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Abstract

Wireless sensor networks (WSN) are key components of systems of systems (SoS) since
they can be integrated in complex assemblies in order to respond to current societal issues
such as the aging of the population, the optimization of natural resources and the reduction
of carbon footprint. Typically, kinematic sensors can be used to remotely supervise elderly
patient, humidity sensors can be deployed to control field irrigation for a more sustainable
agriculture, and connected vehicles will help to optimize the management of urban traffic
while limiting pollution.

In these contexts, sensor nodes are expected to operate autonomously in unattended area
for long periods of time since it is not always possible to manually replenish the motes
because of their number, the maintenance costs or the inaccessibility of monitored regions.
Indeed, sensors are battery-powered devices with stringent resource limitation, especially
in terms of energy. The depletion of one component may compromise the operation of the
whole network. Therefore, there is a need to develop energy-efficient solutions to increase
the network lifetime.

In this thesis, we propose new strategies for energy conservation in wireless sensor
networks, so that the operational time of these networks can be extended. The work can be
divided into two main focus area, namely general wireless sensor networks, and healthcare-
oriented wearable sensor networks. In the first part of this thesis we provide a comprehensive
survey of the existing energy-efficient mechanisms. Then, we propose two new solutions:
the first one optimizes the displacement of a mobile base station as well as buffer usage and
data routing at sensor nodes; the second one optimizes the deployment of wireless chargers
in the network to satisfy the energy demand of the sensors. The second part of this thesis is
dedicated to healthcare application where wearable sensors are used to remotely supervise a
patient. We begin with a state-of-the-art of the energy-efficient techniques existing in the
literature. We then introduce a new energy-efficient architecture that allows to optimize the
lifetime of both the sensor and the base station. This is a context-aware solution that takes
into consideration heterogeneous devices.



Our results show that the lifetime of the sensor networks can be extended using the
proposed strategies. All the results obtained are supported by numerical experiments and
extensive simulations. For one of them, a testbed is under development.

iv



Résumé

Les Réseaux de capteurs sans fil (RCSF) sont des éléments importants des Systèmes
de systèmes (SoS) car ils peuvent être intégrés à des ensembles complexes pour répondre
aux problématiques sociétales d’aujourd’hui, telles que le vieillissement de la population,
l’optimisation des ressources naturelles ou la réduction de l’empreinte carbone. Typiquement,
des capteurs cinématiques peuvent être utilisés pour la supervision à distance des personnes
âgées, des capteurs d’humidité peuvent servir à contrôler l’irrigation des champs pour une
agriculture raisonnée et les véhicules connectés aideront à optimiser la gestion du trafic
urbain tout en limitant la pollution.

Dans ces contextes, les capteurs sont supposés fonctionner de manière autonome pendant
de longues périodes, puisqu’il n’est pas toujours possible de remplacer les batteries manuelle-
ment (nombre, coût de maintenance, inaccessibilité). En effet, ces appareils sont alimentés
par des batteries, ce qui limite grandement leur durée de vie. L’épuisement d’un ou plusieurs
nœuds peut compromettre le bon fonctionnement du réseau, particulièrement dans le cas
d’applications critiques telles que la supervision de patient à risque ou le control de processus
industriels. Dans cette thèse, nous avons proposé des solutions originales et performantes
pour l’économie d’énergie dans les RCSF. Ces contributions s’organisent autour de deux
grands axes: les réseaux de capteurs génériques et les réseaux de capteurs sans fils dédiés
aux applications santé.

Dans la première partie, nous avons tout d’abord réalisé un état-de-l’art des mécan-
ismes d’économie d’énergie pour les RCSF. Pour cela, nous avons identifié les grandes
familles d’application des RCSF et leurs exigences respectives. Ensuite, nous avons proposé
une nouvelle classification des techniques d’économie d’énergie et nous avons étudié les
compromis qui apparaissent lors du développement de réseaux de capteurs sans fils entre
ces exigences et la nécessité de prolonger la durée de vie du réseau. Nous avons ensuite
proposé deux solutions originales. L’une repose sur une station de base mobile qui se déplace
dans le réseau afin de collecter les données générées par les capteurs. Nous optimisons le
déplacement de cette station de base, ainsi que la façon dont les données sont stockées dans
les capteurs et routées vers le puit mobile. Comparée aux solutions existantes, cette approche
offre un bon compromis entre l’économie d’énergie et la latence. L’autre solution optimise
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le déploiement de chargeurs mobiles, qui une fois dans le réseau permettent de satisfaire
la demande en énergie des nœuds via la transmission d’énergie sans fil sur plusieurs sauts.
Nous montrons ici qu’il existe un compromis entre la demande en énergie des nœuds, la
capacité des chargeurs, et le nombre maximum de sauts à travers lesquels l’énergie peut être
transmise.

Dans la deuxième partie de la thèse, nous nous sommes intéressés plus particulièrement
aux applications des RCSF pour la supervision de patients à distance. Nous avons proposé
une nouvelle classification des architectures économes en énergie qui utilisent des capteurs
sans fils pour superviser l’état d’un patient. Nous avons réalisé un état de l’art des différentes
stratégies mises en œuvre pour prolonger la durée de vie de ces réseaux, et proposer une
comparaison qualitative de ces solutions en termes de consommation d’énergie, de latence
et de précision. Nous avons constaté un manque de prise en compte des architectures
hétérogènes, où des appareils de types et rôles différents présentent des contraintes d’énergie.
C’est pourquoi, dans un second temps, nous avons proposé une nouvelle architecture pour
la supervision de patient à distance à l’aide de capteurs sans fils qui permet de prolonger la
durée de vie des capteurs et de la station de base. En effet, cette solution prend en compte
l’environnement du patient pour favoriser l’utilisation d’une technologie de communication
plus économe en énergie pour les capteurs lorsque cela est possible, tout en permettant au
téléphone mobile du patient qui agit comme la station de base d’éteindre son interface réseau.
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Chapter 1

Introduction

1.1 Problem definition

Recent advances in wireless communications and Micro-Electro-Mechanical systems
have enabled the development of wireless sensor networks (WSN) which are expected to
be one of the most promising technologies in the near future. Wireless sensors are small,
low-cost and battery-operated devices whose sensing capabilities enable them to retrieve
information from their environment. They can be deployed in a large number to detect events
of interest or send periodic reports about their surroundings. This makes them attractive
for a plethora of applications where remote monitoring abilities are required. For example,
kinematic sensors can be used to remotely supervise elderly patient. In agriculture, untethered
motes can be deployed to sense relevant parameters influencing the crop, like temperature,
humidity and luminosity. In these contexts, energy-constrained sensor nodes are expected to
operate autonomously in unattended area for long period of time. Nevertheless, it may be
cost-prohibitive to replace exhausted batteries or even impossible in hostile environment. It
is therefore necessary to develop energy-aware solutions to increase the lifetime of sensor
networks.

The design of energy-efficient wireless sensor networks is, however, a very challenging
issue. On one hand, energy-constrained sensors are resource-limited in terms of memory and
computational capacities, which prevent the use of complex algorithms and makes traditional
protocols of the TCP/IP stack not well suited. On the other hand, unlike other networks, WSN
are designed for specific applications. These applications range from small size healthcare
supervision systems to large scale environment monitoring. Thus, any WSN deployment has
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Chapter 1 - Introduction

to satisfy a set of requirements that differs from one application to another. As a consequence,
energy saving techniques usually trade-off lifetime maximization with other optimization
objectives.

1.2 Contributions

In this thesis, we propose new solutions to improve the energy-efficiency of wireless
sensor networks while taking into consideration applications requirements. Our work can be
divided into two main focus area, namely general wireless sensor networks, and healthcare-
oriented wearable sensor networks.

In the first part of this thesis, we start with a comprehensive review of existing energy-
efficient mechanisms designed for wireless sensor networks. This top-down study surveys
the different WSN application families and their specific requirements, and analyses the
trade-offs between application requirements and lifetime extension that arise when designing
wireless sensor networks. This is a thorough introduction to the energy challenge of WSN.
Then, we present two contributions which can be applied in multi-hop wireless sensor
networks. The first one exploits the fact that one of the possible solutions to save energy
in WSN is to balance the load between nodes using a mobile base station that moves in the
network to collect the data. In this context, we propose a new energy-efficient data collection
scheme, that optimizes the sojourn times of a mobile base station at different locations, as
well as the buffer usage and data routing at sensor nodes. Compared to existing approaches,
our model achieves better lifetime while guaranteeing no data is lost due to buffer overflow.
We also introduce a new distributed algorithm at sensor nodes in order to determine whether
sensors have to send their data or not based on their distance to the base station, and their
buffer occupancy. This technique achieves a desired trade-off between data delivery delays
and energy performance. We also explored another approach which allows to extend network
lifetime, which consists in charging sensor nodes. To this end, in our second contribution,
we propose a new solution for multi-hop wireless charging that optimizes the deployment of
wireless chargers in the network. Once deployed, the chargers can satisfy the energy-demand
of every sensor through multi-hop wireless energy transfer. Our solution effectively reduces
the number of required chargers, and we highlight that there exists a trade-off between the
capacity of the chargers, the energy demand of the network, and the maximum number of
hops along which energy can be sent.

The second part of this thesis is dedicated to energy-efficiency of wearable sensor
networks for healthcare-oriented applications. We first propose a new classification of
energy-efficient approaches designed for human context recognition based on wearable

2



1.3 Organization of the manuscript

sensors for healthcare and wellbeing applications. After a description of the specificities of
human context recognition applications, we review related energy-efficient mechanisms in
details. Several systems and energy saving strategies are qualitatively evaluated in terms
of energy consumption, latency and classification accuracy. Then, motivated by the lack of
solutions that conserve the energy of heterogeneous devices, we develop a new architecture
that allows to save energy at both the sensors and the base station, by privileging a less
consuming communication technology when available. This context-aware solution takes
into account the effective opportunities that arise in the user environment to relieve the user’s
mobile phone from receiving all the data. Our simulation results show that the proposed
approach effectively improves the energy efficiency of the system compared to traditional
architectures where wearable sensors can only communicate with the user mobile phone.
Finally, in order to assess the efficiency of our architecture through a real-world prototype,
we describe the design and implementation of a light-weight wearable sensor network for
remote patient supervision. The proposed testbed is still under development, but early results
demonstrate the feasibility of our approach.

Thus, throughout this thesis we develop new architectures, models and distributed algo-
rithms, and we evaluate their performances through extensive numerical experiments and
simulations. Our results show that the lifetime of the sensor networks can be extended using
the presented strategies. These contributions and their results, summarized in Figure 1.1, are
further developed in the following chapters.

1.3 Organization of the manuscript

The rest of this thesis is organized as follows. In Chapter 2, we provide a thorough
survey on energy-efficient wireless sensor networks with a focus on application-specific
design. Then, in Chapter 3, we describe our energy-efficient data collection scheme with
a mobile base station, and we compare its performance against existing approaches. In
Chapter 4, we present and evaluate our multi-hop wireless charging optimization solution.
Afterwards, in Chapter 5, we review energy-efficient mechanisms for health-related human
context recognition applications making use of wearable sensors. In Chapter 6, we detail our
energy-efficient architecture for wearable sensor networks and we analyze different gateway
selection strategies. In order to assess the efficiency of our approach, in Chapter 7, we
give the details of hardware and software implementation of a wearable sensor architecture
prototype. Finally, in Chapter 8, we conclude this thesis by providing a summary of our
contributions, and discussing prospects and opportunities for the future.

3



Chapter 1 - Introduction

Fig. 1.1 Overview of our contributions.
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Chapter 2

Energy efficiency in wireless sensor networks :
A top-down survey

Wireless sensor networks (WSN) has emerged as a promising technology for a large
number of applications with different needs. However, there are still a few obstacles to
overcome before it finally becomes a mature technology. One of the key obstacles is the
energy constraint suffered by sensor nodes, where batteries are the main source of power
supply. In this context, a host of research work has been conducted in order to propose a wide
range of solutions to the energy-saving problem. This research covers several areas going
from physical layer optimization to network layer solutions. Therefore, it is not easy for
the WSN designer to select the efficient solutions that should be considered in the design of
application-specific WSN architecture. In this chapter, we present a top-down survey of the
trade-offs between application requirements and lifetime extension that arise when designing
wireless sensor networks.

2.1 Introduction

There is abundant literature relating to energy-saving in WSNs as numerous methods
have been proposed in the last few years, and there is still much ongoing research on how to
optimize power usage in battery-limited sensor networks. However, none of the proposed
solutions is universally applicable. For example, if safety applications require fast and timely
responsiveness, this is not the case for other applications, such as in agriculture where the
delay property is not as important. We believe that WSN energy-saving problems should be
tackled by taking into consideration application requirements in a more systematic manner.

5



Chapter 2 - Energy efficiency in WSN: A top-down survey

In [1], Yick et al. provide a general survey of wireless sensor networks. This study
reviews sensor platforms and operating systems, network services issues and communication
protocol challenges, but it does not addresses the energy issues. In [2], Anastasi et al. present
a valuable taxonomy of energy-conservation schemes. However, the authors mainly focus
on duty cycling and data-reduction approaches. There also exist several technique-specific
surveys that concentrate on only one energy-efficient mechanism (like energy-efficient routing
protocols, data aggregation techniques, energy harvesting approaches [3–5]) since every
category of solution often represents a whole research area in itself.

Our aim is to provide WSN designers with a top-down survey that offers a holistic view
of energy-saving solutions while taking into consideration the specific requirements of the
applications. In this chapter, we propose a new classification of energy-efficient mechanisms
which integrates the most recent techniques and up-to-date references. Moreover, we give
particular attention to the design of energy-efficient sensor networks that satisfy application
requirements. Our study is original in that we focus on the trade-offs between meeting
specifications and sustainability that necessarily arise when designing a WSN. We thus
discuss mechanisms that enable a satisfactory trade-off between multiple requirements to be
achieved.

The rest of this chapter is organised as follows. In the next section, we provide some
background on wireless sensor networks. Then, in Section 2.3, we present the main categories
of applications we have identified and their respective requirements. Afterwards, in Section
2.4, we discuss existing standards for low-power wireless sensor networks and show that
current standards cannot respond to all application needs. In Section 2.5, we give an overview
of the major energy-saving mechanisms developed so far and discuss their advantages
and shortcomings regarding the set of identified requirements. In Section 2.6, we review
techniques proposed in the literature to achieve a trade-off between multiple requirements,
including network lifetime maximization. Finally, Section 2.7 concludes this chapter.

2.2 Background

Overview of wireless sensor networks

Wireless sensor networks consist of individual sensor nodes, also called motes, deployed
in a given area that cooperatively collect and carry data to a main entity in order to monitor
physical or environmental conditions. The main entity, also denoted as base station or sink,
can be connected to an infrastructure or to the Internet through a gateway, which allows
remote users to access the collected data. The main advantage of wireless sensor networks
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2.2 Background

lies in the ability to deploy a lot of tiny autonomous motes without any pre-established
infrastructure (see Figure 2.1). After the deployment, motes gather information from the
physical world, and according to a defined communication protocol, they cooperate to deliver
data towards the sink through single-hop or multi-hop communications.

Fig. 2.1 Architecture of a simple WSN.

Fig. 2.2 Architecture of a sensor node.

In Figure 2.2, we present a generic sensor node architecture. A sensor is basically
composed of sensing, data storage, data processing, and communicating components powered
with batteries. More particularly, the radio is used to communicate through wireless links with
other sensors and the base station, while the sensing unit measures external parameters (e.g
temperature, acceleration, noise level). Sensors may be equipped with additional elements
such as a localization system (GPS), power harvesting components, or actuators. The cost of
nodes has to be kept low to minimize the overall cost of the network, and a good trade-off
must be found between the amount of features provided by the sensor and its cost.
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Module Mode Measured current
Radio Receive 22.8 mA
Radio Transmit (0 dB) 21.7 mA
Radio Transmit (-25 dB) 12.1 mA
Radio Idle (-25 dB) 2.4 mA

Microcontroller CPU active 2.33 mA
Microcontroller CPU idle 2.25 mA

Internal flash Erase 1.35 mA
Internal flash Write 0.9 - 1.34 mA
Internal flash Read 0.68 mA

Microcontroller CPU disable 1.80 µA
Table 2.1 Energy consumption profile of a TelosB sensor platform [7].

Sensor energy consumption

The main sources of power consumption at sensor nodes are the communication tasks,
followed by computation and sensing operations. Although different sensing platforms will
have different energy consumption profile, the following remarks generally hold [2]:

• The communication subsystem has an energy consumption much higher than the
computation subsystem. Therefore, communication should be traded for computation.

• The radio energy consumption is of the same order of magnitude in the reception,
transmission, and idle states, while the power consumption drops of at least one order
of magnitude in the sleep state. Therefore, the radio should be turned off whenever
possible.

• Depending on the specific application, the sensing subsystem might be another signif-
icant source of energy consumption, so its power consumption has to be reduced as
well.

The energy consumption profile of a TelosB sensor platform, represented in Table
2.1, verifies these observations. Indeed, the radio module is the most energy-consuming
component, and the energy consumption of the radio when idle is about ten time lower
than when the radio is receiving data. In accordance to this result, Nguyen et al. [6]
measured that a TelosB can last 95 hours with 100% duty cycle (no sleep, radio always on,
no communication), and 200 hours with a 25% duty cycle.
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2.2 Background

Lifetime and energy-efficiency definitions

At that point, we provide definitions of the lifetime and the energy-efficiency of a wireless
sensor network, since these two notions are employed throughout the manuscript

As detailed by Dietrich and Dressler [8], there exist several definitions of the lifetime of
a wireless sensor network, depending on whether we consider the number of nodes that are
alive, the coverage of the region of interest, the connectivity between nodes or the quality of
service of the application. As a consequence, we give a general definition of the lifetime of a
WSN as the time elapsed until a certain condition in the network is verified. Examples
of such conditions are: ”the first/last sensor dies”, ”a given percentage of the sensors cannot
reach the sink”, ”the data delivery ratio / coverage drops below a predefined threshold”.
Therefore, the lifetime of a sensor network is related to a time measure, but sometimes fails
to characterize other dimensions of the network, such as latency or fault tolerance properties.

Energy-efficiency was first defined as the ratio between total amount of data delivered
and total energy consumed [9]. Therefore, as more data is successfully transmitted for a
given amount of energy consumption, the energy efficiency of the solution increases. A
broader definition that covers the previous one has then been proposed: energy-efficiency
can be defined as ”using less energy to provide the same service ” [10]. In this context,
a system that provides a higher event detection accuracy for the same amount of energy
consumption may be considered energy-efficient. As a consequence, energy-efficiency is
usually understood to mean a satisfactory trade-off between multiple optimization criteria
(e.g energy-consumption, latency and data delivery ratio), where the evaluation of the notion
of ’satisfaction’ is left to the discretion of the designer. As we will see in the following
sections, maximizing the network lifetime only makes sense if done in an energy-efficient
manner, that is if the application requirements are taken into account.

WSN have the potential to revolutionize traditional monitoring tasks. Indeed, the avail-
ability of such low-cost sensor nodes enables ubiquitous unattended monitoring, even in
areas difficult to access. However, realizing such wireless sensor networks is a challenging
research and engineering problem because of the diversity of envisioned applications and the
limited resources of the sensor nodes.

9
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2.3 WSN applications and their requirements

In this section, we propose a taxonomy of WSN applications, given in Figure 2.3, and we
summarise in Table 2.2 the specific requirements of each described application.

Fig. 2.3 Taxonomy of WSN applications.

2.3.1 Healthcare

Wireless sensor networks used in healthcare systems have received significant attention
from the research community, and the corresponding applications are surveyed in [11–13].
We identify two types of healthcare-oriented systems, namely, vital status monitoring and
remote healthcare surveillance.

In vital status monitoring applications, patients wear sensors that supervise their vital
parameters in order to identify emergency situations and allow caregivers to respond effec-
tively. Applications include mass-casualty disaster monitoring [14], vital sign monitoring in
hospitals [15], and sudden fall or epilepsy seizure detection [16].

Remote healthcare surveillance concerns care services that are not vital and for which
the constant presence of a healthcare professional is not necessary. For example, as illus-
trated in Figure 2.4, body sensors can be used to gather clinically relevant information for
rehabilitation supervision [17], elderly monitoring [18] or to provide support to a physically
impaired person [19].

WSNs used in healthcare must meet several requirements. In particular, they have to
guarantee hard real-time data delivery delays, confidentiality and access control. They
must also support mobility and provide Quality of Service. Indeed, in the context of early
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Fig. 2.4 Illustration of a Body Sensor Network

and life-critical detection of emergencies such as heart attacks and sudden falls, the real-time
aspect is decisive. In this case, situation identification and decision-making must occur as
quickly as possible to save precious minutes and the person’s life. Therefore, the data delivery
delay between the nodes and the end-user must be short in order to meet hard real-time
requirements. It is also necessary that healthcare networks support node mobility to ensure
the continuity of service when both patients and caregivers move. Additionally, exchanged
healthcare data are sensitive and medical information must be kept private by restricting
access to authorized persons. Thus, achieving confidentiality and access control through
a communication network requires the establishment of mechanisms for data protection
and user authentication. Furthermore, when WSNs are integrated into a global hospital
information system, critical data such as alarms share the bandwidth with less sensitive data
such as room temperature. Therefore, traffic prioritisation is essential to satisfy strict delay
requirements through QoS provisioning.

2.3.2 Industry: manufacturing and Smart Grids

The automation of monitoring and control systems is an important aim for many utility
companies in manufacturing, water treatment, electrical power distribution, and oil and gas
refining. We consider the integration of WSNs in Supervisory Control and Data Acquisition
(SCADA) systems and Smart Grids.

SCADA systems refer to computer systems that monitor and control industrial processes.
Wireless sensors, together with actuators, can be used for factory automation, inventory
management, and detection of liquid/gas leakages. These applications require accurate
supervision of shock, noise and temperature parameters in remote or inaccessible locations
such as tanks, turbine engines or pipelines [20, 21].

The aim of Smart Grids is to monitor the energy supply and consumption process thanks
to an automated and intelligent power-system management. The potential applications of
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sensor networks in smart grids are: sensing the relevant parameters affecting power output
(pressure, humidity, wind orientation, radiation, etc.); remote detection of faulty components;
control of turbines, motors and underground cables; and home energy management [22, 23].

The main requirements of industrial applications are bounded delay, robustness and
security. Indeed, the products handled in industry can be very dangerous and require special
care in storage and handling. For example, in an oil refinery, due to their high volatility and
flammability, products with low boiling points evaporate easily, forming flammable vapors.
Thus, the pressure in a tank or the temperature of a furnace can quickly become critical. This
is why strict delays must be ensured so that the time that elapses between the detection of an
anomaly and the intervention of the operator enables the incident to be resolved. Furthermore,
in many industries, networks are subject to diverse disturbances such as faulty components,
node failure, disconnections and congestion. This is because sensors operate under harsh
conditions, as motes placed in pipelines or tanks experience high pressure and temperatures,
or continuous vibrations. So, industry implementations must ensure data reliability at all
times. Moreover, given the sensitivity of the data, availability, integrity, authenticity and
confidentiality are all security problems that must be taken into consideration when designing
an industrial communication network.

2.3.3 Transportation systems

Various studies related to the integration of WSNs and transportation systems have
already been conducted: they include traffic monitoring and real-time safety systems sharing
bandwidth with commercial services.

In traffic-monitoring systems, wireless sensors are embedded on roadways and intersec-
tions in order to collect traffic data. For example, they can count vehicles in queues to adjust
traffic signals or the number of toll booths and lanes opened [24, 25].

In safety systems, wireless sensors are employed to cope with situations such as emergency
braking, collision avoidance, lane insertion assistance and hazardous driving conditions
warnings (stop-and-go waves, ice on the road, crossing animals) [26, 27].

In addition to passenger-safety applications, commercial on-board applications are being
devised by service providers. They include route guidance to avoid rush-hour jams [28],
smart high-speed tolling, assistance in finding a parking space [29] and automobile journey
statistics collection [30].

Due to the life-critical characteristics of transport applications, the WSNs designed in
this domain must guarantee hard real-time delays, security and QoS while supporting
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mobility. For instance, systems related to driving safety must ensure tight bounded end-
to-end delays in order to guarantee response times. This constitutes the main challenge
of such applications since people’s lives are at stake. For traffic monitoring applications,
timely information is also required in order to ensure efficient real-time management of
vehicle flow. In future Intelligent Transportation Systems (ITSs), safety systems and service
applications will share the same wireless channel which requires tools to integrate service
differentiation. Indeed, critical information and traffic-control should have higher priority
than other service packets. Furthermore, vehicle-to-vehicle and vehicle-to-infrastructure
communications are constrained by car speed. So, mobility is inherent to the automotive
domain as nodes evolve in an extremely dynamic environment. Finally, the life-critical
characteristic of some applications raises security issues in the transport network, which may
be the target of a cyber-attack. Thus, the network must be protected against data corruption
that could give false information about traffic or conditions on the road. By relaxing the
power factor, nodes can support sophisticated encryption algorithms to provide a higher level
of security.

