectiveness of the final 3D

model. Therefore, the proposed methods contribute to the 3D reconstruction field.

7.2 Perspectives for Future Work

We present in this section some perspectives for future research directions.

Firstly, the runtime of the recursive trilateral filter based method can be further

improved by implemented on GPU. Some GPU implementations of recursive filter-

ing have been proposed in literatures [119] [120], these works can be employed on

GPU implementation of the proposed recursive trilateral filter based stereo matching

method.
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Secondly, the stereo pairs tested in this thesis are low resolution, about 375∗450

pixels. However, the image resolution captured by CCD cameras is increasing day by

day. Therefore, stereo matching on high resolution stereo pairs is needed. Normally,

hierarchical pyramid acceleration scheme can be employed to handle this problem.

In future, we will focus on stereo matching on high resolution image pairs.

Finally, the dense stereo matching is the basic of 3D reconstruction. In future,

we will pay more attention on multi-view stereo vision, structure from motion, si-

multaneous localization and mapping, stereo videos etc.
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Appendix A

Weight Combination Strategy

Comparison

In the proposed trilateral filter based method and recursive trilateral filter based

method, we employ a weight combination strategy proposed in literatures [110]

[121] [122] as,

wtf (p, q) = e
−∆cpq

γc e
−∆spq

γs +

√
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (A.1)

This formula could be replaced by other weight combination strategies, for example

wtf (p, q) = e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (A.2)

In fact, the Equation (A.1) is an empirical formula. We compare these two equations

on Middlebury benchmark and the quantitative comparison is presented in Table

A.1. From this comparison, we conclude that both Equation (A.1) and (A.2) can

produce accurate results. We choose Equation (A.1) because it produces even more

accurate result.

Table A.1: Weigh combination strategies comparison.

Equations tuskuba venus teddy cones Avg.

nocc all disc nocc all disc nocc all disc nocc all disc Error

Eq. A.1 1.62 2.14 5.78 0.21 0.50 1.86 5.44 11.2 13.1 2.44 8.18 6.84 4.95

Eq. A.2 1.66 2.19 6.06 0.28 0.57 1.96 5.50 11.2 13.1 2.55 8.36 7.14 5.05





Appendix B

Proof for Recursive Trilateral

Filter

In Chapter 4, we proposed a trilateral filter weight function as,

wtf (p, q) = e
−∆cpq

γc e
−∆spq

γs +

√
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (B.1)

which can be divided into two parts, the first part is the previous bilateral filter

weight function

e
−∆cpq

γc e
−∆spq

γs , (B.2)

and the second part is the modification part, including the proposed boundary

strength term √
e
−∆Epq

γe e
−∆cpq

γc e
−∆spq

γs . (B.3)

The output of the recursive bilateral filter part is proved to be [22]

yi = a0

i∑
k=0

wc(i, k)ci−k1 xk

= a0

i∑
k=0

wc(i, k)ws(i, k)xk

(B.4)

In this appendix, we aims to prove the defined modification part,

yi = a0xi + wc(i, i− 1)we(i, i− 1)c1yi−1, (B.5)
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to be

yi = a0

i∑
k=0

wc(i, k)we(i, k)ci−k1 xk (B.6)

using mathematical induction as in [22].

The initial condition in Equation (B.5) is,

y0 = a0x0, (B.7)

when i = 1, from Equation (B.5), we can obtain

y1 = a0x1 + wc(1, 0)we(1, 0)c1y0,

= a0(x1 + wc(1, 0)we(1, 0)c1x0),

= a0

1∑
k=0

wc(1, k)we(1, k)c1−k1 xk.

(B.8)

Thus, Equation (B.6) is true when i = 1.

Induction: assume that Equation (B.6) for i from 1 up through j are all true.

We need to show that Equation (B.6) is true for i = j + 1.

According to Equation (B.5),

yj+1 = a0xj+1 + wc(j + 1, j)we(j + 1, j)c1yj . (B.9)

Substitute Equation (B.6) into Equation (B.9), we obtain

yj+1 =a0xj+1 + wc(j + 1, j)we(j + 1, j)c1

· (a0
j∑

k=0

wc(j, k)we(j, k)cj−k1 xk)

=a0(xj+1 +

j∑
k=0

wc(j + 1, k)we(j + 1, k)cj−k+1
1 xk)

=a0

j+1∑
k=0

wc(j + 1, k)we(j + 1, k)cj−k+1
1 xk

(B.10)

Because wc(j+1, j)wc(j, k) = wc(j+1, k), wc(j+1, j+1) = 1, we(j+1, j)we(j, k) =
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we(j + 1, k) and we(j + 1, j + 1) = 1.

Thus, Equation (B.6) is true for i = j + 1.
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Appendix C

Publications

During this thesis, 4 papers have been published, including 1 paper in an interna-

tional journal and 3 papers in international conferences. In addition, 1 conference

paper has been submitted for review.

C.1 Accepted Paper in International Journal

1. Dongming Chen, Mohsen Ardabilian, Liming Chen. "A Fast Trilateral Fil-

ter based Adaptive Support Weight Method for Stereo Matching". IEEE

Transactions on Circuits and Systems for Video Technology (T-CSVT). 2015.

C.2 Accepted Papers in International Conferences

1. Dongming Chen, Mohsen Ardabilian, Liming Chen. "A Novel Trilateral

Filter based Adaptive Support Weight Method for Stereo Matching". British

Machine Vision Conference (BMVC), Bristol, UK. 2013. (Oral)

2. Dongming Chen, Mohsen Ardabilian, Xiaofang Wang, Liming Chen. "An

Improved Non-Local Cost Aggregation Method for Stereo Matching based on

Color and Boundary Cue". IEEE International Conference on Multimedia

and Expo (ICME), San Jose, California, USA. 2013.

3. Wei Wang, Lili Chen, Dongming Chen, Shile Li, Kolja Kuhnlenz. "Fast

Object Recognition and 6D Pose Estimation using Viewpoint Oriented Color-

Shape Histogram" . IEEE International Conference on Multimedia and Expo

(ICME), San Jose, California, USA. 2013.
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C.3 Submitted Papers in International Conference

1. Dongming Chen, Mohsen Ardabilian, Liming Chen. "Depth Edge based

Trilateral Filter Method for Stereo Matching". IEEE International Conference

on Image Processing (ICIP) 2015.
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