L'Anatomie de la méthode SIFT
Auteur / Autrice : | Ives Rey Otero |
Direction : | Jean-Michel Morel |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 26/09/2015 |
Etablissement(s) : | Cachan, Ecole normale supérieure |
Ecole(s) doctorale(s) : | École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne) |
Partenaire(s) de recherche : | Laboratoire : Centre de Mathématiques et de Leurs Applications - ENS Cachan |
Jury : | Examinateurs / Examinatrices : Jean-Michel Morel, Coloma Ballester, Pablo Musé, Joachim Weickert, Mauricio Delbracio, Patrick Pérez, Frédéric Sur |
Rapporteur / Rapporteuse : Coloma Ballester, Pablo Musé, Joachim Weickert |
Résumé
Cette thèse est une analyse approfondie de la méthode SIFT, la méthode de comparaison d'images la plus populaire. En proposant un échantillonnage du scale-space Gaussien, elle est aussi la première méthode à mettre en pratique la théorie scale-space et faire usage de ses propriétés d'invariance aux changements d'échelles.SIFT associe à une image un ensemble de descripteurs invariants aux changements d'échelle, invariants à la rotation et à la translation. Les descripteurs de différentes images peuvent être comparés afin de mettre en correspondance les images. Compte tenu de ses nombreuses applications et ses innombrables variantes, étudier un algorithme publié il y a une décennie pourrait surprendre. Il apparaît néanmoins que peu a été fait pour réellement comprendre cet algorithme majeur et établir de façon rigoureuse dans quelle mesure il peut être amélioré pour des applications de haute précision. Cette étude se découpe en quatre parties. Le calcul exact du scale-space Gaussien, qui est au cœur de la méthode SIFT et de la plupart de ses compétiteurs, est l'objet de la première partie.La deuxième partie est une dissection méticuleuse de la longue chaîne de transformations qui constitue la méthode SIFT. Chaque paramètre y est documenté et son influence analysée. Cette dissection est aussi associé à une publication en ligne de l'algorithme. La description détaillée s'accompagne d'un code en C ainsi que d'une plateforme de démonstration permettant l'analyse par le lecteur de l'influence de chaque paramètre. Dans la troisième partie, nous définissons un cadre d'analyse expérimental exact dans le but de vérifier que la méthode SIFT détecte de façon fiable et stable les extrema du scale-space continue à partir de la grille discrète. En découlent des conclusions pratiques sur le bon échantillonnage du scale-space Gaussien ainsi que sur les stratégies de filtrage de points instables. Ce même cadre expérimental est utilisé dans l'analyse de l'influence de perturbations dans l'image (aliasing, bruit, flou). Cette analyse démontre que la marge d'amélioration est réduite pour la méthode SIFT ainsi que pour toutes ses variantes s'appuyant sur le scale-space pour extraire des points d'intérêt. L'analyse démontre qu'un suréchantillonnage du scale-space permet d'améliorer l'extraction d'extrema et que se restreindre aux échelles élevées améliore la robustesse aux perturbations de l'image.La dernière partie porte sur l'évaluation des performances de détecteurs de points. La métrique de performance la plus généralement utilisée est la répétabilité. Nous démontrons que cette métrique souffre pourtant d'un biais et qu'elle favorise les méthodes générant des détections redondantes. Afin d'éliminer ce biais, nous proposons une variante qui prend en considération la répartition spatiale des détections. A l'aide de cette correction nous réévaluons l'état de l'art et montrons que, une fois la redondance des détections prise en compte, la méthode SIFT est meilleure que nombre de ses variantes les plus modernes.