2.3.4 Public safety and Military systems

Wireless sensor networks can help to anticipate and manage unpredictable events, such as
natural disasters or man-made threats. We categorise public safety and military applications
into active intervention and passive supervision.

Active intervention refers to systems with nodes attached to agents for temporary deploy-
ment and is dedicated to the safety of team-oriented activities. While working, each member
carries a sensor so that a remote leader will be able to monitor both the holder’s status and
the environmental parameters. This applies to emergency rescue teams [31], miners [32] and
soldiers [33].

With passive supervision, static sensors are deployed in a large area such as a civil
infrastructure or nuclear site for long-term monitoring. Relevant examples of passive super-
vision applications are surveillance and target tracking [34], emergency navigation [35], fire
detection in a building, structural health monitoring [36, 37] and natural disaster prevention
such as in the case of tsunamis, eruptions or flooding [38].

Due to their critical nature, public safety and military applications are characterised by the
need for short delays, service differentiation and data integrity provisioning. In addition,
active intervention applications must support mobility and passive supervision should ensure
coverage. First, a decisive parameter to take into account when designing a public safety
system is the delivery delay, as in emergency applications, timely alarm reporting is necessary

13



Chapter 2 - Energy efficiency in WSN: A top-down survey

for the system to be reactive. Furthermore, public safety and military systems deal with both
everyday monitoring data and warning data. Thus, anomaly detection alarms should be sent
in packets having high priority over regular reports through an efficient service differentiation
mechanism. Finally, both kinds of public safety applications should guarantee data integrity:
in active intervention, corrupt data could endanger agents by giving false information to
headquarters; in passive supervision, an ill-intentioned person could circumvent a surveillance
system by sending false data. In the case of active intervention, mobility is inherent to the
architecture as wearable sensors are carried by working people. Moreover, from drilling
tunnels to the fire field, active intervention applications are often characterised by their use
in harsh environmental conditions. In these conditions, the network should be resistant to
node failure and poor link quality by means of a fault-tolerant routing scheme. Long-term
infrastructure monitoring requires the deployment of untethered static sensors in order to
supervise the region of interest. Therefore, passive supervision applications may run into
coverage problems when required to entirely supervise a building or a tunnel.

2.3.5 Environment and agriculture

WSNs are particularly well suited to agricultural and open-space monitoring applications
since wired deployment would be expensive and inefficient. A variety of applications have
been developed in precision agriculture, cattle monitoring and environmental monitoring.

In precision agriculture, sensor nodes are scattered throughout a field to monitor relevant
parameters, such as atmospheric temperature, soil moisture, hours of sunshine and the
humidity of the leaves, creating a decision support system. Another purpose of precision
agriculture is resource (water, fertiliser, pesticides) optimization [39], frost protection, disease
development prediction [40].

In cattle monitoring applications, general surveillance of livestock is convenient to keep
watch on cattle health status, to detect disease breakouts, to localise them and to control
end-product quality (meat, milk) [41, 42].

The use of WSNs for diverse environmental monitoring applications has been studied for
coastline erosion [43], air quality monitoring [44], safe drinking water and contamination
control [45].

The main requirements of environmental and agricultural applications are scalability,
coverage and lifetime prolongation. Agricultural fields, grazing land and monitored sites
can reach several tens of hectares, so the number of motes deployed varies from dozens
to thousands. This is why scalability is an important issue when developing protocols to
support a high quantity of nodes and ensure full coverage of the controlled area. Corke et
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al. [46] have conducted several real experiments in natural environments and have shown
that outdoor conditions could be very harsh and impact the feasibility of communication.
Typically, foliage, rain or humidity can lead to the breakdown of inter-node links, resulting
in highly variable and unpredictable communications. Fault tolerant routing schemes must
therefore be set up to ensure area coverage and cope with failure or temporary disconnection.
In most environmental monitoring applications, nodes are static as they are deployed on the
ground in fields, in forests or along the banks of rivers. Nevertheless, mobility must be taken
into account, whether this is desired or not. Unwished-for mote displacement can be caused
by heavy rains, wind, animals or engines. When mobility is intentional, nodes and sinks are
embedded in vehicles [47] or a natural moving bearer such as animals.

2.3.6 Underground and underwater sensor networks

Underground and underwater sensor networks are emerging types of WSNs, which
are used in different categories of applications including environmental monitoring, public
safety and industry. They differ from traditional terrestrial networks in that the sensors
are deployed in special environments that make communications difficult and impact their
ease of deployment. Underground sensor networks consist of sensors that are buried in and
communicate through dense materials like soil or concrete. Such networks can be used for
soil moisture reporting in agriculture [48], infrastructure supervision, intrusion detection [49]
and transport systems [50]. Underwater sensor networks rely on immersed sensors and are
used in a variety of applications such as ocean supervision [51], water quality monitoring
[52], disaster prevention, surveillance [53] and pipeline monitoring.

Underground and underwater sensor networks share common requirements such as
robustness and coverage. The main characteristic of these networks is their lossy channel
due to extreme environmental conditions. Indeed, acoustic communications for underwater
sensors and electromagnetic waves for underground sensors suffer from lower propagation
speed, noise and path loss, which lead to the degradation of the signal [50, 53]. Therefore,
they require the development of specific communication protocols to ensure the application’s
reliability. Coverage is also an issue since it may not be possible to optimally deploy the
nodes due to the ground profile, the costs and the efforts required for excavation. Moreover,
these networks are inherently three-dimensional (which raises additional issues) since the
devices can be deployed at varying depths depending on the phenomenon to supervise.
Besides these requirements, energy is of great importance due to the difficulty of unearthing
a device to replace it or recharge its battery.
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Scalability Coverage RT Delay QoS Security Mobility Robustness

Healthcare Vital status monitoring - - - - + + + + + + + +
Remote surveillance - - - - + + + + + + -

Agriculture and
Environment

Precision agriculture + + + + - - - - - - - - +
Cattle monitoring + + - - - - - - + -
Environment monitoring - - - - + + + + + + -

Public Safety &
Military systems

Active intervention - - - - + + + + + + + + +
Passive supervision - - + + + + + + - - -

Transportation
systems

Traffic control - - - + + + + + + + + -
Safety system - - - + + + + + + + +
Services - - - - - + + + -

Industry SCADA systems - - - + + + + + - - + +
Smart grids + - + + + + + - - + +

- - Very low
- Low
+ High
+ + Very high

Table 2.2 WSN applications requirements.

2.3.7 Discussion

The main WSN requirements that we identified in the different applications are scalability,
coverage, latency, QoS, security, mobility and robustness. In Table 2.2, we summarise the
importance of these requirements for every class of application considered in this section.
In these applications, sensors are expected to operate autonomously for a long period of
time, ranging from weeks to months. However, every application is constrained in terms of
energy due to the scarce battery resources of the sensors, which limits the network lifetime.
Indeed, it may not always be possible to manually replenish the motes because of their
number, the maintenance cost or the inaccessibility of monitored regions. This is the case of
structural health monitoring applications, precision agriculture and environment monitoring,
transportation systems. Furthermore, some applications such as healthcare applications can
tolerate battery replacement, but we believe that the rapid depletion of the battery prevent
their wide adoption. Indeed, efforts are still made to propose energy-efficient solutions for
body area networks to foster the acceptance of these technologies by the patients. This is why
the design of WSNs requires, in both cases, the development of energy-efficient solutions
that meet a specific set of requirements.

In order to achieve energy efficiency, we first present in the next section existing standards
developed for low-power wireless sensor networks.
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2.4 Low-power WSN standards

Wireless sensor network standards have been specifically designed to take into account
the scarce resources of nodes. In what follows we give a brief description of low-power
standards including IEEE 802.15.4, ZigBee, WirelessHART, ISA100.11a, Bluetooth low
energy, IEEE 802.15.6, 6LoWPAN, RPL and MQTT.

IEEE 802.15.4 [54] specifies the physical and MAC layers for low data rate wireless
personal area networks (LR-WPANs). In the beacon-enabled mode, the standard allows
energy to be saved by implementing duty cycling, so that all nodes can periodically go to
sleep. In practice, a coordinator sends beacon packets to synchronise the nodes, and the
superframe structure presented in Figure 2.5 is subdivided into three parts: 1) a contention
access period during which nodes use a slotted CSMA/CA 2) a contention-free period
containing a number of guaranteed time slots (GTS) that can be allocated by the coordinator
to specific nodes and 3) an inactive period during which the end-devices and coordinator can
go to sleep.

ZigBee [55] is a wireless technology developed as an open standard to address the
requirements of low-cost, low-power devices. ZigBee defines the upper layer communication
protocols based on the IEEE 802.15.4 standard. It supports several network topologies
connecting hundreds to thousands of devices.

WirelessHART [56] operates on the IEEE 802.15.4 specification and targets field devices
such as sensors and actuators that are used to monitor plant equipment or processes. The
standard characteristics are integrated security, high reliability and power efficiency. Wire-
lessHART relies on a fixed length TDMA scheme so nodes can go to sleep when it is not
their slot time. Moreover, it specifies a central mesh network where routing is exclusively
determined by the network manager that collects information about every neighbouring node.
It uses this information to create an overall graph of the network and defines the graph routing
protocol. In practice, the standard does not specify how to implement such a graph routing
so some research work already proposes multipath routing protocols for industrial processes
[57, 58]. While these studies take link quality into consideration for the routing decisions, it
may be possible to use the node battery-level information in order to further improve energy
savings.

The ISA100.11a [59] standard relies on the IEEE 802.15.4 specification and is dedicated
to reliable wireless communications for monitoring and control applications in the industry.
ISA100.11a uses deterministic MAC scheduling with variable slot length, allowing nodes to
go into sleep mode when it is not their time slot. Moreover, the standard defines non-router
nodes that do not act as forwarders and experience very low energy depletion. Finally,
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Fig. 2.5 The superframe structure of the IEEE 802.15.4 beacon-enabled mode.

the standard requires each device to report its estimated battery life and associated energy
capacity to the System Manager which allocates communication links based on the reported
energy capabilities. In addition to low power consumption, ISA100.11a also focuses on
scalable security; robustness in the presence of interference; and interoperability with other
wireless devices such as cell phones or devices based on other standards.

Bluetooth Low Energy (BLE) [60] addresses low-cost devices with very low battery
capacity and short-range requirements. It is an extension of the Bluetooth technology that
allows communication between small battery-powered devices (watches, wireless keyboards,
sport sensors) and Bluetooth devices (laptops, cellular phones). In terms of energy efficiency,
Bluetooth low energy is designed so that devices can operate for over a year thanks to an ultra
low-power idle mode. BLE is suitable for a variety of applications in the fields of healthcare,
sports and security.

IEEE 802.15.6 [61] is a recent standard that defines the PHY and MAC layers for
low-power devices operating in the vicinity of, or inside a human body for medical and
non-medical applications. A BAN (Body Area Network) is composed of one hub and up to
64 nodes, organised into one-hop or two-hops star topologies. At the MAC level, the channel
is divided into super-frame structures, which are further divided into different access phases
to support different traffic and channel access modes (contention based and contention free).
There are eight user priorities, ranging from best-effort to emergency event reports. These are
differentiated based on the minimum and maximum contention windows. The standard also
supports 3 levels of security: level 0 - unsecured communications, level 1 - authentication
only, level 2 - authentication and encryption.

6LoWPAN (RFC 4919) [62] stands for IPv6 over Low power Wireless Personal Area
Networks. 6LoWPAN is designed for low-power devices that require Internet communication.
It enables IEEE 802.15.4-based networks to send and receive IPv6 packets so that small
devices are able to communicate directly with other IP devices, locally or via IP networks
(e.g. Ethernet).
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Name Wi-Fi WiMAX WiMedia Bluetooth ZigBee Bluetooth low energy
Standard IEEE 802.11b IEEE 802.16 IEEE 802.15.3 IEEE 802.15.1 IEEE 802.15.4

Applications internet access broadband real-time multimedia cable low-power devices Bluetooth ↔ low-power
web, email, video connections streaming replacement communication device communication

Devices laptop, tablet PC peripheral wireless speaker, printer mobile phone, mouse embedded systems, watch, sport sensor,
console television keyboard, console sensors wireless keyboard

Target lifetime [63] hours - - days - months 6 months - 2 years 1-2 years

Data rates 11 Mbps 30-40 Mbps 11-55 Mbps 1-3 Mbps 20-250 Kbps 1 Mbps

Transmission range 100 m 50 km 10 m 10-50 m 100 m 10 m

Network size 32 - 245 7 65000 -

Success metric Flexibility Long range High data rates Cost Reliability, Cost, Low-power
Speed Convenience Low-power

Table 2.3 Wireless standards characteristics.

Fig. 2.6 MQTT-S architecture for WSN with Pub/Sub communications.

RPL (RFC 6550) [64] is a distance vector Routing Protocol for Low Power and lossy
networks compliant with IPv6, specifically designed to meet the requirements of resource-
constrained nodes. RPL is optimized for many-to-one communications for data collection,
but it also supports one-to-many and one-to-one communications. RPL creates a Directed
Acyclic Graph (DAG) anchored at a border router of a WSN. A node maintains several
parents to construct different routes towards the sink and selects its preferred parent based
on an Objective Function that uses routing metrics. For example, a draft [65] proposes to
select the path that minimizes the sum of Expected Number of Transmissions (ETX) over
traversed links but the design of the Objective Function is still an open research issue. Thus,
it is possible to create a DAG focusing on energy efficiency, as in Kamgueu et al. [66] who
use the node’s remaining energy as an RPL routing metric. RPL offers other features like
fault-tolerance, self-repair mechanisms, and security [67].

MQTT [68] (Message Queuing Telemetry Transport) is a lightweight publish/subscribe
protocol for one-to-many message distribution. Currently undergoing standardisation, MQTT
is envisioned to be the future protocol for the Internet-of-Things to connect devices with low
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bandwidth and power budget over TCP/IP infrastructures. MQTT-S [69] extends MQTT for
Wireless Sensors and Actuators Networks on non-TCP/IP networks. As illustrated in Figure
2.6, publishers produce information and send their data to the broker via a pub message.
Subscribers interested in receiving certain data send a sub message to the broker. If there is a
match between a subscriber’s and a publisher’s topics, the broker transfers the message to the
subscriber. MQTT-S saves energy by supporting multiple gateways to balance the load in the
network. It also supports sleeping clients (subscribers/publishers) and size-limited packets to
be compliant with ZigBee. Moreover, most of the protocol logic is handled in the broker and
the gateway, which makes the device’s implementation lightweight [70]. Although MQTT
is already implemented in various projects [71], there is a lack of evaluation regarding the
energy-efficiency of the protocol.

2.4.1 Discussion

Bluetooth low energy and IEEE 802.15.4-based standards have been specifically devel-
oped for battery-operated devices. They enable energy-saving through duty cycling and
include optional modes that can be disabled for further network lifetime optimization. In
Table 2.3 we compare these two WSN-specific standards with other well-known wireless
standards (Wi-Fi, WiMax, WiMedia, Bluetooth) regarding data rate, transmission range,
scalability and applications.

In terms of applications, existing healthcare platforms often interface with Bluetooth due
to the suitability of this technology for body area networks that demand short communication
ranges and high data rates. However, Bluetooth technology may quickly deplete a nodes’
energy. In this case, BLE or IEEE 802.15.6 may be considered as alternatives. ZigBee
technology is suitable for a large number of applications thanks to its scalability and energy-
efficiency. For example, in smart home automation, ZigBee data rate and radio range are
sufficient for room supervision. Nevertheless, in a more complex monitoring system, both
ambient sensor networks and body sensor networks may be integrated together and further
connected to the Internet via 6LowPan. In large-scale outdoor deployment, the Zigbee
100-meter achievable radio range may quickly become limiting. In this case, we envision
that WiMax-enabled gateways will be able to mesh the topology to connect the network to
the Internet. Thus, the integration of different technologies and standards is necessary to
respond to the needs of emerging and challenging applications such as Smart grids, Intelligent
Transportation Systems and Healthcare Information Systems.

Standardisation is a key issue for the success of WSN markets. Although application-
specific standards are emerging, such as WirelessHART and ISA100.11a for industry, and
IEEE 802.15.6 for body sensor networks, they can still be improved in regard to application
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requirements. For instance, some research studies propose to optimize standard parameters
such as packet size, slot length, contention window length or even introduce alternative
protocols. Moreover, the performance of recent standards (e.g., MQTT, IEEE 802.15.6) need
further investigation, because there is a lack of evaluation concerning these solutions and a
lack of comparisons with well-established protocols. It also appears that current standards
cannot respond to all application needs, notably regarding hard real-time requirements and
security issues. In parallel to ongoing standardisation efforts, many solutions have been
developed which strongly consider energy-saving.

2.5 Energy-saving mechanisms

In this section, we review the major existing approaches proposed to tackle the energy
consumption problem of battery-powered motes. The proposed taxonomy of energy-efficient
mechanisms is summarised in Figure 2.7.

Fig. 2.7 Classification of energy-efficient mechanisms.
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2.5.1 Radio optimization

The radio module is the main component that causes battery depletion of sensor nodes. To
reduce energy dissipation due to wireless communications, researchers have tried to optimize
radio parameters such as coding and modulation schemes, power transmission and antenna
direction.

Modulation optimization aims to find the optimal modulation parameters that result in
the minimum energy consumption of the radio. For instance, energy depletion is caused by
the circuit power consumption and the power consumption of the transmitted signal. For
short distances, circuit consumption is greater than the transmission power while for longer
ranges the signal power becomes dominant. Existing research tries to find a good trade-off
between the constellation size (number of symbols used), the information rate (number of
information bits per symbol), the transmission time, the distance between the nodes and
the noise. Cui et al. [72] showed that the energy consumption required to meet a given Bit
Error Rate (BER) and delay requirement can be minimized by optimizing the transmission
time. Costa and Ochiai [73] studied the energy efficiency of three modulation schemes and
derived from this the modulation type and its optimal parameters that achieve minimum
energy consumption for different distances between nodes.

Cooperative communications schemes have been proposed to improve the quality of
the received signal by exploiting several single-antenna devices which collaborate to create
a virtual multiple-antenna transmitter. The idea is to exploit the fact that data are usually
overheard by neighbouring nodes due to the broadcast nature of the channel. Therefore, by
involving these nodes in the retransmission of data it is possible to create spatial diversity and
combat multi-path fading and shadowing [74]. Jung et al. [75] investigated how cooperative
transmission can be used to extend the communication range and thus balance the duty
cycling of nodes as normal relay sensors can be replaced by other cooperative nodes. Cui et
al. [76] and Jayaweera [77] compared the energy consumption of both SISO (Single Input
Single Output) and virtual MIMO (Multiple Input and Multiple Output) systems and show
that MIMO systems can provide better energy savings and smaller end-to-end delays over
certain transmission range distances, even with the extra overhead energy required for MIMO
training.

Transmission Power Control (TPC) has been investigated to enhance energy efficiency
at the physical layer by adjusting the radio transmission power [78, 79]. In CTCA (Co-
operative Topology Control with Adaptation) [80] the authors propose to regularly adjust
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the transmission power of every node in order to take into consideration the uneven energy
consumption profile of the sensors. Therefore, a node with higher remaining energy may
increase its transmission power, which will potentially enable other nodes to decrease their
transmission power, thus saving energy. However, TPC strategy has an effect not only on
energy but also on delays, link quality, interference and connectivity. Indeed, when trans-
mission power decreases, the risk of interference also decreases. Moreover, fewer nodes
in the neighbourhood are subjected to overhearing. On the contrary, delay is potentially
increased, because more hops will be needed to forward a packet. Finally, transmission
power influences the network topology because the potential connectivity between sensors
will vary, and it also favours the spatial reuse of bandwidth if two communications can occur
without interference.

Directional antennas allow signals to be sent and received in one direction at a time,
which improves transmission range and throughput. Directional antennas may require locali-
sation techniques to be oriented, but multiple communications can occur in close proximity,
resulting in the spatial reuse of bandwidth. In contrast to omnidirectional motes which
transmit in unwanted directions, directional antennas limit overhearing and, for a given range,
require less power. Thus, they can improve network capacity and lifetime while influencing
delay and connectivity [81, 82]. To take advantage of the properties of directional antennas,
new MAC protocols have been designed [83, 84]. However, some problems that are specific
to directional antennas have to be considered: signal interference, antenna adjustments and
deafness problems [85].

Energy-efficient cognitive radio: A cognitive radio (CR) is an intelligent radio that
can dynamically select a communication channel in the wireless spectrum and can adapt its
transmission and reception parameters accordingly. The underlying Software-Defined Radio
(SDR) technology is expected to create fully reconfigurable wireless transceivers which
automatically adapt their communication parameters to network demands, which improves
context-awareness. However, CR requires significant energy consumption compared with
conventional devices due to the increased complexity involved for new and sophisticated
functionalities [86]. In this context, designing energy-efficient cognitive radio sensor net-
works is a key challenge in the intelligent use of battery energy. Recent cognitive radio
studies are interested in the power control of transmitters [87], residual energy-based chan-
nel assignment, and combining network coding and CR. Open research issues include the
development of cross-layer approaches for MAC, routing or clustering protocols that take
advantage of cognitive radio opportunities.

23



Chapter 2 - Energy efficiency in WSN: A top-down survey

2.5.2 Data reduction

Another category of solutions aims to reduce the amount of data to be delivered to the
sink. Two methods can be adopted jointly: the limitation of unneeded samples and the
limitation of sensing tasks because both data transmission and acquisition are costly in terms
of energy.

Aggregation: In data aggregation schemes, nodes along a path towards the sink perform
data fusion to reduce the amount of data forwarded towards it. For example, a node can
retransmit only the average or the minimum of the received data. Moreover, data aggregation
may reduce the latency since it reduces traffic, thus improving delays. However, data
aggregation techniques may reduce the accuracy of the collected data. Indeed, depending on
the aggregation function, original data may not be recovered by the sink, thus information
precision can be lost. Data aggregation techniques dedicated to wireless sensor networks are
surveyed in detail by Rajagopalan and Varshney in [3] and by Fasolo et al. in [88].

Adaptive sampling: The sensing task can be energy-consuming and may generate un-
needed samples which affects communication resources and processing costs. Adaptive
sampling techniques adjust the sampling rate at each sensor while ensuring that application
needs are met in terms of coverage or information precision. For example, in a supervision
application, low-power acoustic detectors can be used to detect an intrusion. Then, when
an event is reported, power-hungry cameras can be switched on to obtain finer grained
information [2]. Spatial correlation can be used to decrease the sampling rate in regions
where the variations in the data sensed is low. In human activity recognition applications,
Yan et al. [89] propose to adjust the acquisition frequency to the user activity because it may
not be necessary to sample at the same rate when the user is sitting or running.

Network coding (NC) is used to reduce the traffic in broadcast scenarios by sending
a linear combination of several packets instead of a copy of each packet. To illustrate net-
work coding, Figure 2.8 shows a five-node topology in which node 1 must broadcast two
items of data, a and b. If nodes simply store and forward the packets they receive, this
will generate six packet transmissions (2 for each node 1, 2 and 3 respectively). With the
NC approach, nodes 2 and 3 can transmit a linear combination of data items a and b, so
they will have to send only one packet. Nodes 4 and 5 can decode the packet by solving
linear equations. Therefore, two packets are saved in total in the example. Network coding
exploits the trade-off between computation and communication since communications are
slow compared to computations and more power-hungry. Wang et al. [90] combine network
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Fig. 2.8 An example of network coding.

coding and Connected Dominating Sets to further reduce energy consumption in broadcast
scenarios. AdapCode [91] is a data dissemination protocol where a node sends one message
for every N messages received, saving a fraction of the bandwidth up to (N-1)/N compared to
naive flooding. The receiver node can recover the original packets by Gaussian elimination
after receiving N coded packets successfully. Moreover, AdapCode improves reliability
by adapting N to the node density, because when N increases and the density decreases, it
becomes harder to recover enough packets to decode the data. Reliability is further enhanced
by allowing nodes receiving less than N packets to send a negative acknowledgement to
retrieve missing data.

Data compression encodes information in such a way that the number of bits needed to
represent the initial message is reduced. It is energy-efficient because it reduces transmission
times as the packet size is smaller. However, existing compression algorithms are not appli-
cable to sensor nodes because of their resource limitations. Therefore, specific techniques
have been developed to adapt to the computational and power capabilities of wireless motes.
Kimura et al. [92] have surveyed compression algorithms specifically designed for WSNs.
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2.5.3 Sleep/wakeup schemes

Idle states are major sources of energy consumption at the radio component. Sleep/wakeup
schemes aim to adapt node activity to save energy by putting the radio in sleep mode.

Duty cycling schemes schedule the node radio state depending on network activity in
order to minimize idle listening and favour the sleep mode. These schemes are usually
divided into three categories: on-demand, asynchronous and scheduled rendezvous [2]. A
summary of the properties of each category is given in Table 2.4. Duty cycle based protocols
are certainly the most energy-efficient but they suffer from sleep latency because a node must
wait for the receiver to be awake. Moreover, in some cases it is not possible for a node to
broadcast information to all of its neighbours because they are not active simultaneously.
Finally, fixing parameters like listen and sleep periods, preamble length and slot time is a
tricky issue because it influences network performance. For example, a low duty cycle saves
a large amount of energy but can drastically increase communication delays. Thus, protocol
parameters can be specified prior to deployment for simplicity, although this leads to a lack
of flexibility, or they can be set up dynamically for improved adaptation to traffic conditions.
Concerning duty cycling, some work has been done to adapt the active period of nodes online
in order to optimize power consumption in function of the traffic load, buffer overflows, delay
requirements or harvested energy [93, 94]. For more details about duty cycling, information
can be found in [2] and [95].

Type On-demand Schedule rendez-vous Asynchronous

Principle
Wake up a node only when an-
other wants to communicate with
it.

Nodes wakeup at the same time
as its neighbours according to a
wakeup schedule. Then they go to
sleep until their next rendez-vous.

Each node wakes up indepen-
dently but its active period must
overlap with its neighbours.

Broadcast No Yes No
Synchronisation No Yes No

Energy-
efficiency

Nodes remain active only for the
minimum time required.

More collisions because nodes
wakeup at the same time after an
inactive period.

Nodes need to wake up more fre-
quently. Either the sender sends
long preamble or the receiver re-
mains awake longer.

Examples of
applications

Even-driven application with low
duty cycle.

Data-gathering application with
possibility of aggregation.

Mobile applications when the
neighbourhood is unpredictable.

Illustration

Table 2.4 Duty cycle properties.
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Passive wake-up radios: While duty cycling wastes energy due to unnecessary wake-
ups, low-power radios are used to awake a node only when it needs to receive or transmit
packets while a power-hungry radio is used for data transmission. Ba et al. [96] consider a
network composed of passive RFID wake-up radios called WISP-Motes and RFID readers.
A passive RFID wake-up radio uses the energy spread by the reader transmitter to trigger
an interruption that wakes up the node. In practice all sensors cannot be equipped with
RFID readers since they have a high power consumption. This is a major shortcoming
because, coupled with the short operational range of RFID passive devices, it restricts their
use to single-hop scenarios. Simulations have shown that WISP-Motes can save a significant
amount of energy at the expense of extra hardware and increased latency in data delivery.
The authors demonstrated their benefits in the case of a sparse delay-tolerant network with
mobile elements equipped with RFID readers.

Topology control: When sensors are redundantly deployed in order to ensure good
space coverage, it is possible to deactivate some nodes while maintaining network operations
and connectivity. Topology control protocols exploit redundancy to dynamically adapt the
network topology based on the application’s needs in order to minimize the number of active
nodes. Indeed, nodes that are not necessary for ensuring connectivity or coverage can be
turned off in order to prolong the network lifetime, as in Figure 2.9. Misra et al. [97] propose a
solution capable of maintaining network coverage while minimizing the energy consumption
of the network by activating only a subset of nodes, with the minimum overlap area. In
a recent work, Karasabun et al. [98] consider the problem of selecting a subset of active
connected sensors for correlated data gathering. This is very useful in some applications
like environmental monitoring, when the sensed data are location-dependent, since the data
of inactive nodes can be inferred from those of active nodes due to the spatial correlation.
Bachir et al. [99] propose a distributed temperature-aware algorithm that dynamically allows
some nodes to go to sleep mode when the temperature is low (because links quality improve)
while guaranteeing the coverage and connectivity.

Fig. 2.9 Example of a topology control method applied to a network. To ensure the field
coverage, a sensor must remain activated in each square area. The other nodes are deactivated.
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2.5.4 Energy-efficient routing

Routing is an additional burden that can seriously drain energy reserves. In particular, in
multi-hop schemes, nodes closer to the sink are stressed because they have to route more
packets. Therefore, their battery depletes faster. In what follows, we discuss the general
energy-saving mechanisms of different routing paradigms. For an extensive review of energy-
aware routing protocols, survey articles can be found in [4, 100, 101].

Cluster architectures organise the network into clusters, where each cluster is managed
by a selected node known as the cluster head (CH). The cluster head is responsible for
coordinating the members’ activities and communicating with other CHs or the base station.
Cluster techniques have been proposed to enhance energy efficiency because they help to
limit energy consumption via different means: i) they reduce the communication range inside
the cluster which requires less transmission power, ii) they limit the number of transmissions
thanks to fusion performed by the CH, iii) they reduce energy-intensive operations such as
coordination and aggregation to the cluster head, iv) they enable to power-off some nodes
inside the cluster while the CH takes forwarding responsibilities and v) they balance energy
consumption among nodes via CH rotation. In addition to energy-efficiency, cluster architec-
tures also improve network scalability by maintaining a hierarchy in the network [102, 103].

Energy as a routing metric: Another solution to extend the lifetime of sensor networks
is to consider energy as a metric in the setup path phase. By doing so, routing algorithms do
not only focus on the shortest paths but can select the next hop based on its residual energy.
Recently, Liu et al. [104] introduced two new energy-aware cost functions. The Exponential
and Sine Cost Function based Route (ESCFR) function can map a small change in remaining
nodal energy to a large change in the cost function value. By giving preference to sensors
with higher remaining energy during route selection, the function enforces energy balance.
The Double Cost Function based Route (DCFR) protocol considers the energy consumption
rate of nodes in addition to their remaining energy. The rationale behind this is that nodes in
hotspots have high energy consumption rates. Thus, the use of this function further improves
the energy-balancing performance of the routing protocol, even in networks with obstacles.

Multipath routing: While single-path routing protocols are generally simpler than mul-
tipath routing protocols, they can rapidly drain the energy of nodes on the selected path. In
contrast, multipath routing enables energy to be balanced among nodes by alternating for-
warding nodes. As an example, the EEMRP (Energy-Efficient Multipath Routing Protocol)
[105] discovers multiple node-disjoint paths using a cost function depending on the energy
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levels and hop distances of the nodes and allocates the traffic rate to each selected path. The
EECA (Energy-Efficient and Collision Aware) protocol [106] constructs two node-disjoint
and collision-free routes between a source and a sink. Multipath routing protocols also
enhance network reliability by providing multiple routes, which enables the network to
recover faster from a failure, whereas in single path schemes, when a node runs out of power,
a new route must be recomputed. The interested reader can consult [107] for a recent survey
of multipath routing protocols for WSNs.

Relay node placement: The premature depletion of nodes in a given region can partition
the network or create energy holes. Sometimes, this situation can be avoided thanks to the
optimal placement of nodes through even distribution or by adding a few relay nodes with
enhanced capabilities. This helps to improve energy balance between nodes, avoid sensor
hot-spots and ensure coverage and k-connectivity [108]. Several works have focused on
finding the minimum number of relay nodes or placing them optimally to prolong the network
lifetime [109, 110]. For example, Dandekar and Deshmukh [111] optimize the placement of
static sinks to shorten the average hop distance of every node to its nearest sink.

Sink mobility:In WSN architectures that use a static base station, sensors located close
to the base station deplete their battery faster than other sensor nodes, leading to premature
disconnection of the network. This is due to the fact that all traffic is forwarded towards
the sink which increases the workload of the nodes closer to the sink. To increase network
lifetime, it is possible to balance the load between nodes using a mobile base station which
moves around the network to collect node information. Sink mobility also improves connec-
tivity in sparse architectures and enhances reliability because communication occurs in a
single-hop fashion. Thus, it reduces contention, collisions and message loss [2, 112]. When
controllable, this mobile displacement can be studied to prevent high latency, buffer overflow
and energy depletion [113, 114].

2.5.5 Charging

Several recent research studies address energy harvesting and wireless charging tech-
niques. Both are promising solutions which aim to recharge sensor batteries without human
intervention.

Energy harvesting: New technologies have been developed to enable sensors to harvest
energy from their surrounding environment such as solar, wind and kinetic energy [5]. Com-
pared to traditional sensors, rechargeable motes can operate continuously and, theoretically,
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for an unlimited length of time. They convert ambient energy to electrical energy and then
either consume it directly or store it for later use. Energy harvesting architectures often
require energy prediction schemes in order to efficiently manage the available power. Indeed,
sensors require an estimation of energy evolution to adjust their behaviour dynamically and
last until the next recharge cycle. Hence, they can optimize decisive parameters such as
sampling rate, transmit power and duty cycling to adapt their power consumption according
to the periodicity and magnitude of the harvestable source. It is important to note that nodes
remain energy-limited between two harvesting opportunities, so they still need to implement
energy-saving mechanisms. For example, motes using solar panels to replenish their batteries
can operate intensively during daytime. At night, nodes may enter a conservative mode to use
the stored energy. Furthermore, nodes may have an uneven residual energy distribution due to
the difference in the quantity of energy collected, and this has to be taken into account when
designing protocols [115]. For example, nodes with low residual energy may be assigned
higher sleep periods and lower transmission ranges, while those with high residual energy
may be preferred when selecting a routing path. Another open perspective is the development
of protocols that consider the degradation of the battery over time (leakage, storage loss)
[116] which will influence network performance.

Wireless charging: Recent breakthroughs in wireless power transfer are expected to
increase the sustainability of WSNs and make them perpetually operational, since these
techniques can be used to transmit power between devices without the need of any contact
between the transmitter and the receiver. Wireless charging in WSNs can be achieved in two
ways: electromagnetic (EM) radiation and magnetic resonant coupling. Xie et al. [117] show
that omni-directional EM radiation technology is applicable to a WSN with ultra-low power
requirement and low sensing activities (like temperature, light, moisture). This is because
EM waves suffer from rapid drop of power efficiency over distance, and active radiation
technology may pose safety concerns to humans. In contrast, magnetic resonant coupling
appears to be the most promising technique to address energy needs of WSNs thanks to an
higher efficiency within several-meter range.

The applications of wireless energy transfer in WSNs are numerous. It has already
been applied to power medical sensors and implantable devices [118], to replenish sensors
embedded in concrete in a wireless manner [119] and to power a ground sensor from a
UAV [120]. The emergence of wireless power charging technology should allow the energy
constraint to be overcome, as it is now possible to replenish the network elements in a more
controllable manner. In this way, some researchers have already investigated the use of
mobile chargers that directly deliver power to deployed nodes [121–124]. A new challenge
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raised by wireless charging technologies is energy cooperation, since nodes may now be able
to share energy between neighbors. So, in future wireless networks, nodes are envisioned to
be capable of harvesting energy from the environment and transferring energy to other nodes,
rendering the network self-sustaining [125]. In order to do this, recent studies demonstrate
the feasibility of multi-hop energy transfer [126, 127], which open new perspectives for the
design of wireless charging protocols and energy cooperative systems.

2.5.6 Discussion

It is clear that many efforts have been made to enhance the lifetime of WSNs through
a variety of energy-efficient mechanisms. It also appears that energy efficiency and other
applications requirements are strongly dependent, so that various performance metrics have
to be optimized jointly. Indeed, energy-efficient routing protocols and sleep/wakeup schemes
directly influence network latency. Similarly, radio optimization trades off signal quality for
battery conservation, and data reduction approaches can affect the accuracy of the collected
information. Additionally, if sensor recharging techniques are promising, energy-saving
mechanisms remain essential. In Table 2.5, we summarise the different energy-saving
mechanisms and the WSN requirements they directly influence. For example, we can see
that energy-efficient routing solutions can improve the robustness by using multipath routing
protocols that provide alternative paths in case of a node failure.

Furthermore, in Table 2.6, we link Tables 2.2 (which represents the applications re-
quirements) and Table 2.5 (which represents the interdependence between energy-efficient
mechanisms and other requirements) in order to show how some energy-efficient techniques
can be used in specific applications to jointly optimize multiple criteria. Here is an example
to explain how to read Table 2.6: in agricultural applications, sleep/wakeup schemes can
influence the coverage by using topology control mechanisms. The justification of these
statements can be found in Table 2.5, and more generally in the discussions in Section 2.5.

Given the interdependence between the different design goals, it is thus necessary to
develop solutions that can achieve a satisfactory trade-off between multiple requirements.
For this reason, in the next section we will review how research attempts to satisfy multiple
objectives including network lifetime maximization.
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Energy-efficient mechanisms Impacted Justification
requirements

Data reduction
• Data reduction approaches can improve the latency by reduc-

ing the amount of packets to be transmitted, decreasing the
waiting time in queues.

• These methods can improve the QoS by assigning higher pri-
ority to certain class of data when performing the aggrega-
tion function or when sampling the parameters.

• The techniques exhibit good scalability properties by reduc-
ing the traffic load.

aggregation, compression delay, Qos,
adaptive sampling scalability

Sleep/wakeup
schemes

• Adaptive duty-cycling schemes can adapt the sleep period to
the network conditions to improve context-awareness.

• Topology control can be used to enhance the network cover-
age by characterising how the sensing field is monitored.

• TDMA based MAC protocols can achieve good delay under
high traffic.

• TDMA/CSMA MAC protocols can enhance the QoS by pro-
viding guaranteed time slots for high rate periodic data and
contention based periods for aperiodic low rate traffic.

adaptive duty-cycling robustness

topology control coverage

TDMA based MAC protocol delay

hybrid TDMA/CSMA MAC protocol QoS

Radio
optimization

• Transmission power control and directional antennas tech-
niques affect the coverage by adjusting the communication
range (and direction), and thus the node connectivity.

• Cognitive radio and cooperative communications impact the
quality of the signal through smart channel selection and col-
laborative re-transmission.

transmission power control coverage

directional antenna coverage, robustness

cooperative communications robustnessenergy-efficient cognitive radio

Energy-efficient
routing

• Cluster architectures improve scalability by maintaining a
hierarchy in the network.

• Multipath routing protocols enhance robustness by provid-
ing alternative routing paths in case of node failure.

• Relay node placement strategies can control the connectivity
between nodes and the network coverage.

• Sink mobility can improve the scalability by connecting
sparse networks.

cluster architecture scalability

multipath routing robustness

relay node placement coverage

sink mobility mobility, scalability

Table 2.5 Interdependence between energy-efficient mechanisms and applications require-
ments.
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Healthcare Agriculture and Industry Public Safety Transportation
Environment Military systems systems

Data QoS scalability Qos, scalability
reduction with compression, with aggregation with aggregation, compression, adaptive sampling

adaptive sampling
Sleep/wakeup delay coverage QoS, delay robustness delay

schemes with TDMA with topology control with hybrid
TDMA/CSMA

with adaptive
duty-cycling

with TDMA

coverage coverage
Energy-
efficient

QoS with relay node robustness with relay node

routing with star topology placement with multipath routing placement
1-hop

communications
scalability scalability scalability

with sink mobility with cluster architecture with cluster
architecture

Radio coverage robustness
optimization robustness with transmission with cognitive

radio,
coverage, robustness

with cognitive radio power control cooperative with directionnal antennas
communications

Sources body motion seismic vibration mechanical vibration solar energy
of energy body heat solar energy acoustic noise acoustic noise

harvesting

Table 2.6 Applications and energy-efficient mechanisms.
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2.6 Energy efficiency and requirements trade-offs

In this section, we present the different techniques explored in the literature to achieve
trade-offs between multiple objectives in wireless sensor networks, including energy saving.
We have classified these solutions into three categories: Multi-metric protocols, Cross-layer
approaches and Multi-objective optimization.

2.6.1 Multimetric protocols

As discussed in Section 2.3, several applications require the optimization of multiple
parameters, like delay and security, while reducing energy consumption. Multi-metric
protocols use various network measurements to satisfy multiple application needs. For
example, recent application-specific routing protocols have proposed to combine energy
efficiency with QoS requirements [128–130] or security concerns [131]. These research
works consider the energy reserves of nodes along with video distortion, packet error rate or
node reputation. However, this kind of multi-metric protocols raises new challenges. The
protocols usually rely on a weight function of various metrics and the weight adjustments
are often made following a trial-and-error methodology. Moreover, multimetric protocols
require the definition of comprehensive metrics and their maintenance in each node which
induces supplementary control message exchange. For instance, the quality of a link can
only be estimated statically through RSSI (Received Signal Strength Indication), LQI (Link
Quality Indicator) or Packet Rate Reception indicators and varies over time. Thus, these
techniques suffer from extra overheads, but on the other hand they enable adaptability to
network condition changes to be improved because node decisions are based on metrics
whose evolution reflects the network status. Below we present some multi-metric protocols
with energy-efficient considerations.

In ATSR (Ambient Trust Sensor Routing) [132] the routing decisions are made locally
based on a weight function which takes into account the residual energy of neighbouring
nodes, location and trust. The trust evaluation of a neighbour uses seven security metrics
such as node reputation, authentication and message integrity in order to detect malicious
nodes. The protocol requires additional control messages to evaluate the energy of the
neighbouring nodes, and trust levels and weights have to be adjusted to trade off security
and energy. The enhanced real-time routing protocol with load distribution (ERTLD) [133]
is a real-time routing protocol for mobile wireless sensor networks which makes optimal
forwarding decisions based on RSSI, remaining power, and packet delay over one hop.
ERTLD can deliver packets within their end-to-end deadlines while improving the flexibility
as it can avoid the problem of routing holes. Moreover, it has a higher delivery ratio and
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consumes less energy than state-of-the-art solutions. Kandris et al. [128] have proposed a
hierarchical routing protocol called PEMuR (Power Efficient Multimedia Routing) which is
devoted to video routing over a stationary WMSN while satisfying both energy efficiency
and QoS requirements. In this solution, the CH selects the path to the base station (BS)
whose remaining energy after transmission will be the highest among all of the possible
paths. If there is not enough available bandwidth, a CH can choose to drop less significant
packets according to their impact on the overall video distortion. PEMuR is well-suited
to surveillance applications, traffic control and battlefield monitoring. However, cluster
formation is a centralised procedure thus it creates additional overheads: each node sends
information about its remaining energy and location to the BS. InRout [130] addresses route
selection for industrial wireless sensor networks to provide high reliability while considering
the limited resources of sensor nodes. The solution uses Q-learning to select the best possible
route online, based on current network conditions and application settings. A node will
choose the route that maximizes its reward with regard to Packet Error Rate (PER) and
energy.

2.6.2 Cross Layer approaches

Much research has been conducted to tackle energy consumption at all layers, especially
at the network, MAC and physical layers. It is expected that an integrated cross-layer design
can significantly improve energy efficiency as well as adaptability to dynamic environments.
Indeed, cross-layer solutions exploit interactions between different layers to optimize network
performances, as surveyed in [134] and [135]. Sensor requirements (QoS, routing, lifetime,
security, etc.) are closely linked and require a comprehensive study of existing trade-
offs. Cross-layer solutions enable the problem’s interdependence to be tackled. As a
concrete example, it is possible to monitor the battery level at the physical layer and use this
information at the MAC layer to fairly assign communication slots to the nodes. Similarly, it is
possible to consider the graph of interference when routing data to optimize the transmission
delay. Topology changes are likely to occur in WSNs and may benefit from a cross-layer
approach. For instance, after node addition or removal, the neighbourhood is modified which
influences network density and interference at the physical layer. Thus, it may be necessary
to reallocate the slots or to change the contention window accordingly at the MAC layer
while creating different opportunities for path selection at the routing layer.

Regarding energy efficiency, practices that are generally adopted at each layer to save
energy such as cluster formation, sleep/active scheduling and power control, are jointly
exploited in cross-layer solutions. For example, Gao et al. [136] took advantage of coop-
erative communication, hierarchical architectures and data aggregation to enhance energy
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balance among nodes. Chang et al. [137] combined node placement, topology control and
MAC scheduling to better balance energy consumption. Transmission power control and
sleep/wakeup scheduling are exploited jointly by Liu et al. [138].

Regarding the optimization of competing metrics, [139] address joint routing, MAC and
physical layer protocols for power allocation in cooperative communication sensor networks
under a specified packet-error-rate (PER). Cuomo et al. [140] propose an energy efficient
algorithm for PAN coordinator election in IEEE 802.15.4-based sensor networks. They
combine the network formation procedure defined at the MAC layer by the standard with a
topology reconfiguration algorithm operating at the network layer. By minimizing the height
of the cluster-tree, their algorithm can reduce the delay and extend the network lifetime.
Almalkawi et al. [141] propose a cross-layer design between the routing and MAC layers.
Their cluster-based routing protocol balances the load between nodes by constructing several
paths based on signal strength and hop counts. In the TDMA-based MAC protocol, the
cluster head adaptively assigns slots to active nodes based on the traffic type. Their solution
reduces energy consumption and delay, and achieves high throughput and packet delivery
ratios by selecting paths with better link quality and by avoiding collisions and interference.

2.6.3 Multi-objective optimization

Multi-objective optimization aims at optimizing multiple objective functions simulta-
neously. Nevertheless, for non-trivial multi-objective optimization problems (MOPs), no
single solution exists that simultaneously optimizes each objective function. In this case,
the objective functions are said to be conflicting, and there are a (possibly infinite) number
of Pareto-optimal solutions. In MOPs it is preferable to obtain a diverse set of candidate
solutions that correspond to different trade-off points between the extreme solutions. To
achieve multi-objective optimization in wireless sensor networks, several solutions exploit
evolutionary algorithm (EA) principles or game theoretic approaches.

The Evolutionary algorithm approach uses mechanisms inspired by biological evolution,
such as survival of the fittest, reproduction, mutation, selection, competition and symbiosis.
Candidate solutions represent individuals in a population. Each individual possesses a set
of distinct characteristics and the fitness function determines the fitness of each individual.
Generation after generation, the best-fit individuals are selected for reproduction to give
new ones (called offspring). Offspring can be mutated and are then evaluated. The fittest
individuals are selected to go into the next generation, and the rest are eliminated. Xue
et al. [142] propose a multi-objective differential evolution (MODE) algorithm that pro-
duces multiple candidate routes that represent different possible trade-offs between energy
consumption and communication latency. In [143], Konstandinidis et al. develop a multi-
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objective decomposition-based algorithm called DPAP that gives the location and transmit
power of each node so that the coverage and the lifetime are simultaneously optimized. In
[144], the author applies an evolutionary Multi-Objective Crowding Algorithm (EMOCA) to
solve the sensor placement problem in a WSN target detection application. The aim is to
maximize the probability of target detection, while minimizing the total energy dissipated in
the network and minimizing the total number of sensors deployed.

Game theoretic approaches have been successfully applied for a variety of applications in
WSNs, as surveyed in [145] and [146]. Game theory provides the designer with a useful tool
to model the competitive and distributed nature of sensor networks. The solutions exploit
rational interactions between nodes or entities, where incentives (such as token or reputation)
are used to motivate the players to cooperate instead of acting selfishly (e.g. not relaying data
to conserve energy). Felegyhazi et al. [147] foster packet forwarding cooperation between
sensors that belong to different authorities. The authority gains a payoff that corresponds to
the difference between the benefit of data successfully received by the sink and the energy
costs experimented by its sensors for relaying both its own and opponents’ packets. Their
results show that cooperation through mutual service provisioning is beneficial, particularly
for sparse networks or hostile environments where the sinks are shared between authorities.
In [148], Zeydan et al. introduce the CAR (Correlation-aware routing) solution to construct
data gathering routes aimed at minimizing the energy per symbol by exploiting aggregation
in correlated data. Every route is associated with a cost that reflects its energy consumption,
interference, and aggregation rate. At each iteration, every node investigates the utility
associated with all possible paths and then selects the best response that maximizes the
utility.

There are many studies that deal with multi-objective optimization, but their practical
implementation could consume a lot of resources, which may not be suitable for sensor net-
works. Indeed, solutions that require heavy computational or storage capabilities are suitable
for centralised computations carried out by a base station. On the other hand, solutions that
require less computations and storage are convenient for distributed computations carried
out at each node [149]. Thus, when considering MOO solutions, it should be investigated
whether or not they are applicable to real WSNs since these approaches may be hard to
compute on sensor nodes. Typically, the major weakness of the evolutionary approach is that
the optimization process is performed in a central server and requires global knowledge of
the network at each node or at the base station. It can lead to scalability issues as the network
size increases.
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2.6.4 Discussion

In this section, we provide a classification of solutions proposed in the literature to satisfy
multiple objectives. We can distinguish the aforementioned techniques based on the flexibility
of the obtained trade-off over time. By flexibility we mean that the trade-off may change
over the time depending on the network conditions. For instance, multi-metric protocols
usually specify a desired trade-off between the requirements at the conception phase when
setting the parameters. Preference is given to a requirement by the designer. For this reason,
even if the requirements are highly dependent, the trade-off is decided once and for all. In
contrast, MOO solutions explore a variety of candidate solutions at run-time that represent
different trade-off points of the design space. Generation after generation, behaviour policy
evolves and is adjusted to the network dynamics. In-between, cross-layer approaches are
expected to improve network performances by exploiting the interactions between layers.
The downside is the complexity of the method that necessitates a good understanding of the
interplay of various variables.

2.7 Conclusion

In the last decade, we have witnessed a proliferation of potential application domains
of wireless sensor networks. These applications include, but are not limited to, life-critical
healthcare supervision, large-scale precision agriculture, security-oriented industrial process
monitoring and nation-wide smart grid systems. In this chapter, we surveyed the recent
advances in the development of energy-efficient solutions for WSNs while taking into con-
sideration the application requirements. We first categorized the different WSN applications
and we identified their specific requirements. Then we introduced a new taxonomy of energy
conservation schemes and we provided the reader with a comprehensive analysis of how
these techniques can affect performance of applications. We finally reviewed some existing
methods that allow trade-offs between multiple requirements to be achieved for efficient and
sustainable sensor networks.
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Chapter 3

WSN lifetime optimization through controlled
sink mobility and packet buffering

It has been demonstrated that the use of a mobile sink can significantly increase the
network lifetime by balancing the communication load among nodes. However, in existing
solutions that use a mobile sink to reduce energy consumption of WSN, nodes either forward
their data through multihop towards the sink which induces energy consumption due to
relaying process, or the nodes store the data until the sink comes at their vicinity, which
usually requires an infinite buffer capacity or induces buffer overflow if the buffer is of fixed
size. In this chapter, we propose a new approach in which nodes send their data through
multihop path of reduced length by offering nodes the possibility to buffer data while waiting
the sink coming closer (not necessarily at node range), which exempts more sensors from
relaying these data. Based on this strategy, we first propose a model that optimizes the base
station displacement, the routing and the memory use, which allows to save energy while
ensuring no data is lost due to buffer overflow. We then introduce a distributed algorithm for
data collection that achieves a good trade-off between energy consumption and latency.

3.1 Introduction

In wireless sensor networks using a unique static base station, sensor nodes located close
to the base station deplete their battery faster than other sensor nodes, leading to an early
disconnection of the network. This is due to the fact that all traffic is forwarded towards the
base station (or sink) which induces a workload of few nodes closer to the sink. To increase
the network lifetime, one of the efficient solutions is to balance the load among nodes using
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a mobile base station which moves in the network to collect nodes information. This kind
of operation can be envisioned in many effective applications, such as collecting data from
WSN deployed in an agricultural field using a mobile sink embedded in an aerial drone or a
motorized agricultural engine [47].

The sink mobility can be controlled or uncontrolled [150]. For the uncontrolled solution,
the mobile sink moves randomly in the monitored region, while the controlled mobile sink
can only move along a predefined trajectory. Finding the optimal trajectory that maximizes
the network lifetime is very challenging. Indeed, the maximum lifetime can only be achieved
by solving optimally two joint problems: a scheduling problem that determines the sojourn
times of the sink at different locations, and a routing problem which defines the path that
will be used by the collected data to reach the mobile sink in an energy-efficient way
[151, 152]. In other words, routing and mobility are strongly interrelated because the
routing strategy greatly influences energy consumption and as the sink moves, paths will
change. However, in existing joint scheduling and routing problem solutions, the considered
routing paradigm is a pure multihop forwarding, as nodes continuously send data towards the
mobile sink [114, 151, 153–157]. It results in higher energy expenditure compared to a pure
direct communication approach where the mobile sink visits each sensor and collects data
through single-hop [158–160]. Indeed, direct communications enable a minimum energy
consumption at each node, but only at the expense of an increased data delivery delay and
data storage. One solution to trade-off energy and latency is to consider hybrid routing
schemes which combine single-hop and multi-hop communication strategies [161, 162].
Nevertheless, in hybrid solutions data are buffered at selected nodes while waiting the sink
passage. But in real scenario, those nodes may experiment data loss due to buffer overflow
while waiting the sink coming into their vicinity. In order to avoid this situation, we propose
to offer nodes the possibility to delay their transmissions, but not necessarily to wait until the
sink is at a one-hop proximity. The idea is to allow nodes to buffer data while waiting the
sink to come closer to the node (not necessarily at the node), which would relieve more nodes
from relaying these data. We also ensure that there is no data loss due to buffer overflow.

In this chapter, our contributions are manifolds :

• We develop a new linear programming model for the joint scheduling and routing
problem with limited buffer capacity. For arbitrary topologies, the LP resolution
determines the sink sojourn times at visited location, the data transfer rates between
nodes and the buffered packets quantities.

• Our solution achieves better lifetime compared to previous works and assesses the
efficiency of the delayed communication paradigm.
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• We propose a practical distributed algorithm using delayed communications for data
collection in WSN and compare its performance against single-hop and multihop
forwarding approaches. The results show that our protocol achieves the desired trade-
off between data delivery delay and energy performance.

The chapter is organized as follows. In the next section we review existing solutions regarding
joint sink mobility and routing problem for lifetime prolongation via controlled mobile sink.
Then, in Section 3.3, we briefly introduce linear programming methods. Afterwards, in
section 3.4 we present the network model and our optimization problem formulation. In
Section 3.5 we report numerical results and show how far our approach outperforms existing
schemes in terms of lifetime. In section 3.6 we introduce a new distributed algorithm for
data collection in WSN with limited buffer capacity. Further, in section 3.7 we compare
through simulation the performance of our delayed approach with direct communications
and multihop forwarding schemes. Finally, Section 3.8 concludes the chapter.

3.2 Related works

In this section we review existing works related to the use of a controlled mobile sink for
lifetime prolongation in WSN. We classify the solutions as follows.

3.2.1 Pure multihop forwarding

In multihop forwarding schemes, nodes continuously send their data towards the sink,
which minimizes the latency but can rapidly deplete the devices battery. Papadimitriou and
Georgiadis [151] formulate a linear programming model that determines the sink sojourn
times and the transfer rates between neighboring nodes that maximize the network lifetime.
Basagni et al. [153] and Liang et al. [114] introduce new constraints like the maximum
distance between two consecutive movements, the minimum sojourn time at each location
and the energy cost for building new routes when the sink moves. However, in both solutions
the routing protocol is predefined and does not appear as a variable in the optimization
formulation. Further, Luo et al. [154] propose a distributed protocol to control sink mobility.
In an initialization phase, the sink visits all possible locations to collect the power consump-
tion records from all nodes and runs a LP. In the operation phase, the sink goes through
each location given by the LP and still continues to collect information in order to obtain
a better estimation and regularly resolve the LP. Luo et al. [155] prove the NP-hardness of
the joint sink mobility and routing problem for lifetime maximization with multiple mobile
sinks. They also present an algorithm to solve the problem involving a single sink and then
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generalized it to approximate the problem with multiple sinks. Basagni et al. [156] define a
LP model that gives an upper bound on the maximum lifetime that can be achieve through
controlled mobility of multiple sinks in a WSN, for a given routing protocol. Then they
propose a distributed heuristic where every sink periodically decides whether to move or not
based on estimates of the nodes residual energy, other sinks location and current traffic.

3.2.2 Single-hop data collection

In single-hop data collection scenario, the routing strategy is limited to direct communi-
cation with the mobile base station, which maximizes the network lifetime at the expense
of an increased latency. Gu et al. [158] are interested in networks of sensors operating at
different sampling rates and propose a solution to schedule the sink movement so that each
node is visited - possibly several times – before it experiment data loss due to buffer overflow.
Rao et al. [159] develop distributed algorithms to compute the sink trajectory for single-hop
data collection in order to reduce the average collection delay. Turgut et al. [160] consider a
static sensor network with multiple mobile sinks, where every node has to take the decision
whether to transmit or not its collected data when a sink is in its vicinity, based on its buffer
occupancy, its euclidean distance to the sink or an history of previous occasions.

3.2.3 Hybrid routing schemes

Some hybrid routing schemes that combine direct and multihop communication strategies
with a mobile sink have been proposed. Somasundara et al. [161] propose that sensors
that are never within the sink radio range send their data through multihop towards their
closest cluster head, where a cluster head is a node that can reach the sink directly. To
reduce latency, data are stored in the cluster heads which suppose that these nodes have an
higher buffer capacity than the other nodes. Rao and Biswas solution [162] computes the
minimum-distance trajectory so that while the sink moves along this path, it comes within up
to k hop reach of all nodes. They define some Designated Gateways (DG) that can reach the
sink in 1-hop when it passes close to them. A DG buffers data from other nodes that are at
most k-1 hop away from it, and uploads these collected data to the mobile sink. Even if the
solution offers a trade-off between energy and latency, it results in a uneven distribution of
the energy consumption among nodes. Indeed, the energy consumption of a node depends
on the number of hops that separates it from its assigned DG. Moreover, DGs are supposed
to have an infinite buffer capacity. In these hybrid routing schemes, data are buffered at
some selected nodes while waiting the sink passage, but in real scenario, those nodes may
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experiment data loss due to buffer overflow while waiting the sink coming into their vicinity.

To overcome this limitation, we address the joint scheduling and routing problem by con-
sidering a delayed communication scheme. Nodes can forward their data through multihop
towards the mobile sink, and they can also buffer a certain amount of data while it does not
exceed their buffer capacity. So, our solution improves the network lifetime while it avoids
data loss due to buffer overflow.

3.3 Introduction to linear programming

In this section, we provide a brief introduction to linear programming and mixed-integer
linear programming methods because we use them in this thesis. Readers who are already
familiar with constrained optimization may skip this section.

Linear programming

A linear programming (LP) problem is the problem of maximizing or minimizing a linear
function subject to linear constraints. The constraints may be equalities or inequalities, and
the objective is to find the "best" value obtainable under those conditions:

max f (x1, ...,xn) (objective function)

g1 (x1,x2, ...,xn) ≤ b1 (constraints)
...

...

gp (x1,x2, ...,xn) ≤ bp

h1 (x1,x2, ...,xn) = c1
...

...

hq (x1,x2, ...,xn) = cq

where x∈Rn defines the decision variables, bi∈[1..p] ∈R and ci∈[1..q] ∈R are given parameters,
f , gi∈[1..p] and hi∈[1..q] are linear functions, and f is the benefit function to be maximized.

A solution to a linear program is a setting of the variables. If a solution satisfies all the
constraints, then the solution is feasible. A linear program is feasible if there exists a feasible
solution, otherwise it is said to be infeasible. Thus, a LP may not have solutions, which can
be the case when the constraints cannot be satisfied jointly (e.g. x ≥ 2 and x ≤ 1). An optimal
solution is a feasible solution with the largest objective function value (for a maximization
problem). The value of the objective function for the optimal solution is said to be the value
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of the linear program. A linear program may have multiple optimal solutions, but only one
optimal solution value.

If decision variables are all defined on a continuous domain such as R or any interval
[a,b] of R, the linear-programming model is said continuous. In this case, the optimization
problem may be solved in polynomial time with Khachiyan’s ellipsoid algorithm [163] or
Karmarkar’s projective algorithm [164]. This being said, most of the solver implements
Dantzig’s simplex algorithm [165] whose complexity in the worst case is exponential. The
latter is indeed cubic in average and seems to offer nowadays the best computational results.

Integer programming

Fractional solutions are not always realistic, and in a variety of optimization problems
variables are required to be integer. This problem is called an integer programming problem
(ILP). It is said to be a mixed integer program (MILP) when some, but not all, decision
variables are restricted to be integer. Integer programs are NP-hard, and are a lot harder to
solve than linear programs. Their resolution can be based on branching algorithms such as
Branch and Bound techniques.

Lots of problems are now known to be equivalent to the solving of a linear program, like
for example the allocation of production facilities, the selection of shipping patterns, and
agricultural planning. In networking, routing, tasks and resources allocation, network design,
channel assignments are examples of problems that can be modeled using linear programs.
The literature regarding constrained optimization is rich and extensive (algorithms and results
about existence or uniqueness are indeed numerous). All of this is nowadays materialized
into a plenty of powerful callable libraries and black box softwares (IBM ILOG CPLEX,
GLPK, LPSolve, Matlab, R, etc...) that it is legitimate to use. In this way, the users only have
to formulate their problem as a linear program, while solvers take in charge the resolution.

3.4 Our solution: system model

In this section, we propose a model for the lifetime prolongation of a WSN with a
controlled mobile base station. We define a linear programming model that determines
for a given topology: the sink sojourn times at different locations, the data flows between
neighboring nodes, and packets buffering. Thus, we obtain both the optimal sink mobility
displacement and the optimal data routing scheme that maximize the lifetime of a specified
network.
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For the formulation, we use the same notation as in [151] and we introduce new ones when
needed. We consider that the wireless sensor network is composed of a set N of static sensor
nodes and one mobile sink s collecting the information. The sensors are randomly deployed
to monitor their physical surroundings and generate a constant data rate Qi > 0, i ∈ N. We
denote by L the set of possible locations of the sink, not necessarily collocated with the
sensors. We also assume that K = (l1, l2, l3, ..., l|L|−1, l|L|) is an ordered list of sink visiting
locations, i.e. the sink will first visit l1 and then l2 and so on. The sink sojourns at the location
lk for a time duration tlk ≥ 0 and changes its position from one location to another with a
negligible traveling time as considered in [151, 155].

The set Slk
i ⊆ N ∪{s} represents the nodes (either sensors or the sink) that are in the

transmission range of sensor i ∈ N for a given location lk ∈ K of the sink. Note that the only
possible difference between two sets S

lk1
i ,S

lk2
i is the sink s. Every sensor sends its data either

through multihop towards the sink or via direct communication if the sink is in the node
vicinity. We consider that qlk

i j ≥ 0 represents the data rate transmission from node i to its

neighboring node j ∈ Slk
i when the sink is at the location lk ∈ K. Additionally, each sensor

has the possibility to buffer a certain amount of data while this quantity does not exceed its
buffer capacity Wi ≥ 0. wlk

i ≥ 0 corresponds to the amount of data contained in the buffer
of the sensor i ∈ N at the end of the sink sojourn time at location lk ∈ K. Additionally, we
denote by Ri j(i ∈ N, j ∈ Slk

i ), the capacity of the link (i, j). It is a constant quantity that upper
bounds the transmission rates qlk

i j.

We consider that each sensor has an initial energy Ei and we suppose that the main factors
of energy consumption are data reception and transmission. We denote by eT

i j the energy
consumption of sensor i to transmit a data unit to its neighboring node j and by eR

ji, the
energy consumption of sensor i when receiving a data unit from its neighboring node j.

We suppose that the sink has an unlimited energy and keeps moving until the end of the
network lifetime, which is defined as the time until the first node dies due to energy depletion.
The objective of our optimization problem is to find the optimal routing strategy and the
optimal sojourn times at each sink location so that the network lifetime is maximized for a
given order of visited locations. In the following, we give the formulation of the problem of
maximizing the network lifetime and then derive a linear programming model.

max ∑
lk∈K

tlk subject to (3.1)

∑
lk∈K

∑
j∈S

lk
i

eT
i jq

lk
i jtlk + ∑

lk∈K
∑

j:i∈S
lk
j

eR
jiq

lk
jitlk ≤ Ei, i ∈ N (3.2)
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wlk
i = ∑

j:i∈S
lk
j

tlk q
lk
ji + tlk Qi − ∑

j∈S
lk
i

tlk q
lk
i j +wlk−1

i , i ∈ N,k ∈ {0,1, .., |L|} (3.3)

∑
i∈N

Qitlk + ∑
i∈N

wlk−1
i − ∑

i∈N
wlk

i = ∑
j:s∈S

lk
j

tlk q
lk
js, lk ∈ K (3.4)

wl0
i = 0, i ∈ N (3.5)

tlk ≥ 0, lk ∈ K (3.6)

qlk
i j ≥ 0, i ∈ N, j ∈ Slk

i , lk ∈ K (3.7)

wlk
i ≥ 0, i ∈ N, lk ∈ K (3.8)

qlk
i j ≤ Ri j, i ∈ N, j ∈ Slk

i , lk ∈ K (3.9)

wlk
i ≤Wi, i ∈ N, lk ∈ K (3.10)

The objective function (4.4) maximizes the network lifetime, i.e. the sum of the sojourn
times of the mobile sink at all locations. Constraint (3.2) states that the energy consumed in
sensor i for transmission and reception must not exceed its initial energy Ei. Constraints (3.3)
and (3.4) correspond to flow constraints with buffer capacity. The left part of the inequality
in constraint (3.3) represents the amount of data buffered by node i when the sink sojourns at
the location lk for a duration tlk . It is equal to the difference between the amount of data the
node has to transmit (i.e. the data received from its neighboring nodes, its own generated data
and the data previously buffered) and the amount of data it effectively transmits. Constraint
(3.4) assures that at any time tlk , the sink is the final destination of all the data transmitted
by nodes, which consist in the data generated by all nodes and their previously buffered
data minus the data buffered at tlk . Note that we have introduced an artificial state l0 and we
impose in constraint (3.5) wl0

i = 0 to represent the fact that at the beginning of the network
operation buffers are empty. Similarly, we can set wlL

i = 0 to impose that buffers are empty at
the end of the network lifetime. Constraints (3.6), (3.7) and (3.8) assure the non-negativity of
sojourn times tlk , the rates qlk

i j and the quantities wlk
i . Constraint (3.9) ensures that at any time

the flow information rates going through a link (i, j) do not exceed the capacity of the link.
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Constraint (3.10) states that at any time, the amount of data buffered at node i should not
exceed its buffer capacity Wi. By defining q̂lk

i j = tlkqlk
ji as the amount of data transmitted from

sensor i to its neighboring node j during time tlk , the optimization problem can be expressed
as a LP model.

3.5 Numerical results

3.5.1 Scenario and parameters settings

To assess the efficiency of our approach, we compare our solution (denoted OPT) with the
approach of Papadimitriou and Georgiadis [151] (denoted REF). REF provides the optimal
solution of the joint routing and scheduling problem without packet buffering. We compare
the performances of these two models for various network sizes with respect to lifetime,
which is defined as the time until the first sensor dies. We solved the LP models with CPLEX.
We consider arbitrary topologies where nodes are randomly and uniformly distributed within
a square area of size L = 350 m. The network sizes vary from 300 to 700 nodes, and for
each size we generate 12 different connected topologies. The transmission range varies from
35 m to 22 m depending on the number of nodes deployed in the area so that the average
degree of nodes is roughly comprise between 8 and 10 for every topology. The possible
locations of the sink s are restricted to a 6×6 grid as in [153]. Figure 3.1 illustrates the
random deployment of a 400-nodes network (blue circle) with the sink possible locations
(red square). In every scenario, parameters Wi and Ri j are set identical for all nodes and all
links, and we use realistic values for the WSN parameters. The channel data rate is Ri j = 20
Kpbs, which is consistent with IEEE 802.15.4 [54]. The data generation rate is set to λ = 34
bps, which corresponds to one 128-Byte packet every 30 seconds. The default buffer capacity
is 16 KB which is conform to sensor scarce resources. The initial energy is set to E = 50
Joules and the energy cost of one transmission/reception is e = 0.62e−6 Joules/bit.

3.5.2 Results

We first investigate the improvement of our solution OPT over the one of Papadimitriou
and Georgiadis in terms of network lifetime and nodes residual energy. We then study the
impact of the buffer capacity on the network lifetime. Finally we highlight how buffers are
used by nodes in OPT.

Table 3.1 compares the maximum average lifetime achieved for four different network
sizes (300, 400, 500, 700) of arbitrary topologies. For each network size, it represents the
average of the results obtained from 12 randomly generated instances. We can observe that
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Fig. 3.1 A 400-nodes network with a 6×6 grid for the sink possible locations.

|N| REF [151] OPT Improvement
300 91 553 114 177 24.71%
400 71 335 88 294 23.70%
500 43 093 62 204 44.34%
700 28 080 41 035 46.13%

Table 3.1 Average lifetime of the two models in arbitrary topology.

Er
i = 0 Er

i ≤ 0.25Ei Er
i ≤ 0.50Ei

|N| REF OPT REF OPT REF OPT
300 80.00% 87.19% 84.58% 90.64% 90.05% 93.67%
400 77.27% 85.38% 83.25% 88.88% 89.29% 92.31%
500 73.41% 84.08% 79.60% 88.56% 86.55% 92.53%
700 72.40% 81.08% 78.27% 85.86% 85.65% 90.74%

Table 3.2 Comparison of the residual energy of the sensors.

as the network size increases, the improvement in lifetime of OPT over REF also increases.
Indeed, for a 400-nodes network the improvement is in the order of 23.70% while it goes
to 46.13% for a 700-nodes network with a buffer capacity Wi set to 16 KB in both cases.
As expected, our delayed communication paradigm enables to achieve better lifetime than
solutions where data are continuously forwarded towards the base station.

In Table 3.2 we compare the balancing of energy depletion among sensor nodes. We
recall that Ei denotes the initial energy of sensor i ∈ N. Let Er

i be the residual energy of
i at the end of the network lifetime. For every instance, we compute the percentages of
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Fig. 3.2 Average lifetime depending on the buffer size. When the buffer size is equal to zero,
it corresponds to the REF model.

Fig. 3.3 Average buffer occupancy rates depending on the hop-distance of the nodes from the
base station in 300-nodes networks

sensors whose residual energy is equal to zero (Er
i = 0), below 25% of the node’s initial

energy (Er
i ≤ 0.25Ei) and below 50% of its initial energy (Er

i ≤ 0.50Ei). We then average
the corresponding percentages over the 12 instances of each network size. We observe that
in our solution nodes exhibit lower residual energy than in REF. For example, at the end of
300-nodes networks lifetime, 80% of the sensors have depleted their battery in REF while
in OPT they are 87%. This means that our solution better balance the load among nodes.
Moreover, as in OPT the network lasts longer than in REF, much more data are generated
and routed towards the sink (constant and periodic data generation rate assumption). So, it is
clear that the energy spent in sending more data in OPT is compensated by the energy saved
for not relaying some of others packets.

In Figure 3.2 we study the impact of the buffer capacity Wi on the network operation time
for our model OPT. As expected, the introduction of a buffer capacity enables to increase the
network lifetime and greater is the buffer capacity, higher is the improvement. Indeed, for a
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300-nodes topology when the buffer capacity is small, e.g. equal to 10 KB the improvement
in lifetime over REF is equal to 17%. But with a buffer equal to 128 KB, the improvement
goes to 64% over REF. This is because sensors can wait longer before their buffer are
full, which gives them more opportunities to wait until the sink comes closer to them, thus
decreasing the number of hops along which data are transmitted.

The average buffer utilization depending on the hop-distance of the nodes from the
mobile base station location is plotted in Figure 3.3. It appears that the more distant is the
base station, the more the node will buffer data. Indeed, buffers are used to store data while
waiting the base station to come closer to the node. Then nodes take advantage of the base
station proximity to empty their buffer. This strategy relieves more sensors from relaying
others data and results in an overall energy saving.

Although our results assess the energy-efficiency of our solution, the outputs of our LP
are not easy to exploit. Indeed, it is a centralized process that will require to program each
node individually. Particularly, the routing information qlk

i j - in the form of a data rate per
node, per neighbor for each time slot - is not easy to implement, and offers no flexibility.
Still, it is an interesting tool that provides a reference about the lifetime that can be achieved
for data collection with a controlled mobile sink and limited buffer capacity. For all these
reasons, we propose a practical algorithm in the following section.

3.6 Distributed algorithm

In this section, we propose a distributed algorithm for data collection in WSN with a
mobile base station. This algorithm is based on the information derived from the numerical
results. The idea is that sensors have to decide whether to send their data or not based on
their distance to the base station and their buffer occupancy. Indeed, in the previous section,
we have observed that nodes tend to buffer their data when the sink is far and inversely, they
tend to send their data when the sink is close to them. As we will see through simulation,
our algorithm enables us to control the trade-off between energy expenditure and latency by
tuning parameters.

Our solution runs on top of a shortest path routing protocol whichis updated each time the
sink moves. In our approach, the decision rule is triggered when a node receives a new data
to send from its own application layer. When a node receives a packet from another node,
it directly forwards the packet. Indeed, if the decision were made at each node for a given
data, the induced latency may dramatically increase as the data will be held in the buffer of
every intermediary node. Moreover, it is possible that the data never reach the base station if
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it is forwarded back-and-forth between the nodes because the base station will move several
times while the data will be successively buffered at sensors.

The DIS K-Hops decision rule is given in Algorithm 1. A node sends its data if its
distance di (in hops) to the sink is less than a value k, or if its distance is greater than k
but the buffer occupancy BOi is above a given threshold T hresi. In this way, we favor the
transmission of data over few hops, while the parameter T hresi allows us to reduce the risk
of buffer overflow as nodes can send their data when it is almost full. When the condition is
satisfied, a node does not completely empty its buffer but rather a part of its data to prevent
congestion. Similarly, while the parameter k is identical for all sensors, we set different
buffer occupancy threshold at nodes. The rational behind that is to prevent situations where
the condition becomes true at the same time for every node, which may happen since we
have considered periodic data generation rate. Such a situation would congest the network
because all nodes will try to empty their buffer simultaneously. In the simulation, we have
chosen to express T hresi as a linear function of the node distance, i.e T hresi = adi +b. In
this way, the more distant is the node from the sink, the longer it will wait to transmit, hoping
that in the meantime the sink will get closer. Note that when k is set to the maximum number
of hop that can separate a node from the base station, our algorithm is equivalent to a pure
forwarding protocol as for any node the condition is always satisfied.

Algorithm 1 DIS K-Hops
function NODE_TRANSMISSION_DECISION(BOi,di)

if (BOi ≥ T hresi∥di ≤ k) then
Send 25% of the buffer

end if
end function

3.7 Simulation results

3.7.1 Scenario and parameter settings

To evaluate the performance of our distributed approach, we implement it in the OM-
NeT++ simulator. We use the IEEE 802.15.4 non-beacon enabled CSMA protocol with
exponential backoff [166] and a shortest path routing protocol (in hops). Every time the sink
changes its location, it broadcasts a route message to advertise its new position. Then, thanks
to successive broadcasts, every node is aware of its distance to the base station. Our scheme
is implemented at the routing layer. We compare our solution with:
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• A pure multihop forwarding scheme (FWD) where nodes continuously forward their
data towards the base station following the shortest path routing protocol.

• A single-hop data communication scheme (SIN) where nodes send their data if and
only if they are within the vicinity of the mobile base station.

We consider the same 300-nodes network used for the numerical experiments with one
mobile base station whose possible locations are restricted to a 6×6 grid. Every tmin seconds,
the sink chooses randomly its next location among its one-hop grid location. We run every
scenario for 4000s and the simulation parameters are summarized in table 3.3.

Parameter Value
data generation rate 1 data every 30s

data/route/MAC-ack packet size 128/4/4 Byte
buffer capacity 16 KB
link capacity 250 Kbps

tmin 10-100 s
DIS K-Hops (a,b) (3,40)

Table 3.3 Simulation parameters.

3.7.2 Results

We study the performances of our algorithm in terms of energy, latency and delivery ratio.
Figure 3.4 shows the energy spent by all nodes for sending and receiving data and the control
messages, which include the broadcasts needed for the shortest tree construction and the
RTS/CTS exchanges. As expected, the FWD solution is the one that consumes the most of
energy, as nodes continuously send their data towards the base station, independently of their
distance or buffer state. Inversely, the SIN solution consumes the less energy as nodes only
spend energy for their own data transmission when the sink is within their communication
range. Regarding our distributed algorithm DIS K-Hops, the higher the parameter k, the
more energy is consumed. This is because more nodes are allowed to transmit their data
without considering their buffer occupancy, so packets are routed over more hops. As we
will see, this additional energy expenditure is compensated by a lower latency. Finally, we
can observe that our solution stays between FWD and SIN, the two extreme solutions trading
off energy for latency. Regarding the impact of the mobility on the energy consumption, we
can see that when the sink changes its location faster (i.e. every 10s), it results in a slightly
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Fig. 3.4 Energy consumption in a 300-nodes network for different solutions.

Fig. 3.5 Average latency in a 300-nodes network for different solutions.

higher energy consumption. This is mostly due to the fact that the routing overhead is more
important when tmin = 10s as the tree is reconstructed after each sink’s move.

In Figure 3.5, we represent the average latency of the data, from their generation by the
sensor application to their reception at the base station. As we can see, the FWD solution
exhibits the lowest latency, as nodes do not buffer data. Contrarily, the highest latency is due
to the SIN approach because only direct communication occurs between the sink and sensors,
so they have to wait until the sink comes in their vicinity. In between, with our algorithm, the
latency increases as the parameter k decreases. This is because nodes have to wait longer that
the sink comes within their k-hop reach. Furthermore, for a given approach, when the sink
changes its location more frequently (i.e. every 10s), the latency decreases as it visits more
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Fig. 3.6 Delivery ratio in a 300-nodes network for different solutions.

nodes and the conditions on the maximum distance is satisfied more regularly by different
nodes.

In Figure 3.6 we plot the packet delivery ratio for every considered solution. Our first
observation is that when the sink changes its location more frequently, more packets are
successfully delivered. This is because the base station comes within the vicinity of more
nodes, giving them the opportunity to empty their buffer. Furthermore, once again the
SIN approach performs worst as it experiments no less than 50% packet loss due to buffer
overflow. For k ≥ 6 the DIS K-Hops heuristic delivers from 80% up to 96% of the packets,
as FWD performances. This minor packet loss ratio may be affordable in several non-critical
applications. As we can see, our solution enables us to achieve the desired trade-off between
data delivery, delay and energy performance by tuning the parameters accordingly.

3.8 Conclusion

The design of sustainable wireless sensor networks is a very challenging issue as it may
be cost-prohibitive to replace exhausted batteries or even impossible in hostile environment.
In this chapter, we proposed a novel linear programming model for the lifetime optimization
of wireless sensor networks with limited buffer capacity and a controlled mobile base
station. Our solution outperforms existing solutions and assesses the efficiency of the
delayed paradigm, in which nodes buffer their data while waiting the sink coming closer to
them. Further, we proposed a distributed algorithm to control the trade-off between energy
expenditure and latency for data collection in WSN with a mobile element.
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Chapter 4

Multi-hop wireless charging optimization in
wireless sensor networks

Recent advancements in wireless charging technology offer promising alternative to
address the challenging problem of energy need in low-power networks, as WSN for example.
Based on these breakthroughs, existing solutions have investigated wireless charging strate-
gies of low-power networks through the use of mobile chargers, where a charger has to come
at the nodes’ vicinity to recharge their battery. However, none of these works have considered
the multihop energy transmission, whose feasibility have been demonstrated recently and
which may improve efficiency and waiting delay for battery charging, in particular for high
scalable WSN. In such a system, a node can transmit energy wirelessly to its neighbors.
In this chapter, we propose a new approach in which several chargers are introduced in
the WSN and these chargers may transfer energy to some node via a multihop path. The
remaining question is: what is the minimum number of chargers we have to deploy to cover
the WSN. To answer this question, we develop an optimization model to determine the
minimum number of chargers needed to recharge the elements of a network in a multihop
scenario. Our model takes into account the energy demand of the nodes, the energy loss that
occurs during a transfer and the capacity of the chargers.

4.1 Introduction

In the literature, many energy-efficient protocols have been proposed to tackle energy
consumption of wireless sensor networks at all layer of the protocol stack [4, 167]. Despite
these efforts, WSN lifetime remains a performance bottleneck as these solutions can only
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extend the network lifetime for a limited period of time. Similarly, energy harvesting
techniques [5] have been developed to enable devices to harvest energy from their surrounding
environment like sun, wind or movement. The nodes convert ambient energy to electrical
energy to replenish their battery. However, energy scavenging techniques remain highly
dependent on the environment as the ambient energy is not always available. Thus, the next
harvesting opportunity is not easily predictable nor controllable.

In this context, recent breakthroughs in wireless energy transfer (WET) are expected
to increase the sustainability of WSN and make them operational forever. For instance, a
new wireless power transfer technique, called Witricity, was reported in Sciences by Kurs et
al. [168]. Using Witricity, the authors were able to power a 60-W light bulb over 2 meters
with an efficiency of 40 %. The technique uses strongly coupled magnetic resonance to
transmit power between devices without the need of any contact between the transmitter
and the receiver. The applications of wireless energy transfer in low-power networks are
numerous. It has already been applied to power medical sensors and implantable devices
[118], to replenish wirelessly sensors embedded in concrete [119] and to power a ground
sensor from a UAV [120]. So, it is expected that wireless energy transfer will revolutionize
the principles of low-power networks design. Indeed, the emergence of wireless power
charging technology should allow overcoming the energy constraint of WSN, as it is now
possible to replenish the network elements in a more controllable manner. For the moment,
most of the existing works that aim to take advantage of WET consider mobile chargers that
directly deliver power to deployed nodes.

A step further, Watfa et al. [169] demonstrate that it is possible to transfer wireless energy
over multihop. In such a system, a device can both transmit and receive energy. This new
paradigm offers unexplored perspectives regarding lifetime enhancement of WSN. Now, we
can imagine that nodes are several hops away from the charger and that neighboring nodes
are able to exchange energy. Using the paradigm of multihop wireless charging, we develop
a model which minimizes the number of chargers required to recharge all the elements of
the network and we determine their location. Our model takes into consideration the energy
demand of the nodes, the energy loss that occurs during a transfer and the energy capacity of
the chargers. As a result, we obtain different disjoint charging trees, so that a charger located
at a root can recharge all the nodes of the charging tree.

The rest of this chapter is organized as follows. In section 4.2, we first survey studies that
use wireless charging technology in low-power networks. We introduce the general idea of
our solution in section 4.3. Then, in section 4.4, we detail the proposed multihop wireless
charging scheme. In section 4.5, we present our optimization model for multihop wireless
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energy transfer. We report the simulation results and discuss the advantage of our solution
over single-hop energy transfer in section 4.6. Finally, section 4.7 concludes the chapter.

4.2 Related works

In this section, we review existing works that use wireless charging technology for
lifetime prolongation in low-power networks. Most existing solutions consider only one-hop
energy transfer through the use of mobile chargers that visit each node to recharge its battery.

4.2.1 Single-hop energy transfer

In [170], Yao et al. propose three simple charging schemes. In two schemes, a charger is
assigned to a region and computes a shortest round path which links all sensor nodes in the
area. The charger patrols along this path and charges a node when it is short of energy. In
the last scheme, the network is not divided into regions and sensors send requests to mobile
chargers when their energy falls under a given threshold. Then, the closest charger have to
send a repeal packet. When a charger have to charge more than one sensor, it decides its
charging sequence based on a function that takes into account the nodes residual energy and
their distance to the charger.

Peng et al. [171] propose a three-tier architecture composed of i) stationary sensor nodes,
ii) a mobile charger (MC) and iii) an energy station that monitors the energy status of sensors
and directs the mobile charger. Sensors periodically send information about their battery
state, then the energy station computes a charging sequence and sends commands to the MC.
The authors formulate the charging problem and prove that it is NP-complete. They then
present two greedy algorithms that prolong the network lifetime.

Li et al. [123] consider a mobile charger called Qi-Ferry (QiF), that must start from a
charging station, visit tour stops to wirelessly charge sensors and then go back to the charging
station. A tour stop is not necessarily collocated to a sensor because the QiF can charge a
sensor while its distance from the sensor is less than a given threshold. The authors define the
Qi-Ferry problem which aim to maximize the number of sensors charged during a tour, while
the energy spent by the mobile during the tour to move and to power sensors does not exceed
its initial energy. They prove the NP-hardness of the problem and propose a PSO-based
heuristic to compute a tour that covers all the sensors. Then, if the energy consumption of the
QiF is not respected, the algorithm iteratively removes one tour stop that incurs the minimum
reduction in coverage at a time, until the energy constraint is satisfied.
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Li et al. [172] formulate the joint routing and charging problem for lifetime maximization
(ML-JRC) and prove its NP-hardness. They give a linear programming model that determines
an upper bound of the maximum network lifetime that can be achieved in the ML-JRC
problem and propose three heuristic solutions. In these approaches, the time is divided into
slots and at the beginning of each slot, a node selects the least-cost route to the sink by
exchanging information with its neighbors. Meanwhile, the mobile charger plans its activity
for this slot. Then, depending on the solution, the mobile charger chooses to charge either
i) nodes with the minimum residual energy, ii) nodes with the minimum estimated lifetime
taking into account the energy consumption rate and assuming fixed routes, and iii) nodes that
bottleneck the network taking into consideration routes dynamic by solving at the beginning
of each slot a modified version of the LP. In this work the MC is assumed to have a full
knowledge of the network, including nodes locations and nodes energy level.

Doost et al. [122] highlight that the charging rate may be different for the nodes depending
on their location-specific channel behavior. In order to enhance the network lifetime, they
propose a new routing metric that favors the formation of routes including nodes that have
the best energy charging characteristics. In this way, the base station selects a path with the
lowest maximum charging time. The authors also consider that the wireless charging waves
operates in the same frequency band as the ones used for communications. So, a node either
receives energy or transmits packets. After selecting the optimal path, the base station runs
an optimization model that determines the charging time and the transmission time of the
sensors, that maximizes the throughput under energy and latency constraints.

Shi et al [121] consider a mobile charger that periodically visits each network node to
replenish their battery. They formulate an optimization model to maximize the ratio of the
time spent by the charger at its home station over the time spent in charging the sensors. The
authors prove that the optimal path for the charger is the shortest Hamiltonian cycle. Then,
given an optimal traveling path, they formulate the joint problem for routing and charging
time under the constraint that a sensor never runs out of its energy. With their approach, the
network can remain operational forever, but the charger is supposed to have enough energy
to recharge all sensors during a cycle.

Erol-Kantarci and Mouftah [124] propose SuReSense, a two phase algorithm for wireless
rechargeable sensor networks in smart grid. The authors consider mobile chargers that can
wirelessly power multiple sensors simultaneously, if the charger is located at a landmark
which is in the sensors energy transfer range. The solution first runs a linear programming
model that gives the minimum number of landmarks based on sensor energy-demand and
constrained by the initial energy of the charger. Then the landmarks are grouped based on
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their proximity to form clusters. A mobile charger is assigned to each cluster and visits each
landmark following the shortest Hamiltonian cycle.

4.2.2 Multi-hop energy transfer

Watfa et al. [169] demonstrate the feasibility of transferring energy through multihop.
They achieve an efficiency of 20% over 8 hops. The authors also propose a charging strategy
for a flat and a clustered topology. In the flat topology, a sensor whose energy goes below
a given threshold flood a request packet in the network. If a node is able to charge the
requesting sensor, it sends back a message and transmits energy (possibly along a multihop
path). In a clustered architecture, the sensor first sends its request to the cluster head (CH). If
the CH cannot charge the sensor, it broadcasts the request to the members of the cluster. If
there are no node able to charge the sensor, the CH charges itself by sending requests to the
other CH, and then charges the requesting sensor.

In most of the existing solutions, authors consider only one-hop wireless charging systems
by using a mobile charger that must visit each node to recharge its battery. Instead, we propose
to consider a multihop wireless charging scheme where a node can transmit energy to its
neighbors. Particularly, we are interested in minimizing the number of chargers required
to recharge the nodes of a network. This problem have not already been considered in the
litterature. In the next section, we expose the general idea of our solution. We later detail the
envisionned multihop wireless charging strategy and the optimization model.

4.3 Overview of our solution

We consider a static wireless low-power network and a set of chargers of fixed capacity.
The aim of our solution is to determine the minimum number of chargers - and their location
- required to recharge nodes in a multihop scenario, taking into account the energy-demand
of the nodes, the energy loss that occurs during a transfer and the capacity of the chargers.
We suppose that the chargers locations are restricted to the nodes locations. As explained
below, our approach works in two steps.

At the first step, for each possible location of the chargers, we construct a shortest path
tree rooted at this location that covers all the nodes (using Dikjstra’s algorithm). In order
to take into consideration the energy losses, we consider a multiplicative cost of the edge’s
weight instead of an additive one. At the second step, we propose a Mixed Integer Linear
Programming (MILP) model that determines the minimum number of chargers required to
recharge all nodes given: the energy demand of the nodes, the energy loss that occurs during
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a transfer and the energy capacity of the chargers. The MILP uses the trees constructed at the
first step to return the minimum number of disjoint shortest-path trees, so that if a charger is
located at the root, it can satisfy the energy-demand of all the nodes present in the tree.

From this optimization problem, it is easy to see that if the chargers’ capacity is unlimited,
and because our objective is to minimize the number of chargers, our MILP will return only
one tree. The drawback of this solution is the charging time and the total energy required to
charge all the nodes. On the contrary, if we suppose that the chargers have a very low energy
capacity, the MILP will construct one-hop trees, so that each node will be in the vicinity
of a charger. In this case, an important number of chargers will be required. Note that the
recharging schedule is beyond the scope of this chapter. We further detail our solution in
section 4.5, after presenting our multihop wireless charging scheme in the next section.

4.4 The multihop wireless charging scheme

In this section, we model our multihop wireless charging scheme for low-power networks.
We successively describe the network model, a one-hop energy transfer and a multihop
energy transfer.

4.4.1 Network model

We consider that the wireless low-power network is composed of a set of N static nodes
randomly deployed in a region of interest. We consider a set of S chargers with identical
energy capacity C. In our scenario, the only sources of energy in the network are the chargers.
Nodes may act as intermediary transmitter to transfer the energy over multihop. So, a
transmitter of energy can be either a charger or a node. A receiver necessarily refers to a node.
We assume that a node can receive energy from only one transmitter and that a transmitter
can transmit energy to multiple neighbors, but only to one at a time1. This corresponds to a
tree structure, where a node can transmit energy to its sons, and a node receives energy from
its unique parent. Further, the energy-demand of a node i is denoted Ei > 0.

4.4.2 Direct energy transfer

We now explain the one-hop energy transmission between two neighboring nodes. A
transmitter i can wirelessly charge one of its neighbors j with a loss coefficient κi j ≥ 1. This
means that if the receiver needs E j units of energy, the transmitter must transmit E jκi j units

1This assumption is justified by the fact that a receiver can switch on or off its circuit used for energy
reception.
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Fig. 4.1 A four-nodes network and their one-hop loss coefficients

of energy because of loss phenomenon. Technically, the energy losses of a transmission
depend on the receiver and transmitter specific circuitry and on the distance between the
two devices [169]. For the sake of simplicity, we consider that the energy transmission loss
depends only on the distance between the two devices, and that the loss coefficient is an
increasing function with respect to the distance. We also assume that the loss coefficient is
symmetric, i.e. κi j = κ ji. We now model the network as a non-oriented graph G = (V,E)
where V is the set of static nodes. There is an edge between two nodes i and j if and only
if they can directly send energy to each other. Each edge is associated a weight κi j that
corresponds to the loss coefficient of the direct transmission between i and j. In Figure 4.1,
we give an example for a four-nodes topology.

4.4.3 Multihop energy transfer

When the energy is transmitted from a charger to a given node through multihop path,
energy is lost at each intermediate transmission along this path. We denote by Pi j the set of
different paths that exist between nodes i and j. We assume that the final loss coefficient K p

i j

of a multihop transmission between a charger j and a node i along the path p ∈ Pi j, is equal
to the product of the loss coefficients of the intermediate one-hop transmissions.

K p
i j = ∏

(x,y)∈p
κxy (4.1)

Note that if there exists multiple paths from a charger to a node, the loss coefficient may
be different for each path. Hence, we define πi j the minimum energy loss coefficient of a
multihop transmission between a charger j and a node i. We denote by p∗i j the path which
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minimizes πi j.

πi j = min
p∈Pi j

K p
i j = K

p∗i j
i j (4.2)

Figure 4.1 illustrates a two-hops energy transmission between the charger s and node c.
Either node a or b can be used as an intermediate transmitter. If a is used as the intermediate
transmitter, to satisfy the energy-demand Ec, the charger must provide Ecκsaκac because of
the energy loss along the path. If b is selected as the intermediate transmitter, the charger
will have to provide Ecκsbκbc units of energy. Here, πsc = min(κsaκac,κsbκbc).

4.4.4 Charging tree

In the graph G = (V,E) that we consider, we define a charging tree Tj(U,A) as a tree
rooted at j, so that a charger located at j must supply energy to all the node i ∈U . Moreover,
the path from any node i ∈ U to the root j, is the path p∗i j that minimizes the final loss

coefficient K
p∗i j
i j . More formally, Tj(U,A) can be defined as follows.

Tj(U,A) :{
U ⊆V
(x,y) ∈ A ii f (x,y) ∈ E ∧ x ∈U ∧ y ∈U ∧ (x,y) ∈ p∗x j

(4.3)

Clearly, there is a trade off between the height of a charging tree, the time required to
charge all the nodes of the tree and the total amount of energy needed to cover the nodes’
energy-demand. Indeed, due to the cumulative energy loss that happens during a multihop
energy transfer, the longer the transmission path between the charger and the receiver is,
the higher energy the charger has to provide. That’s why it could be interesting to limit the
maximum height h of the charging trees. In order to do this, we denote by Zh

i the set of nodes
that are at most h-hops away from i.

4.5 The optimization model

In this section, we present our optimization model for multihop wireless charging in
WSN. We suppose that we have a set S of chargers of identical capacity C. Our goal is to
determine the minimum number of chargers of fixed capacity (and their locations) required
to charge every element in the network through multi-hop energy transfer. Moreover, our
solution ensures that the energy needed to recharge all the nodes assigned to a charger does
not exceed the capacity of the charger. In what follows, we suppose that the possible locations
of the chargers are restricted to the nodes locations. At the end, our solution constructs
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different disjoint charging trees, so that a charger located on a root can recharge all the nodes
of the charging tree.

Step 1: Shortest-path trees construction

On the graph G = (V,E) that models the network, we first run a modified Dijkstra’s
algorithm, considering a multiplicative cost instead of an additive one. In this way, we obtain
for any pair of nodes i and j the minimum loss coefficient πi j and the path p∗i j that minimizes
this coefficient. We also compute the length of each path p∗i j, and we denote by l(p∗i j) the
number of intermediate nodes of the path between i and j. So, if i and j are two neighboring
nodes, l(p∗i j) = 0. The two quantities πi j and l(p∗i j) are then used as parameters of the MILP
in the second step.

Step 2: Optimization of the number of chargers

In the second step, we run a Mixed Integer Linear Programming (MILP) model that
minimizes the number of chargers under several energy constraints. Indeed, our solution
takes into account the energy-demand of the nodes, the energy capacity of the chargers and
the cumulative energy loss that occurs during multihop energy transfer. Moreover, we can
bound the maximum height of the charging trees by h, i.e. energy is not transmitted over
more than h hops. We recall that Zh

i denotes the set of nodes that are at most h-hops away
from i. Our MILP uses a binary variable Bi j (i ∈ N, j ∈ Zh

i ), that is equal to 1 if the node i
belongs to the charging tree Tj, and 0 otherwise. More specifically, B j j is equal to 1 if and
only if the charging tree rooted at j exists. We can now formulate the MILP that minimizes
the number of chargers as below:

min ∑
j∈N

B j j subject to (4.4)

Bi j ≤ B j j, i ∈ N, j ∈ Zh
i (4.5)

∑
j∈Zh

i

Bi j = 1, i ∈ N (4.6)

∑
i∈Zh

j

Eiπi jBi j ≤C, j ∈ N (4.7)
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∑
x∈Pi j

Bx j ≥ l(p∗i j)Bi j, i ∈ N, j ∈ Zh
i , i ̸= j (4.8)

Bi j ∈ {0,1}, i ∈ N, j ∈ Zh
i (4.9)

The objective function (4.4) minimizes the number of chargers, i.e. the sum of nodes that
are selected as roots. Constraint (4.5) ensures that a node i cannot belong to a tree rooted at
j if the node j is not selected as a root. In other words, the tree rooted at j does not exist.
Constraint (4.6) guarantees that a node has only one charger. It also assures that a node
belongs to only one tree. Constraint (4.7) refers to the chargers’ limited energy capacity. The
left part of the inequality in the constraint represents the amount of energy a charger located
at node j must provide to satisfy the energy demand of all the nodes belonging to the tree
rooted in j. The right part of the inequality specifies that the amount of energy a charger
will have to provide must not exceed its capacity. Constraint (4.8) ensures that we obtain
disjoint charging tree. Indeed, (4.8) states that a node i cannot belong to a tree rooted at j if
the intermediate nodes involved in the transmission of the energy from j to i (i.e. the nodes
that belong to the optimal path p∗i j) are not in the tree j. Finally, constraint (4.9) states that
Bi j are binary variables.

4.6 Performance evaluation

The network that we consider for performance evaluation is composed of 100 nodes
randomly deployed in a rectangular field of 25m X 25m. The energy-demand Ei of every
node is set to 1KJ. We vary the battery capacity of the chargers between 20KJ as in [124] and
2000KJ as in [171]. We also vary the maximum height of the charging trees from 1 to 6 hops.
Two neighboring nodes can exchange energy if there are at most 3 meters away from each
other. The loss coefficient between every pair of neighboring nodes is set equal to 20%. We
solved the MILP models with CPLEX 2 and the constraints are generated in C++. In what
follows, we study for different values of parameters, the optimal number of chargers and the
total energy necessary to satisfy the energy-demand of the nodes. Note that the maximum
height of the charging trees corresponds to the parameter h of the MILP, which means that
the energy is transmitted at most over h-hops (the height of the charging trees is at most h).
This does not mean that the obtained charging trees have a height equal to h. Indeed, even
if the solver will tend to construct charging trees with high height in order to minimize the

2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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number of chargers, if the battery capacity of the chargers is too low, the chargers will only
be able to supply energy to smaller trees.

Figure 4.2 shows the minimum number of chargers required to satisfy the energy-demand
of the nodes depending on the maximum height of the charging trees and the battery capacity
of the chargers. We can make several observations. First, as expected, higher is the chargers
battery capacity, smaller is the number of chargers. This is because a charger will be able
to serve more nodes. Second, we can see that the maximum height of the charging trees
and the chargers’ capacity highly constrain the problem. Indeed, for every battery capacity,
after 4 hops, the minimum number of chargers does not change. This is because the energy
capacity of the charger is not sufficient to build charging trees with more hops. Thus, for
every capacity, after 4 hops, the solution does not change any more and the resulting networks
are similar. Third, our results bring useful information regarding the network dimensioning.
When the battery capacity of the chargers increases from 20KJ to 100KJ, we cut the number
of chargers by two. But when it passes from 500KJ to 2000KJ, we only save two chargers.
So, we may prefer to use 8 chargers of 500KJ instead of 6 chargers of 2000KJ, even if it is
not the optimal solution.

Fig. 4.2 The minimum number of chargers depending on the maximum height of the charging
trees and the battery capacity of the chargers.

From another point of view, Figure 4.3 compares the simulation results of our multihop
energy transfer scheme to a naive single-hop energy transfer approach, which is similar to
[124], where the parameter h is set to 1. As expected, our solution enables to decrease the
total number of chargers required to satisfy the energy-demand of every node. This is because
an higher tree can cover more nodes. The only exception is when the chargers capacity is very
low (20KJ), as the minimum number of chargers is 26, whatever is the considered approach.
In this case, the energy is so low that chargers can only supply energy to the nodes that are
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one-hop away from them. So, even though we increase the maximum authorized height, it
is not possible to decrease the number of chargers by building higher trees. Regarding the
network dimensioning, we can observe that if one of the requirement is to construct 1-hop
charging trees, the minimum number of chargers is 20. In this special case, it is not necessary
to use chargers with more than 100KJ as it will not improve the solution.

Fig. 4.3 The minimum number of chargers for our multihop energy transfer scheme compared
to a naive single hop energy transfer approach.

The amount of energy a charger located at node j must provide to satisfy the energy
demand of all the nodes belonging to the tree rooted at j is equal to ∑i∈Zh

j
Eiπi jBi j as explained

for the constraint (4.7). We call this quantity the energy-supply of a charger. We define the
total energy supply as the sum of the energy-supply of each charger. The minimum total
energy supply we can obtain is 100KJ when a mobile charger is assigned to every node. In
this case, a charger has to supply 1KJ to its single node and we have hundred charging trees
of height equal to 0. This gives a total energy of 100KJ. Even if this solution minimizes the
total energy supply, it is not conceivable as it requires one charger per node.

Figure 4.4 represents the total energy supply required to satisfy the energy-demand of the
nodes depending on the maximum height of the charging trees and the battery capacity of
the chargers. When the height of the charging trees increases, the total energy supply also
increases. This is expected as the cumulative loss coefficient increases when the number of
hops that separates the node from the charger increases. From Figure 4.4, we see that for
every battery capacity, after 4 hops, the total energy supply does not change. This can be
explained by the fact that the optimal number of chargers does not change after 4 hops as we
have seen in Figure 4.2.
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Fig. 4.4 The total energy supply, depending on the maximum height of the charging trees
and the battery capacity of the chargers.

4.7 Conclusion

In this chapter, we have explored how multihop wireless energy transfer paradigm can be
used to enhance the lifetime of low-power networks, by charging nodes in a more controllable
manner. In particular, we have developed an optimization model to minimize the number of
required chargers while taking into account the energy-demand of the nodes, the cumulative
energy loss that occurs during a transfer and the capacity of the chargers. As expected,
multihop energy transfer enables us to reduce the number of chargers necessary to satisfy
the energy-demand of every node. Furthermore, we showed that our solution offers a good
trade-off between the number of chargers, the height of the charging trees and the total
amount of energy needed to cover the nodes’ energy-demand over multihop.
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Chapter 5

Energy-efficiency of human context recognition
systems using wearable sensors for healthcare

applications: state-of-the-art

Human context recognition (HCR) from on-body sensor networks is an important and
challenging task for many healthcare applications because it offers continuous monitoring
capability of both personal and environmental parameters. However, these systems still face
a major energy issue that prevent their wide adoption. Indeed, in healthcare applications,
sensors are used to capture data during daily life or extended stays in hospital. Thus,
continuous sampling and communication tasks quickly deplete sensors’ battery reserves, and
frequent battery replacement are not convenient. Therefore, there is a need to develop energy-
efficient solutions for long-term monitoring applications in order to foster the acceptance
of these technologies by the patients. In this chapter, we survey existing energy-efficient
approaches designed for HCR based on wearable sensor networks. We propose a new
classification of the energy-efficient mechanisms for health-related human context recognition
applications and we review the related works in details. Moreover, we provide a qualitative
comparison of these solutions in terms of energy-consumption, recognition accuracy and
latency. Finally, we discuss open research issue and give directions for future works.
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5.1 Introduction

The aging of the population is a chief concern of many countries since longer life ex-
pectancy and declining fertility rates are increasing the proportion of the elderlies worldwide.
It is expected that approximately 20% of the world population will be age 60 or older by
2050 [173]. This situation poses new challenges to existing healthcare systems, such as an
increase in age-related diseases, dependency, and shortage of caregivers. It is hoped that
technology will helped in addressing these challenges, for instance by helping elderly people
to live more independent lives and thus reducing the burden of caregivers.

It is against this background that the recognition of human context has received a sig-
nificant attention in the medical field, because it is a task of interest for many applications,
including assisted living of elderlies, physical assessment, and supervision of patient with
chronic diseases such as diabetes, obesity, cognitive disorder or arrhythmia [174]. In a typical
scenario, wearable sensors like accelerometers or ECG are attached to the patient to measure
biomechanical, physiological and environmental data [175]. These data are further analyzed
to provide a feedback to caregivers who can assess the efficiency of a new treatment, adjust
medication, better study a disease or supervise a patient behavior [176]. In practice, such
systems face a major challenge that limit their widespread adoption: the significant energy
consumption of battery-operated devices for continuous sensing and communications. Indeed,
radio transmissions, data processing and sensing tasks actively stress the nodes reserves,
whereas they are expected to operate during the course of the day without maintenance.

To tackle this problem, many solutions have been proposed to save energy in context
recognition applications. Among them, we can cite sensor set selection [177], deactivation of
power-hungry sensors [178], adaptive sampling rate [89], communications reduction [179].
All these solutions leverage energy consumption for latency and recognition accuracy. This
is because health-related HCR applications have specific requirements, and energy-efficiency
is usually understood to mean a satisfactory trade-off between three optimization criteria:
low energy consumption, high recognition accuracy and low latency. Although numerous
methods have been proposed to address the energy problem of HCR based on body sensors,
there does not exist a comprehensive survey on the techniques available in the literature. In
this chapter, we survey the state-of-the-art of energy-efficient HCR solutions making use
of wearable sensors. Our aim is to provide designers of HCR systems with a survey that
offers a holistic view of energy-saving solutions while taking into consideration the specific
requirements of healthcare applications.

This survey is organized as follows. In the next section, we introduce health-related
human context recognition applications using wearable sensors. Then, in Section 5.3, we
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discuss the general components of context recognition systems and their main requirements.
Afterwards, in section 5.4, we introduce our classification of the existing energy-efficient
mechanisms developed for HCR applications. From Section 5.5 to 5.8, we present solutions
related to respectively power-on time reduction, communication reduction, computation
reduction, and battery charging. Subsequently, in Section 5.9, we provide a qualitative
comparison of the reviewed solutions, and in Section 5.10 we identify open research issues.

5.2 Human context recognition using wearable sensors

In this section, we briefly introduce human context recognition (HCR) applications
making use of wearable sensor networks.

5.2.1 Applications

A human context recognition system using wearable sensors exploits sensors signals
that allow monitoring a user and its environment in order to infer ongoing tasks and living
conditions. Human context recognition encompasses both personal context recognition (e.g
activity, health status, emotion) and environmental context recognition (e.g. location, dust-
level, social interaction), as described in Table 5.1. The comprehension of the personal and
environmental contexts is of great importance to improve the patient follow up for medical
and wellbeing applications.

Human context Context type Sensor type
Personal context activity, emotion, health status accelerometers, gyroscope,

blood pressure, ECG, EMG,
temperature

Environmental con-
text

location, place, noise-level,
pollution, social interaction

GPS, WiFi traces, CO2 sensor,
luminosity, microphone, Blue-
tooth scans

Table 5.1 Human context recognition.

In a typical scenario, patients wear sensors that supervise their vital parameters in order
to identify emergency situations and allow caregivers to respond effectively. This kind of
application includes remote vital sign monitoring [15], and sudden fall or epilepsy seizure
detection [16]. Moreover, body sensors can be used to gather clinically relevant information
for rehabilitation supervision, elderly monitoring [180] or to provide support to a person
with cognitive disorder [181]. For example, in [181], Lin et al. use a GPS-enabled wearable
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device to detect potential disorientation behaviors of cognitively-impaired elders. Zhan
et al. [180] infer activities of daily living using accelerometer and video data embedded
in conventional reading glasses in order to remotely supervise elder and disabled patients.
Another type of health-related system aims to use human context information to promote
a more active and healthy lifestyle. For example, the BeWell+ application monitors user
everyday activities using the accelerometer and microphone sensors on phone [182]. It
computes and displays wellbeing scores (sleep score, physical activity score and social
interaction score) in order to encourage healthy behaviors. In [175], the authors designed
a system to promote physical activity among elderlies: the platform uses wearable sensors
to provide a real-time feedback to the user regarding his movement. It is worth mentioning
that human context recognition can be of great interest in other domains of application such
as gaming or in industry. However, health-related applications have specific requirements
in terms of energy-consumption, latency and recognition accuracy. These specifications
justify the fact that dedicated energy-efficient solutions have been developed in the literature,
although they may be transferable to other applications.

5.2.2 History

Early researches in context recognition were conducted using vision-based systems [183],
but these systems were found expensive, intrusive and limited to well-equipped laboratories
because of their cost and complexity. With the development of hardware technologies,
sensing devices - lightweight enough to be worn - were developed. They provided a low-cost
and effective alternative for human context recognition [184]. As a consequence, the first
studies on human context recognition using wearable sensors emerged around the 1990s.
They mostly relied on inertial sensors such as accelerometers and gyroscopes, and focused on
recognizing a special subset of everyday activities (e.g. ambulation, walking, sitting, typing)
[185]. At that time, a portable data logger was used to gather the data from body mounted
sensors. Although these research prototypes were still bulky and did not propose real time
feedback, they offered promising perspectives for ubiquitous and personal applications.

In early 2000s, medical sensors have incorporated wireless connections, such as Bluetooth
and ZigBee, to communicate wirelessly to nearby computers, personal digital assistants, or
mobile phones. Meanwhile, advances in miniaturization permitted sensors to be embedded
within wrist band, belts, bracelets, rings [186]. Since then, mobile and real-time systems
incorporating multi-modal sensors that could be used to recognize physical activities, social
interactions or location have emerged [187]. Still, these applications were constrained by the
sensors resources limitations. On the one hand, low memory and computation capabilities
of sensors required the development of new algorithms for signal processing and context
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classification. On the other hand, the sensors’ energy consumption became a key challenge
for the successful development of pervasive systems which necessitate to be worn during an
extended period of time for in-wild experiments and long-term monitoring applications.

5.2.3 Sensors

One of the most commonly type of sensors used for personal context recognition is
accelerometers, because they are small, cheap and unobtrusive. Other types of sensors
used for health-related data collection include pressure sensors, body temperature sensors,
electromyography, oximetry sensors, and electrocardiographs. More kinds of sensors have
been employed to improve the context-awareness of the application. For example, GPS
or WiFI traces are used to determine the user localization [188], microphone records and
Bluetooth traces are analyzed to detect ongoing interaction [189], CO2 and dust sensors
are employed to estimate the pollution level [190]. With the advances in miniaturization,
increasingly pervasive sensing devices have been developed: sensors are now integrated into
clothes, smart glasses and wearable rings [180, 186, 191]. A step further, some applications
now instrument objects in the user’s environment with RFID tags, and use data from a
wearable RFID reader to infer household activities (such as making coffee, doing laundry,
washing dishes) [179]. However, the use of RFID tags restricts these approaches to closed
instrumented environments.

Depending on the application objective, a recognition system can use the same type
of sensors at multiple body locations or combine complementary sensors that can help in
recognizing personal and environmental contexts, e.g motion and audio, motion and location
[188, 192]. Traditionally, information sources were deployed for a specific goal, but new
applications try to dynamically adapt to available sensor data [193]. Indeed, the available
source of information now varies depending on the user co-location with other body area
networks [194], and on the user location when there exist space-embedded sensors [195].

5.2.4 Context information

Having the viewpoint of human context sensing provides a great deal of advantages.
First, the recognition of human environment helps to efficiently monitor the current human
activity, and vice versa. For instance, in [179], Wang et al. employ location information to
infer household activities. Nath propose ACE [196], a system that can learn associative rules
between contexts such as ’if the user is not walking and is not driving, he/she is indoor’. In
CenceMe [197], Miluzzo et al. show that activity classification accuracy varies when the
phone is carried in the pocket or in the hand. This is why the system uses phone sensing
context to drive the classification model by switching in the right technique to enhance the
application performances. Moreover, the result of a context recognition application can be
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Fig. 5.1 The main stages of human context recognition systems.

used a clue to reduce the energy consumption of the recognition system itself. For example,
a human activity recognition system can reduce its energy consumption when the user is not
moving or performs activities with low intensity [89, 198]. A place detection application
can monitor the user mobility and location in order to take advantage of the existence of
external devices in the environment to save energy [192, 195]. Finally, personal context
recognition can improve the energy efficiency of an ambient context recognition system,
while the environment recognition can certainly enhance the energy-efficiency of personal
context recognition application. For example, in SensLoc [188], when the movement detector
detects that the user is stationary, it switches off the path recognition application. Inversely,
one can imagine that if a location recognition system detects that the user is at home, a
vision-based system in charge of monitoring the user’s personal context may be activated,
thus relieving the wearable sensors.

5.3 General framework and requirements

In this section, we first describe the general structure of any human context recognition
system, and we propose a generic architecture able to support such applications. Then, we
present the main requirements of HCR applications.

5.3.1 General framework

General models for context recognition systems are given by Bulling et al. [199], Hoseini-
Tabatabaei et al. [187], and Lara and Labrador [174]. The main stages for human context
recognition include sensing, signal processing and data analysis, as illustrated in Figure
5.1. More specifically, sensing corresponds to the data acquisition at sensor nodes which
produces raw data. Then, the data stream can be preprocessed to filter out signal variability.
At the segmentation stage, the processed data are split into time windows that are likely to
contain an information. Afterwards, features extraction is applied to each segment in order
to obtain relevant characteristics of the signal, e.g. standard deviation, average, discrete Fast
Fourier Transform (FFT) coefficients. During the training phase, the extracted features and
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Fig. 5.2 A generic human context recognition architecture.

corresponding ground truth labels are used as input to train a classifier model. During the
testing phase, the extracted features and the trained model are used to identify the ongoing
activity or current environment. Finally, depending on the recognized context, the application
can provide the user with a feedback (e.g display a wellbeing score, raise an alarm).

To support this context recognition chain, a typical HCR architecture relies on the fol-
lowing devices: body sensors and possibly ambient sensors, a base station and possibly a
remote server. This generic architecture for HCR is shown in Figure 5.2. In the first place,
wearable sensors worn on the body measure attributes of interest such as ECG, motion or
temperature. Ambient sensors (e.g. microphone and tagged objects) may also be used to
improve the context-awareness of the application. The sensors communicate with a base
station, which can be a laptop or a mobile phone, and whose main role is to run the healthcare
monitoring application. In order to do that, the base station can communicate with a remote
server on which the collected data are stored. Data acquisition is performed at the sensors,
and at the base station when it has integrated sensors as is often the case of today’s mobile
phone. The other tasks (signal processing and data analysis) can be conducted on any devices
depending on the architecture. The different devices (sensors / base station / server) have
various computing, memory and energy capabilities.

From the generic architecture presented in Figure 5.2, we identify different scenarios
in Table 5.2. Indeed, depending on where the context recognition tasks are executed, the
energy/performance profile of the body sensor network varies. For example, in scenario 1,
the sensors have the possibility to directly store the raw data, leaving all the processing for
later. The drawbacks of this method is that it prevents real-time feedback to the patient and it
requires a lot of memory, even if to save space, the sensor can store extracted features. Another
solution, represented in scenario 2, consists in sending the raw data to the base station, but it
results in a huge amount of energy consumption due to transmissions. In the meantime, using
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a more powerful base station allows to have access to more complex algorithms and models.
Furthermore, in scenario 3, the sensor can send only the extracted features or the compressed
signal, which decreases communication cost but increases the computation load. Indeed,
computations that run on a mobile device can also consume a considerable amount of energy:
Milluzzo et al. [197] noticed that sampling the phone’s microphone and running a discrete
Fourier transform on the sound sample uses more power than sampling the accelerometer and
classifying the accelerometer data. In scenario 4, the entire context recognition process is
performed on the sensor. From the energy point of view it may be optimal, but sensor scarce
resources limit the implementation to lightweight algorithms. Actually, some classification
algorithms are very expensive in terms of memory and computation requirements, which
makes them not suitable for sensor platforms [174]. Therefore, there exist a trade-off
between the accuracy that can be achieved through local computation and the additional
power required for transferring the data. Besides energy consideration, when the context
recognition is conducted on sensors, it could prevent designers from using these sensors as
sources of information in opportunistic applications since the results will be application- or
user-centric. In scenario 5, we present a more complex hierarchical architecture, where the
sensor calculates extracted features and sends them towards the user’s mobile phone. Using
these samples, the phone performs personal context recognition (e.g activity recognition),
and sends the recognized activity, as well as its own raw data obtained from an integrated
microphone, to a remote server, which performs the social context recognition.

Inferring the context locally has been emphasized to provide a number of advantages
[197]. It presents resilience to cellular or WiFi dropouts and minimizes the data transmitted
to the backend server, which in turn improves the system communication load efficiency. It
also protects user privacy and the data integrity by keeping the raw data on the mobile device.
However, the complexity of the applications is limited by the available local computing and
storage resources. Uploading data to a mobile phone or a backend server provides better
opportunities for the exploitation of aggregate data from a large number of users, while
allowing for the realization of more complex applications. However, it demands more serious
considerations of privacy, and requires a careful study of the additional delay and power
consumption needed for the remote context delivery. As we can see, context recognition
architectures often leverage energy consumption for accuracy and latency performances, and
vice versa.

Finally, when considering multiple sensors communicating with a mobile phone, two
alternative approaches are generally envisioned: pull and push models. In push approaches,
the sensors transmit continuously their samples (or extracted features) to the smartphone
[200]. On the one hand, this technique increases the accuracy by maximizing the amount
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Scenario Architecture Advantages Disadvantages

1 • no energy consumption for
transmission and processing

• memory needs

• no real-time feedback

2

• no computation at sensor

• access to more complex algo-
rithms

• increase energy consumption
for transmission

• increase energy consumption
at the mobile phone

3 • reduce energy for transmis-
sion at sensor

• lightweight pre-processing
algorithms at sensor

4

• reduce energy for transmis-
sions

• increase privacy

• increase resilience to wire-
less dropouts

• increase energy for computa-
tion at sensor

• not for opportunistic ap-
plications since results are
application- or user-centric

5

• possibility to merge different
sources of information

• opportunities for resources
sharing

• allow complex processing

• need for security

• trade-off between local and
remote computing must be
carefully studied

• dependent on network access

Table 5.2 Possible architectures for context recognition.
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of acquired data. On the the other hand, continuous transmission of high data rate streams
can often impose impractical traffic loads on existing wireless technologies likely to be
used between the sensors and the mobile gateway (e.g. ZigBee, Bluetooth). Although
sensors can take decision on whether to transmit or not the data based on internal processing,
such as accelerometer classification, the data acquisition process is generally decoupled
from the actual context recognition. Inversely, in pull services, the mobile phone acts as a
coordinator, and carefully chooses the order and the numbers of data items to request from
each individual sensor [176, 201]. These solutions spare bandwidth and allow implementing
more fine-grained optimization since the device retrieve information from sensors depending
on the application needs. In the same time, the latency will certainly be increased.

5.3.2 Requirements

Health-related application making use of wearable sensors have specific requirements, and
designers of energy-efficient user context recognition systems face challenges associated with
the trade-off between high recognition accuracy, low latency and low power consumption.

The energy consumption is decisive in order to ensure long term monitoring of the
patients and to foster the acceptance of these technologies by the patients. Generally, most
of the energy drainage is due to the radio communications, followed by the sensing and
computation tasks. When considering the general architecture depicted in Figure 5.2, it is
important to notice that both the sensors and the base station may be energy constrained
which currently dramatically limit the use of context monitoring applications. Traditionally,
powerful laptop were used as base station, but for mobility consideration most of the works
now consider mobile phone as base station. Although phones are more powerful devices
compared to wearable sensors, the truth is that they also face energy consumption problems
[202]. Thus, we will consider studies that are interested in either the energy consumption of
the sensors or the base station (e.g. mobile phone). Note that few approaches aim to tackle
the energy problem of both devices [178, 194].

The latency corresponds to the system reactivity, that is the time that elapsed between
the beginning of an activity and its detection by the system. It includes the time required to
acquire, process and analyze the data. The latency is crucial for some critical applications
such as epilepsy seizure detection and sudden fall detection. In this case, low detection
latency is the chief concern so that less attention may be paid to the node battery charge.

The recognition accuracy characterizes how well the system detects and identifies
current contexts from sensor data. This usually requires that the recognized context be
compared to ground truth labels representing the actual environment and activity being
performed. Besides correct classification, context recognition systems can miss, confuse or
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falsely detect events that did not occur [199]. Therefore, the recognition accuracy is defined
as the number of correct predictions over the total number of predictions [178, 179]. There
exist several other metrics to evaluate the performances of a recognition system, such as
precision, recall or F-Measure [203] but most of the reviewed architectures consider the
accuracy.

We used the data of SociableSense [192] to represent in Figure 5.3 the latency and
accuracy achieved by this architecture in function of the energy consumption. This behavior
illustrates the traditional energy-latency-accuracy trade-off faced by context recognition
applications. As we can see, when the energy decreases, the latency increases and the
classification accuracy degrades. This is because energy-efficient mechanisms spare resources
to increase the devices lifetime.
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Fig. 5.3 The energy-latency-accuracy trade-off of an activity recognition application [192].

5.4 Classification of energy-efficient mechanisms

Energy conservation in wireless sensor networks (WSN) in general, and in wearable
computing in particular has attracted many research works that have already been surveyed.
For WSN, in [2], Anastasi et al. present a valuable taxonomy of energy-conservation schemes
focusing on duty cycling and data-reduction approaches. There also exist surveys that
concentrate on only one energy-efficient mechanism (like energy-efficient routing protocols
or data aggregation techniques [3, 4]) since every category of solution often represents a
whole research area in itself. Regarding wearable computing, Lane et al. [204] review
many challenges related to mobile phone sensing, and Hoseini-Tabatabaei et al. [187] study
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Fig. 5.4 Energy consumption profile of different devices.

smartphone-based user context recognition, but they do not focus on energy-efficiency. Our
survey is different since we focus on energy-efficient solutions in the sense that they trade-off
energy consumption for latency and accuracy. This is a central characteristic of human
context recognition systems since they require low data delivery delay, high accuracy and
long-term monitoring capacities. Moreover, we decided to concentrate on recent studies
to provide the reader with up-to-date research results. Before discussing our classification
of energy-efficient mechanisms developed for human context recognition applications, we
highlight the main sources of energy consumption in sensor nodes and energy-constrained
base station.

We represent the energy consumption profile of different devices, including sensors and
mobile phones in figures 5.4a to 5.4e. As can be seen, the main draining tasks are sensing,
communication and computation operations. Indeed, we can observe in figures 5.4b and
5.4c that the sensing task due to power-hungry sensors such as gyroscope can consume a
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large amount of energy, dominating radio transmissions. This is why some solutions seek
to minimize the wakeup time of sensor nodes. The communications also represent a high
source of energy expenditure in mobile phones and sensor nodes. For example, in Figure
5.4a the Wi-Fi communications consume six times as much energy as the sensing task on
accelerometer. Similarly, in Figure 5.4e the continuous transmission of raw data drains twelve
times as much energy as sampling the accelerometer. Therefore, many existing solutions
aim to reduce the amount of exchanged data between devices. Finally, we can observe that
it is worthy to reduce the computation load, especially on mobile phones since the CPU
energy consumption at high frequency can represent a non-negligible fraction of the energy
consumption as illustrated in Figure 5.4d. Regarding sensor nodes, it has been observed
in [176] that computing certain feature on sensor node is relatively inexpensive since the
additional CPU energy cost can be compensated by the reduction of packet transmissions.
However, it does not make sense to compute more computationally-demanding feature. For
example, it appears in Figure 5.4c that the computation cost of a Fourier transform is of
the same order of magnitude as the cost of transmitting raw data. In addition to theses
considerations, battery charging techniques scavenge energy from the environment or human
activities, such as lower-limb motion or body heat, which have great potential to become
sustainable power sources for wearable sensors.

Based on these observations, our proposed classification of energy-efficient mechanisms
for HCR systems is summarized in Figure 5.5. We have distinguished four main categories
of energy-efficient solutions, namely, power-on time reduction, communication reduction,
computation reduction and battery charging. In the next sections, we survey these different
approaches. For each technique, we provide a description of its principle, followed by a
review of related solutions.

5.5 Power-on time reduction

In this section, we survey power-on time reduction schemes whose aim is to adapt the
sensor operations in order to save energy by switching the nodes to the sleep mode. The
radio, CPU and sensing unit are all turned off to reduce the energy spent for communication,
computation and data acquisition.

5.5.1 Sensor set selection

The objective of sensor set selection techniques is to achieve a good trade-off between
the number of sensors activated and the classification accuracy. Indeed, the usage of many
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Fig. 5.5 Classification of the energy-efficient mechanisms and battery-charging mechanism
for the lifetime maximization of human context recognition applications.
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sensors may increase the recognition accuracy at the expense of additional energy consump-
tion at the node level. Therefore, sensor set selection activate a subset of nodes depending
on their contribution to keep a desired classification accuracy. Sensor set selection can be
static [177] or dynamic [214]: the static approach makes the selection prior to deployment;
the dynamic solution performs the selection at runtime, depending on some parameters such
as the nodes residual energy, the required accuracy or the user activity.

Zappi et al. [214] developed a dynamic sensor selection scheme that selects a new cluster
of sensors each time a sensor runs out of energy or fail. The cluster must be able to achieve
a minimum desired classification accuracy and is such that even if a node fails, the other
active sensors are still able to maintain the given accuracy. Noshadi et al. [177] consider the
problem of selecting a subset of sensors, called predictors, so that it is still possible to infer
the data of the not-selected sensors through prediction. These two selection schemes assume
sensor redundancy (e.g Noshadi et al. consider up to 19 sensors attached to the arms of a user,
Zappi et al. applied their method to a plantar pressure system with 99 sensors), but in body
sensor network this assumption may not be practicable for sake of wearability. In SeeMon
[217], Kang et al. dynamically select a small subset of sensors, called Essential Sensor Set
(ESS), sufficient to answer the registered queries. Gao et al. [215] consider multi-modal
sensing network for activity recognition and propose a framework that selects in real-time a
subset of sensors to reduce energy consumption due to data transmission. They use convex
optimization to minimize the number of active nodes while guaranteeing that the probability
of misclassification using this subset is under a given threshold. Gordon et al. [216] use
prediction to identify the future activities which are likely to occur and adapt the sensor
subset accordingly. In a training phase, they first evaluate the dependency of each activity on
the sensors, where the degree of dependency is the loss in accuracy compared to the usage of
every sensor. At runtime phase, based on the classification history, future activities which are
likely to occur are predicted. Then, only a subset of sensors is activated to distinguish the
likely activities at little or no recognition cost.

5.5.2 Deactivate power-hungry sensors

The sensors have different energy consumption profiles, so it is worthwhile to deactivate
the power-hungry devices when possible. Indeed, in [176], Lorincz et al. compare the
energy consumption of different sensors and they measure a factor of 19 between sampling
gyroscope (53163 µJ) compared to sampling accelerometer (2805 µJ). Thus, designers may
consider disabling the gyroscope when the user is performing activities with low intensities
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and turning off the GPS when the user is sitting or standing still [174].

Several solutions wake up power-hungry sensors on behalf of cheaper accelerometer
measurements. Sun et al. [207] consider an ECG-based application where high physical
activity can confounds the signal. They propose the PEAR (Power Efficiency through
Activity Recognition) architecture, which runs an on-board activity classification algorithm
that determines whether the user is active or not by processing accelerometer data. If the user
is in active state, the ECG stops sampling, transmitting and switches off its radio. In inactive
mode, ECG data are sampled at 100 Hz and features are extracted from these data every 5 s
and sent to the base station. Park et al. [178] propose the E-Gesture architecture for hand
gesture recognition using hand-worn sensor device and a mobile phone. Their objective is to
reduce the power-on time of the gyroscope while achieving high recognition accuracy under
dynamic situations. Thus, the accelerometer continuously performs gesture recognition, and
when it detects a gesture, it wakes up the gyroscope. Then, if the gyroscope confirms that the
user is performing hand gesture, the sensor sends the data to the mobile phone. Lorincz et al.
[176] proposed Mercury, a wearable sensor network platform for neuromotor disease studies,
which uses accelerometer data to determine whether the node is moving or not. If the node
is not moving, power-hungry sensors like gyroscopes are disabled and accelerometer data
are dropped. Kim et al. present SensLoc [188], a place detection system which employs a
movement detector to control active cycle of power-hungry sensors. Accelerometer data are
used to awake WiFi beacons scans for place detection, while the GPS is awaken when the user
leaves a place. The Energy Efficient Mobile Sensing System (EEMSS) proposed by Wang
et al. [218] activates high-resolution power-hungry sensors only when low-consumption
ones sense an interesting event. With a different frame of mind Laerhoven and Gellersen
[219] suggest to replace a power-hungry gyroscope with nine cheaper and low-consuming
accelerometers. They show that by increasing the number of sensors while decreasing their
individual accuracy, it is possible to lower power consumption. Similarly, when the locality
of a user is required, one can take advantage of the energy-accuracy trade-off between
different techniques, where energy consumption increases from WiFi-based localization to
GPS schemes, while the accuracy decreases from GPS to WiFi methodologies.

The solutions that consist in deactivating power-hungry sensors adapt the sensors opera-
tions to the user’s context. Thus, the energy gain is dependent on the user activity profile. For
instance, PEAR is designed in such a way that more energy is saved when the user is active
because the solution switches off the ECG during high physical activity as it can confounds
the signal. In contrary, Mercury saves more energy when the user is inactive as power-hungry
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sensors are disabled. Similarly, SensLoc saves more energy when the user mobility is low
because both GPS and WiFi scans are deactivated.

5.5.3 Context-based pull services

An alternative approach towards reducing energy consumption exploits the correlation
between contexts. Instead of continuously collecting data from sensors, these solutions
decide whether or not acquire more data depending on statistical correlation across different
forms of contexts.

The Acquisitional Context Engine (ACE) [196] uses intelligent sensor caching and
activity correlation to reduce power consumption by using already inferred attributes or
choosing less power hungry sensors to infer correlated activities. For example, when the
system already knows that the user is driving and has learned the rule: ’if the user is driving,
the user is not at home’, ACE can deduce that the user is not at home without acquiring any
sensor data. Similarly, ACE can first probe less energy consuming sensor – accelerometer –
to determine whether the user is driving or not, and if the result imply that the user is not
driving, it turns the GPS on and infers the actual user’s location. Nath argues that ACE can
be complemented with SeeMon [217] to integrate the temporal continuity of context in order
to extract sophisticated rules such as ’if a user is in his/her office now, he cannot be at home
in next 10 minutes’. MediAlly [220] adopts an Activity Triggered Deep Monitoring (ATDM)
paradigm as an energy saving mechanism, where medical data streams are collected and
relayed to a central server only when monitored context information is evaluated and satisfies
given predicates. As an example, MediAlly can collect ECG data whenever the subject’s
context indicates physical or emotional stress. The ACQUA (Acquisition Cost-Aware Query
Adaptation) [201] system avoids retrieving unnecessary sensor data by sequentially acquiring
the data which has the highest probability to determine the result of the query. This choice is
based on a-priori knowledge of energy consumption costs and probabilities, which can be
inferred based on historical traces obtained for previous query executions. These approaches
can save energy in the case of repetitive context, but are not applicable to detect more
spontaneous contexts.

5.6 Communication reduction

In this section, we review techniques that aim to reduce the data communication costs,
either by reducing the amount of data to be transmitted in the network or by carefully
selecting the communication technology.
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5.6.1 Adaptive sampling rate

In [237], Maurer et al. studied the impact of the accelerometer sampling rate on the
recognition accuracy and they found that no significant gain in accuracy is achieved above
20 Hz for ambulation activities. Therefore, depending on the user activity and the type of
sensor, it may not be necessary to sample at the maximum rate in order to achieve a desired
accuracy. The key idea behind adaptive sampling rate is to adapt the frequency of data
acquisition depending on the recognized context. This technique leads to fewer unneeded
samples, which will result in less data to transmit.

In A3R (Adaptive Accelerometer-based Activity Recognition), Yan et al. [89] propose to
adapt both the sampling rate (SR) and the classification feature (CF) in real-time. For each
activity they compute offline the accuracy that can be achieved for different tuple < SR,CF >

of sampling rate and classification feature. Then, depending on the strategy, they determine
per-activity the optimal tuple that can achieve a user-specified accuracy, or the tuple that
have the highest ratio of accuracy over energy consumption. At runtime, when an activity
is recognized, the application selects the corresponding tuple < SR,CF > which enables
to tradeoff energy and accuracy. Afterwards, in [198], Qi et al. introduced the idea that
it requires a lower sampling rate to determine whether a specific activity happens or not
than classifying multiple activities. Thus, their AdaSense architecture periodically decides
whether the current activity changes or not through single activity event detection with a lower
sampling rate. If a change is detected, AdaSense switches to the multi-activity classification
at a higher sampling rate. Then the solution performs event detection of the new activity at
a lower sampling rate. The major drawback of these solutions is the lack of flexibility as
configurations are selected once and for all for a given activity, which requires a new training
phase when considering new activities. In order to reduce the energy consumption and keep
a low localization error, Liu et al. [221] consider that activities associated with faster speed
need a higher GPS sampling rate and vice versa. The Jigsaw solution dynamically learns
the optimal GPS duty cycle scheme given the remaining battery budget level, the expected
duration of the tracking application and the user’s runtime mobility level provided by the
accelerometer.

5.6.2 On-board computation

On-board computation is used to reduce the amount of data to be transmitted towards the
base station. The rational behind this method is that computation requires less energy than
communication. For example, a node can perform signal processing tasks such as feature
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extraction in order to transmit the result instead of raw data. Similarly, compression encodes
information in such a way that the number of bits needed to represent the initial message is
reduced. This is energy-efficient because it reduces transmission times as the packet size is
smaller. Another possibility that can be exploited jointly is to send burst of data instead of
one data per packet.

Wang et al. [179] present a hierarchical architecture for real-time activity recognition,
composed of accelerometer body sensors, two RFID readers positioned in each hand to
detect handling of tagged objects and an UHF RFID reader in each room to locate the user
who wears a UHF tag. The system operates in two stages. First, the accelerometers process
their data to perform gesture recognition (e.g. right hand moving up, sitting down) at the
node level. Then, recognized gestures, tagged objects and user locations information are
transmitted to a PDA device, which runs the activity recognition (e.g. eating, making coffee,
shaving) algorithm. Energy is saved at the sensor level thanks to reduced communication
overhead, as nodes only transmit 1 byte data containing the gesture label every second.
They demonstrate that the hierarchical approach enables to reduce the communication cost
by 60% compared to a solution where all the sensor readings are transferred to the base
station. The E-Gesture architecture [178] reduces packet transmissions by sending data only
when a gesture is detected by both the accelerometer and the gyroscope sensors. Wang
et al. [222] compare the energy/performance trade off between an on-node scheme where
the classification is performed on the accelerometer, and an off-node scheme where the
accelerometer sends its raw data to the base station. They show that with the on-node scheme
40% energy can be saved with 13% reduction in classification accuracy. So, their results
suggest that it is more energy-efficient to perform all the tasks on the sensors. However,
computation offloading is sometimes more energy-efficient than local computation without
loss in accuracy (see subsection 5.7).

5.6.3 Network interface selection

Sensors and mobile devices are often equipped with multiple network interfaces, such as
ZigBee, Bluetooth, WiFi, and 3G. Each communication technology has different characteris-
tics in terms of bandwidth availability, service area, economic costs and energy-consumption
pattern. Thus, it is necessary to efficiently select the network interface in order to extend the
lifetime of the mobile devices. This selection depends on the environment opportunities, that
is, on the connection availability and on the application requirements (bandwidth, link quality,
energy). Energy-efficient radio selection protocol have been proposed for both mobile phones
and sensors.
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In [224], Kim et al. privilege WiFi communications because they are more energy-
efficient than 3G. Since 3G networks have wider service areas, their objective is to detect
rapidly available WiFi access point while limiting the number of power-consuming WiFi
scans. Similarly, Rhamati and Zhong [225] are interested in estimating the WiFi availability
without turning on the interface because the energy cost for establishing a connection is very
high, while it consumes less energy than cellular networks. They propose different selection
policies based on the time, history, cellular network conditions (available access point, signal
strength), and device motion. In [223], Paschou et al. select the most suitable data transfer
technology to be used (e.g WiFi, 3G, SMS), depending on the volume and type of health data
to be sent. The authors minimize the economic cost for the customer, but their work can be
extended to consider other metrics.

Some studies consider sensors equipped with two radios: a low-power, low throughput
radio, and a high-power, high throughput radio. Indeed, higher throughput radios have a
lower energy-per-bit cost, but they also have higher start up time and cost. Therefore, high
bandwidth radios become more energy efficient only when a large number of byte have
to be transmitted, which compensate the wakeup energy overhead. The exact number of
bytes above which a radio becomes more energy-efficient is called the break-event point.
Nonetheless, not every healthcare application requires such a high data rate. Moreover, the
energy consumption of high-power radio when idle is prohibitive, so it is imperative to turn
it off when not in use. The transition overhead due to start-up cost can be amortized by
buffering a minimum amount of data. In this context, Sengul et al. [227] propose the Bulk
Communication Protocol (BCP) where the source node stores data in its buffer, and once it
reaches a threshold (superior to the break-even point), it sends a message to the receiver over
the low-power radio to ask him to turn on its high-power radio. Loseu et al. [226] accumulate
data at local nodes and transmit them in bulk while not violating the timing constraint. The
drawback of these solutions is the delay induced by the buffering process. Therefore, for
strict deadline (e.g 20ms – 1s) healthcare applications it is preferable to use a low-power
low-throughput radio since there is no time to accumulate enough packets in buffer.

Multi-radios devices offer new opportunities to save energy at both the sensors and the
base station. However, even though the break-even point is indicative of the relative energy
efficiency between two radios, it does not capture all parameters. For example, the radios
may have different transmission range which will require more or less relay nodes depending
on the used interface. Similarly, all the radios may not be available at the same time, or they
may experiment different packet loss and interference profile, which directly impacts the
energy consumption and robustness. Thus, there is a lot of trade-off to be explored between

88



5.7 Computation reduction

energy-consumption, latency and robustness when designing network interface selection
protocols in multi-radios systems [238].

5.7 Computation reduction

In this section, we focus on mechanisms that target the reduction of computation costs,
as human context recognition applications require power-hungry and complex algorithms to
process the signals and perform the classification task.

5.7.1 Computation offloading

For a node, computation offloading strategy consists in offloading a part of its compu-
tation tasks to another device. For example, a sensor can execute (a part of) its tasks on a
more powerful base station (e.g. laptop, PDA), while a base station can offload its tasks on a
back-end server. Thus, intensive calculation are performed on nodes with higher resources.
This approach has proven to be energy-efficient under some conditions [192, 195, 239],
and the usage of devices with different computing, storage and energy capabilities allows
incorporating more complex algorithms and models. Thus, computation offloading leads to a
trade-off between energy, latency and recognition accuracy.

In [192], Rachuri et al. propose SociableSense, an architecture dedicated to activity
recognition for sociable interactions, where a phone with integrated sensors can offload its
tasks to the cloud. SociableSense dynamically decides whether to perform the computation
locally on the phone or remotely on back-end servers by maximizing a weight additive
utility function that integrates the energy consumption, the latency and the amount of data
sent over the network. The results show that it is more energy-efficient to offload the
speaker identification task to the cloud when using the phone’s microphone. This is also the
configuration that achieves the lowest latency. CenceMe [197] performs audio and activity
classification on the phone, while higher level forms of context such as social interaction and
location are classified on a remote server. Liu et al. [228] developed a localization technique
based on GPS sensing that offloads some calculations to the cloud. With few milliseconds
of raw satellite’s data, the server can estimate the device’s past locations by exploiting
information from public, on-line databases. Therefore, uploading data on a backend server
can ease the execution of burdensome tasks when an appropriate strategy controls the impact
of the communication load. However, custom-made application execution partitioning,
such as the one used in CenceMe and SociableSense, requires significant effort from the
developer’s side. More general solutions allow an application developer to delegate the
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partitioning task to a dedicated middleware. MAUI [229], for example, supports fine-grained
code offloading to a cloud in order to maximize energy savings on a mobile device.

5.7.2 Opportunistic resources sharing

High density of sensing devices including mobile phone, wearable and ambient sensor
networks has accelerated the rise of innovative collaborative sensing applications. Example
of such application is Ear-Phone [236], which constructs a noise map from samples obtained
by crowdsourcing data collection. On the one hand, the presence of other devices in close
proximity to the user can be employed to increase the sensing capabilities of a unique device.
On the other hand, many opportunities for establishing opportunistic connections between
devices can be used for energy-efficient resources sharing.

The Remora architecture introduced by Keally et al. [194] exploits the physical proximity
of several users to share resources among neighbouring Body Sensor Networks (BSN).
Indeed, colleagues, family members or sport team may spend time together performing the
same activity, in such a way that their respective BSN can overheard data transmission and
collaborate. In this situation, if the proximity duration is long enough, resources sharing
can provide an energy benefit. Remora implements a collaborative sensor node selection to
improve accuracy while disabling as much sensors as possible, and duty-cycles classifiers so
that one phone make the classification while other phones go into sleep mode. The CoMon
platform [190] also addresses the energy problem through opportunistic cooperation among
nearby users. CoMon first discovers nearby devices by periodic Bluetooth scans and selects
candidates that will potentially stay in the vicinity for long period. This is to ensure that
the cooperators will stay longer enough to breakeven the overhead due to the initiation of
the cooperation. Then the devices negotiate a cooperation plan than will provide a mutual
energy benefit. The authors highlight the difficulty of providing a fair negotiation process
taking into consideration available sensing devices and their residual energy, user policies,
and different sampling rate or accuracy requirements. ErdOS [230] is a mobile operating
system that extends the battery life of mobile handsets by exploiting opportunistic access to
resources in nearby devices using social connections between users. Notably, they distribute
the sensing burden of shared ambient context by sharing GPS reads with nearby devices.
Rachuri et al. [195] propose to offload some sensing tasks from user phone to remote sensors
embedded in the environment. Their algorithm, called METIS, dynamically distributes the
sensor tasks between the user phone and the infrastructure sensors based on the sensing
power, sampling rate and user mobility. METIS first performs a discovery of the sensing
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devices that are available in the environment and estimates the minimum amount of time the
phone should suspend local sensing and use remote sensing to achieve energy gain.

Opportunistic resource sharing approaches are particularly suitable for environmental
context monitoring, that is for contexts that are common to multiple neighboring nodes (e.g.
noise level, speed movements). In this case, incentive mechanisms are likely to be necessary
for crowdsourcing applications in order to enable collaboration between unknown users, and
to obtain the requisite data. With another point of view, Rodriguez et al. [230] argue that
if users notice a personal benefit in terms of energy savings and usability by sharing their
resources in the long-term with subjects they personally know and trust, there is no need to
implement potentially complex or costly incentive schemes to enforce cooperation.

5.7.3 Feature subset selection

Feature selection is generally used to select the features that are most discriminative and
contribute more to the performance of the classifier. Indeed, some features may be irrelevant
or redundant depending on the application (e.g. which activity we want to recognize) and the
type of sensors. Moreover, some features like frequency-domain features are more compu-
tationally demanding than others. Therefore, there exists a delay/accuracy/energy trade off
since using a lot of features certainly enhances the classification rate while it increases the
delay and the energy consumption.

Cilla et al. [231] proposed a Pareto-based Multiobjective Optimization that selects
feature subsets whose size is minimize while maximizing the accuracy of the classifier. Their
approach provides the designer with diversified solutions closed to the Pareto-front. The
advantage is that the expert does not have to set a priori tradeoff between accuracy and
number of feature, but he will choose a posteriori the subset that best fits the application
requirement knowing that these solutions are closed to the optimal. In AdaSense [198], Qi et
al. design the offline SRO (Sampling Rate Optimization) algorithm that selects the optimal
sampling rate and feature set of both single activity event detection and multiple activity
classification under any accuracy requirements. It is a genetic programming based algorithm
that explores the feature set with the objective to minimize the sampling rate while achieving
a given accuracy.

5.7.4 Adaptive classifier selection

There exist different types of classifiers based on Decision trees, Bayesian approaches,
Neural Networks, Markov models and so on. They differ from each other in terms of delay,
memory size and computation requirements. Indeed, lightweight decision tree methods
are usually preferred for embedded systems while distance-based classifiers that measure
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a similarity between instances stored on a database are not convenient to be implemented
on a mobile device. Similarly, ensembles of classifiers that combine the output of several
classifiers to improve the classification accuracy are computationally expensive. Thus, every
classifier has different energy, delay and accuracy properties. This is why some works
propose to adapt the classifier to the available resources and application requirements, either
in a static or dynamic way, in order to improve the system performances.

Martin et al. [232] developed a fuzzy-based on-line classifier selection that selects the
best-suited classifier given i) offline classifier performance evaluation (trained accuracy,
delay, memory need, complexity) ii) online accuracy and delay requirements (low, medium,
high) and iii) the current device state (battery level, available memory, CPU load). In practice,
given the current application requirements and device state, the fuzzy selector outputs a score
indicating the desired quality level of the classification (i.e the desired accuracy, response
time, complexity and memory use of an ideal classifier). Then, a distance-based algorithm
selects the best classifier in the database that fulfils these scores. The results show that
this approach enables to periodically choose the classifier that best suits the application
requirements and device context. However, the difficulty of this study is to define the fuzzy
rules used to score classifiers quality. Chu et al. [233] have developed the Kobe toolkit that
performs profiling and optimization of mobile embedded classifiers to achieve an optimal
energy-latency-accuracy trade-off. The developers have to specify the accuracy, latency and
energy constraints. Then, Kobe tunes the classifier parameters (e.g. sample windows size,
number of FT sample points). Kobe also adopts computation offloading at runtime: it decides
whether to partially or entirely offload the computation to the cloud in response to system
changes (phone battery levels, network bandwidth and latency, processor load). Their results
show that for comparable levels of accuracy, traditional classifiers suffer between 66% and
176% longer latencies and use between 31% and 330% more energy. Orchestrator adaptively
changes sets of features and classifiers for context recognition depending on current set of
available sensors and pre-defined system policy [234].

5.7.5 Adaptive classifier operations

In traditional architectures, classifiers are usually triggered periodically and operate on a
given data window size. However, it is possible to adjust the classifier behaviour depending
on the recognized context in order to reduce the computation time of the classifiers.

Au et al. [200] introduce the episodic sampling technique which aims at adapting the
classification rate depending on the activity variation. The proposed solution additively
increases the interval between activity recognition when the classification result remains the
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same, and multiplicatively decreases the interval when a change in the activity is detected.
It trades-off accuracy with energy as nodes can go to sleep between two classification
episodes. Nevertheless, the algorithm may exhibit lower performances when context changes
experience high dynamics which necessitates a careful parameters setting. Srinivasan and
Phan [235] focus on reducing the amount of time the activity recognition system stays awake
while guaranteeing a high confidence prediction of the current activity being performed. The
idea is that differentiating between idle and non-idle activities requires a smaller window of
accelerometer samples compared to identifying specific user’s physical activities. Thus, their
two-tier classifier first uses a small window size to determine if the user is idle or not; if the
user is not idle, the two-tier classifier acquires more sensor samples to identify the user’s
fine-grained activity. In [182], Lin et al. propose the BeWell+ architecture to continuously
monitor user behaviour along three health dimensions: sleep, physical activity and social
interaction. In order to save energy, the solution dynamically tunes the rate at which sampling,
feature extraction and activity inference are performed, each time there is a change in the
wellbeing scores. Thus, BeWell+ allocates energy to provide more accurate monitoring
and responsive feedback for wellbeing dimension of highest concern, by giving priority on
specific health dimension (e.g. sleep) where the user needs most help. In contrast, user with
healthy behaviours are monitored less closely, with a feedback provided on a lower scale -
therefore using less resources on the smartphone. As a result, the gain in energy-efficiency
will depend on the user behaviour. That is, a user with poor wellbeing scores across all
dimensions will consume more energy than a consumer who exhibits comparatively high
wellbeing scores, allowing the adaptive scheme to lower energy used for these dimensions.

In order to spare computation resources, some researches aim at filtering out samples
that are not likely to contain information at an early stage of the context monitoring process.
SeeMon [217] makes early decision in the processing pipeline in order to significantly
save computational overhead when no changes in the context are detected. SoundSense
[189], EAR-phone [236] and Jigsaw [221] duty-cycle classifiers depending on the quality of
sensed data: noise measurements that are not accurate enough for the target application are
discarded. For example, Ear-Phone is a noise-mapping application that first determines the
phone sensing context (in hand or in pocket / bag), and measurements that are detected as
measured in the pocket or bag are not taken into account in the calculation of the user’s noise
exposure. The Jigsaw’s admission control block throw away packets indicative of silence.

5.8 Battery charging

In this section, we present another approach for lifetime maximization which consists in
charging batteries.
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5.8.1 Energy harvesting

New technologies have been developed to enable sensors to harvest energy from their
environment like sun, heat or movement [5, 240, 241]. Compared to traditional sensors,
rechargeable motes can operate continuously and, theoretically, for an unlimited length of
time. They convert ambient energy to electrical energy and then either consume it directly
or store it for later use. For healthcare applications, body heat and body movement are two
main sources of energy harvesting.

Body heat

The human body heat represents an interesting source of energy since the human
metabolism generates and dissipates heat. Indeed, a human being generates more than
100W of heat on average, and about 1–2% of this heat can be used to obtain an electrical
power of the order of milliwatts. At typical indoor conditions, the heat flow in a person
mainly stays within the 1–10 mW/cm2. In this conditions, powering of a low-power health-
monitoring sensor by using energy harvesters become feasible. In [191], Leonov study the
efficiency of a thermoelectric energy harvester integrated into an office-style shirt. The sys-
tem can generate power in 5-0.5 mW range at ambient temperatures of 15-27 ◦C respectively.
The author also highlights that the power generated by wearable thermal devices does not
depends on the user metabolic rate, but on the overall body heat, air speed and sweating rate.
So, during exercise the harvesting power will not necessarily increase. In [208], Leonov et al.
are able to power a watch-style sensor module that measures and transmits the battery voltage,
the temperature and/or light intensity every 2s. The thermal energy generator successfully
delivers 100 µW at 22 ◦C, which is enough to power the system as it requires 50-75 µW to
operate. As can be seen, given the small efficiency of thermal harvesting, only low-power
applications (below 1-2 mW) can run efficiently on human body heat.

Body movement

Human activities, such as walking or running are also potential sources of energy har-
vesting since mechanical vibrations can be converted into electrical energy by different
mechanisms: electromagnetic, electrostatic, and piezoelectric. In [209], Gorlatova et al.
quantify the inertial energy that can be harvested from the activities of 40 individuals over
periods up to 9 days. The data were collected from three sensing units located on the shirt
pocket, waist belt and trouser pocket. It appears that 20-second walking and running motion
can generate up to 202 µW and 808 µW respectively. Cycling activity generates only 52

94



5.8 Battery charging

µW , but in this case harvester placements on the lower legs should be considered. The
authors higlighted other main findings: Walking downstairs generates more power than going
upstairs because of the higher accelerations involved. Taller people generate around 20%
more power than shorter people. People are passive most of the time since 95% of the total
harvestable energy is generated during less than 7% of the day. In their survey, Paradiso and
Starner argue that the most promising way to harvest energy from people is by taping their
gait [241]. Therefore, the shoe designed by Shenck and Paradiso [212], which integrates
piezoelectric elements beneath a standard running insole, scavenges energy from heel strike.
Each shoe produces sufficient energy to transmit a 12-bit code via an on-board radio as the
bearer walked. In practice, it is possible to generate more power, but the devices become
bulky and heavy. For example, in [210], Donelan et al. present an energy harvester that
generates electricity during human walking with minimal user effort. The energy harvester is
mounted at the user knee and is only engaged during the decelerating portion of the stride
cycle. In this way, the system assists the leg motion at the end of the swing phase. The
authors demonstrate that the metabolic cost, that is the additional metabolic power required
to generate 1 Watt, is reduced by the generative braking action of the device. An output
power of 5 W is obtained when the subjects wear one device on each leg during normal
walking motion. In [211], Rome et al. exploit the mechanical energy produced by the vertical
movement of a backpack during walking and convert it to electricity. They observe that
generally the electrical power increases with walking speed and the weight of the load in the
backpack. Their system is able to generate up to 7.4 Watts when the user is wearing a 38 kg
backpack during fast walking. For the time being, the weight of the backpack (between 20 kg
and 38 kg) is a limitation as only serious hikers or military personnel will wear such a load.

Mitcheson [242] compare the performance of both kinetic and thermal energy harvesters.
Theoretically, kinetic harvesters achieve higher power density of around 300 mW/cm3

compared to around 20 mW/cm3 with a thermal device. However, given the current state
development of kinetic and thermal devices, Mitcheson shows that for equivalent volume,
current thermoelectric devices achieve greater densities. Moreover, it appears that kinematic
generators are more dependent on the user mobility. As a consequence, if the user is immobile
or if the sensor is not worn on a limb, the generated power would be lower.

5.8.2 Wireless charging

Recent breakthroughs in wireless power transfer are expected to increase the sustainability
of sensor networks and make them perpetually operational, since these techniques can be used
to transmit power between devices without the need of any contact between the transmitter
and the receiver. Wireless charging in wireless sensor networks can be achieved in two ways:
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electromagnetic (EM) radiation and magnetic resonant coupling. Xie et al. [117] show that
omni-directional EM radiation technology is applicable to a WSN with ultra-low power
requirement and low sensing activities (like temperature, light, moisture). This is because
EM waves suffer from rapid drop of power efficiency over distance, and active radiation
technology may pose safety concerns to humans. In contrast, magnetic resonant coupling
appears to be the most promising technique to address energy needs of WSNs thanks to an
higher efficiency within several-meter range.

Wireless energy transfer has already been applied to power medical sensors and im-
plantable devices. In [213], Damm et al. use inductive power supply in order to power in
vivo hip prosthesis. The prosthesis is instrumented with 6 strain gauge sensors in order to
measure the forces and moments acting in the hip joint prosthesis. An external coil is fixed
around the patient implant during the experimentation in order to deliver the power of 5mW,
required by system to acquire data and send them to the base station. Still, some challenges
remain to be addressed: the energy transmission efficiency decays rapidly with the distance.
Moreover, the system requires the usage of a large induction coil wired to an external device
[243]. In a more pervasive manner, Gummeson et al. [186] designed a wearable ring for
gesture recognition that opportunistically harvests energy from a NFC-enabled phone. The
achieved scavenging performances depend on the relative positioning of coils, that is on the
position of the user’s finger when holding the phone.

Magnetic coupling, kinetic and thermal energy sources have been studied for both external
and in-vivo sensors. While wireless charging is more controllable, it requires an external
device or installation to power the sensor. This can be unconvenient and trouble the activities
of the patients, but efforts are being made to develop small-size wearable device that can be
placed over the implantation area to power implanted sensors and communicate with them
[244]. We summarize in Table 5.3 the power that can be harvested from different sources
of energy. For comparison, we give in Table 5.4 the power consumption of the different
platforms. As can be seen, the power that can be harvested is still low, so that for the moment
these solutions can only power specifically designed sensors with low duty-cycle.

5.9 Summary and discussion

In the previous sections, we have detailed four main strategies for energy optimization,
namely, power-on time reduction, communication reduction, computation reduction and
battery charging. Ideally, a designer will need to apply strategies from all these four categories
to maximize the lifetime of his/her human context recognition system. Examples of studies
that implement several of these mechanisms are: Mercury [176], which combines power-on
time reduction through deactivation of power-hungry sensors, with communication reduction
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Table 5.3 Energy harvesting opportunities for wearable sensors.

Power source Reference Power

Thermal watch [208] 100 µW at 22 ◦C
shirt [191] 5-0.5 mW at 15-27 C

Kinetic cycling [209] 52 µW
walking [209] 202 µW
running [209] 813 µW

insole 1-2 mW per step
knee [210] 5 W

backpack [211] 7.4 W
Wireless
charging

inductive charging [213] 5 mW
wearable ring [186] 18 mW

Solar indoor light [209] 50-100 µW per cm 2

for
comparison

Table 5.4 Power needs of different platforms.

Shimmer [245] Hip prosthesis [213] Watch [208]
70 mW 5 mW 50-75 µW

through on-board processing; A3R [89] and AdaSense [198] architectures implement a
per-activity feature selection to reduce computation, in combination with adaptive sampling
mechanisms in order to reduce communications. However, depending on the application or
on the selected architecture, it may not always be possible to associate solutions. A cardiac
monitoring application using a unique ECG sensor that transmits its data towards the user’s
mobile phone will not use sensor set selection nor adaptive sampling. However, it will be
able to employ both feature subset selection and on-board computation in order to extract
relevant characteristics of the signal and to reduce the number of transmissions. Moreover,
energy harvesting technologies do not eliminate the need for the other energy optimization
techniques. It is important to note that nodes remain energy-limited between two harvesting
opportunities, so they still need to implement energy-saving mechanisms. For example,
the wearable ring [186] scavenges energy opportunistically when the user interacts with
his/her mobile phone. As a consequence, the ring platform also integrates energy-efficient
mechanisms such as deactivation of power-hungry audio sensor, and classifier selection. Such
an energy-aware design helps to reduce harvesting needs, which in turn enables embedded
devices to conduct more useful tasks with the limited power they can scavenge.

It is hard to estimate the lifetime we can expect from a system that combines the best
techniques. We represent in Figure 5.6 the lifetime achieved by different architectures in
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hours of operation. Interestingly, we can see that globally the lifetime of mobile phones are
shorter than the lifetime of sensors. This means that although mobile phones have higher
battery capacity than sensor nodes, they deplete their energy faster. As a consequence, when
designing energy-efficient heterogeneous architectures like the one introduced in Figure 5.2,
the mobile phones used as base station may become serious bottlenecks. Therefore, there is a
need to take into consideration the energy-limitation of every device involved in the activity
recognition chain.

0 10 20 30 40 50 60 70 80 90 100

Context for wireless [225]
BeWell+ [182]

Episodic sampling [200]
Remora [194]
METIS [195]

SociableSense [192]
CoMon [190]

CenceMe [197]
Mercury [176]

E-Gesture [178]
PEAR [207]

Hours

Sensor
Mobile Phone

Fig. 5.6 The estimated battery lifetime in hours of different architectures.

We plot in Figure 5.7 the recognition accuracy achieved by different architectures. As
we can see, most of the solutions experiment an accuracy superior to 90%. Two of the three
architectures which have a recognition accuracy lower than 90% carry their classification task
on sensor node. This may be explained by the fact that sensor nodes have fewer resources, so
that the classification is limited to lightweight classifiers which may have lower classification
performance. It is interesting to note that some solutions, such as Remora [194] or CoMon
[190], save energy while improving the accuracy. These solutions carefully determine when
and what resources to share among users, depending on the costs and benefits of sharing a
resource.

Although latency is a requirement of importance, few studies report their achieved latency.
Therefore, it is not clear how long complex architectures will take to recognized current
context. For example, solutions based on opportunistic resource sharing need to detect
available sensors, and estimate if the co-location time will be long enough to provide an
energy benefit. The overhead induced by the initiation of the collaboration may be affordable
in some applications, particularly for environment context recognition.
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Two-tier classifier [235]
A3R [89]

AdaSense [198]
Episodic sampling [200]

Remora [194]
Mercury [176]

E-Gesture [178]
PEAR [207]

Hierarchical [179]
On-node scheme [222]

Accuracy (%) Sensor
Mobile Phone

Fig. 5.7 The accuracy achieved by different architectures in percent.

Finally, it is possible to notice that in the proposed solutions the energy consumption
is generally related with the user’s context. For example, in some solutions the energy
consumption of the system is directly related to the time spent by the user in active state. In
other solutions, the energy consumption depends on the user location. This ability of a system
to reduce its energy consumption in function of external parameters can be characterized as
follows:

• Agnostic: The solution does not implement any adaptive mechanism and behaves in
the same way whatever the user activity or environment are. The energy consumption
is constant over the time. This is the case of the Hierarchical architecture [179], in
which the sensors transmit 1 byte of data every seconds.

• User level of activity: The energy consumption of the architectures depends on the
user level of activity. In Mercury [176], PEAR [207] and Two-tier classifier [235], the
system operates differently depending on the user state (idle or not).

• User type of activity: The energy consumption of the system depends on the type of
activities being performed by the patient. Typically, A3R [89], AdaSense [198] and
E-Gesture [178] architectures adapt their policy in function of the current user activity.

• User frequency change of context: The solution consumes more energy when the user
changes from one activity to another frequently. For example, the On-node scheme
[222] sends a report only when the activity changes while the Episodic sampling
technique [200] spaces signal processing when no changes are detected.
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• User location: The energy saving opportunities depend on the user environment. As a
direct illustration, SociableSense [192], METIS [195] and Context-for-wireless [225]
monitor the user mobility and location in order to take advantage of the existence of
external devices in the environment.

• User co-location: The monitoring system can take advantage of the existence of
another system in the environment, and they can initiate a collaboration. For instance,
the Remora [194] architecture shares sensing and computational resources among
neighboring personal sensor networks in order to save energy.

• User needs: The system adapts to the user needs in terms of monitoring since some
patients does not require to be monitored as closely as others. For example, BeWell+
[182] provides a lower feedback to patient that need less help in order to save resources.
MediAlly [220] can trigger medical data acquisition whenever the subject’s context
indicates physical or emotional stress.

5.10 Conclusion and open research issues

In this section, we aim to shed some light on open research issues relating to energy-
efficient human context recognition based on wearable sensing through the following points:

5.10.1 Unbalanced residual energy

Devices involved in context recognition may have unbalanced residual energy due to
different energy consumption rates, and energy harvesting rates. Indeed, depending on their
role, sampling frequency or communication technology, nodes will deplete their battery more
or less rapidly. Furthermore, nodes may have an uneven residual energy distribution due
to the difference in the quantity of the collected energy. For instance, the energy that can
be harvested from human activities will not be the same for two identical sensors if one is
located on the chest and the other one is located on the leg. As a consequence, nodes with
low residual energy may be assigned lower sensing periods, while those with high residual
energy may be preferred for running context recognition tasks. In addition, the same battery
level at two different devices could have different implications: for example, 50% battery left
at a sensor dedicated to a unique application represents a longer operating time compared to
50% battery left at a mobile phone running multiple applications. Thus, the fraction of the
phone’s energy dedicated to the context recognition application must not be as high as the
one of the sensors: a part of phone’s energy must be preserved to be dedicated to other tasks,
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such as calling or text messaging. Therefore, it is possible to consider new decision metrics
that include the desired implication of a device in the application in terms of energy usage.
Finally, Lu et al [221] point out that the same battery level at a different time could mean
a totally different thing. Indeed 50% battery left is really bad in the early morning, but is
abundant in the early evening. These discrepancies between devices regarding unbalanced
residual energy have to be taken into account when designing context recognition systems
based on wearable sensors.

5.10.2 Mutual and cross technology interference mitigation

As the popularity of sensing devices grows, we can expect that a single user will carry
a number of context sensing devices. In this context, multiple devices will work together
towards improved context sensing. We showed in section 5.7 that the cooperation of multiple
body area networks can save energy through opportunistic resources sharing. However,
the collocation of several wearable sensor networks sharing the same unlicensed band
dramatically increases the level of interference, which in turn negatively affects the network
performance [246]. Indeed, mutual (e.g. WiFi-WiFi, ZigBee-ZigBee) and cross (e.g WiFi-
ZigBee) technology interference arise when several body sensor networks operate in the same
vicinity, due to the broadcast nature of the wireless channel. For instance, data transmission
within ZigBee networks can completely starve due to WiFi communications, which uses 10 to
100 times higher transmission power. As a consequence, the increase of re-transmissions due
to collisions, and multiple carrier sensing, result in increased energy consumption. Therefore,
there is a need to develop interference-aware solutions in order to ensure an energy-efficient
radio spectrum utilization.

5.10.3 Devices heterogeneity

Mobile sensing is challenged by a growing number of devices used for context-aware
applications. This combination of sensors leads to heterogeneous architectures composed
of devices with different capabilities in terms of sensing, accuracy, computation, commu-
nications and battery power. Heterogeneous architectures offer a certain flexibility since
the devices have different resources whose usage can be optimized, and the use of multiple
sensors allow improving the context recognition. However, heterogeneity raises programma-
bility issues since devices are provided by different manufacturers. This makes the design
of sensing platform using different devices and OS types very hard. Envisioned solutions
to the problem of heterogeneity are cloud sensing, which combine virtualization of nodes,
and semantic-based query processing. The objective is to reduce the configuration time
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by providing a common framework to represent and access information, while allowing
optimization across multiple devices. While easing the development, cloud sensing requires
communication between virtualized devices and cloud. In this context, communication
overhead will have to be controlled.

5.10.4 Collocation of concurrent application

Until recently, most of the context recognition systems were developed for a unique
application. Researchers adopted an application-driven approach: applications determine
the types and amount of resources required to execute the program, and request the resource
through the provided APIs. However, future systems are likely to run multiple context
recognition applications at a time. In this context, if the device is not equipped with the
underlying appropriate OS for concurrent resource management, energy performance will
degrade. For example, a user may be willing to run both a wellbeing application that encour-
ages healthy behavior such as BeWell+ [182], and a noise exposure mapping application
such as Ear-Phone [236], which both use the microphone sensor on phone. In order to save
energy, BeWell+ dynamically tunes the rate at which sampling, feature extraction and context
inference are performed, while Ear-Phone does not take into consideration measurements
taken when the phone is carried in the bag or pocket. If run simultaneously, it is not clear
how energy gain of both solutions will be offset by the behavior of the other application.
In Orchestrator [234], Kang et al. defend the need for a system-driven approach to tackle
the complexity of resource management in dynamic and concurrent environment. The Live-
Labs [247] experience confirms the difficulty of satisfying multiple applications accessing a
sensing platform when considering different requirements in terms of type of information,
sampling frequency, level of accuracy, or latency. Although some studies propose to manage
resources of a mobile device or sensor node [248, 249], a general framework for multi-context
recognition across heterogeneous devices is missing.

5.10.5 Anticipatory energy saving

Beyond context recognition, context anticipation represents a powerful tool for tackling a
number of health and well-being issues, from obesity to stress and addiction [250]. Applica-
tions will anticipate changes in user’s health and behaviour, and take proactive decisions in
order to impact the future state, based on the predictions of the future state of the context. For
instance, an application can proactively tackle depression by detecting decreased movement,
the lack of socializing, and irregular sleep patterns of the patient, and then encourage the
participant to go out and socialize, for example by sending a link to two discounted theater
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tickets. These systems will offer great benefit for the patient follow up by allowing the
development of innovative ways of delivering interventions. In addition to the social benefit,
such anticipatory applications will help to proactively manage energy and wireless resources.
Indeed, the ability to predict users’ location, social encounters or health hazards will enable
devices to predict future harvesting opportunities, resource sharing opportunities or appli-
cation demands. For example, given good weather forecasts, a system can anticipate that
the user will jog for one hour this weekend, thus expecting to recharge a part of its battery
through body movement.

To conclude, we anticipate that energy management will be a huge challenge because it is
a key enabler of real-world applications development and market penetration. In this context,
we hope that this survey will be helpful to the pervasive and mobile research community
willing to address the energy issues of health-related wearable sensing systems. With this
objective, this chapter surveys existing energy-efficient approaches designed for human
context recognition based on wearable sensors for healthcare and wellbeing applications.
More particularly, we have proposed a new classification of these mechanisms, and we have
reviewed up-to-date references in details.
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Chapter 6

Energy-efficient gateway selection strategies for a
wearable sensor architecture

In this chapter, we present a new energy-efficient architecture for health monitoring
where sensors send the sensed data mainly via the user mobile phone, but they have the
possibility to send data to access points when they are available in the user environment.
The objective of the proposed strategies is to relieve a unique base station from receiving all
the data, and it enables sensor nodes to select the best communication technology in terms
of energy consumption. Contrary to existing approaches, our solution allows to optimize
the lifetime of both the sensors and the base station. The simulation results show that the
proposed approach effectively improves the energy efficiency of the system compared to
traditional architectures where wearable sensors can only communicate with the user mobile
phone.

6.1 Introduction

As surveyed in the previous chapter, many solutions have been proposed to save energy
in health-related wearable sensor networks. Among them we can cite minimal sensor subset
selection [177], deactivation of power-hungry sensors [207], adaptive sampling rate [198],
communications reduction [179] and resource sharing [194]. However, these works are
usually interested in the energy consumption of the sensors but never consider that the base
station can also be energy-constrained. Traditionally, powerful laptop acted as base station,
but for mobility consideration most of the works now consider mobile phone as base station.
Although phones are more powerful devices compared to wearable sensors, the truth is that
they also face energy consumption problems [202].
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We believe that activity recognition architectures can take advantage of the proliferation
of smart devices (phones, tablets, laptops) and their daily usage to balance the load among
multiple base stations. For example, when at home and at the office, body sensors can send
their data towards a laptop or an access point. When outdoor, a mobile phone or a tablet can
alternatively take the relay depending on their availability. The advantages of this strategy are
twofold. First, it prevents a unique base station from receiving all the data. Second, when the
sensors are equipped with multiple radios, it enables to select the best suited communication
technology depending on the available connections. Indeed, the different radios may have
various performance profiles in terms of energy consumption, coverage area, bandwidth and
link quality.

In this chapter, we propose a new architecture for body area networks in order to save
energy at both the sensors and the mobile phone. We consider sensors equipped with
Bluetooth and ZigBee communication interfaces, like SHIMMER sensors [245]. We assume
that a sensor can always send its data to the user mobile phone through Bluetooth, but
sometimes a ZigBee access point is available in the user environment. Our objective is to
privilege ZigBee communications as they are less energy-consuming for the sensors, and
during this period of time the mobile phone can switch off its Bluetooth interface, thus saving
energy. In our solution, the sensors have to regularly perform tests - called network interface
selection (NIS) - in order to check if there is an available ZigBee access point. Similarly, the
mobile phone has to perform regular tests - called Bluetooth scan - in order to detect if a
sensor needs to communicate with it when there is no available ZigBee access point.

Our contributions are as follows: first, we present a new energy-efficient architecture for
wearable sensor networks that allows to optimize the lifetime of both the sensors and the
mobile phone. We then propose three strategies to effectively implement our architecture: the
fixed, adaptive and SMS-based approaches. These solutions determine when to perform the
tests at the sensors and mobile phone in order to leverage energy-efficiency for latency. We
also model and analyze the delay of the different proposed strategies. Finally, we evaluate
our solutions through simulations and compare their performances to a reference architecture
where the sensors can only stream their data to the mobile phone, like in [176, 178, 207].

The rest of this chapter is organized as follows. In the next section, we present recent
studies related to network interface selection schemes. In Section 6.3, we introduce the
general idea of our solution. In sections 6.4 and 6.5, we present respectively the adaptive
and SMS-based versions of our approach. Then, in section 6.6, we model and analyze the
delay of our different solutions since they trade-off energy for latency. Afterwards, in Section
6.7, we present our simulation results and we show how our approach increases the network
lifetime compared to traditional architectures. Finally, Section 6.8 concludes the chapter.
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6.2 Related works

Sensors and mobile phones are often equipped with multiple network interfaces, such
as ZigBee, Bluetooth, WiFi, and 3G. Each communication technology has different char-
acteristics in terms of bandwidth availability, coverage area, economic costs and energy-
consumption pattern. Thus, it is necessary to efficiently select the network interface in order
to extend the lifetime of the mobile device. This selection depends on the environment oppor-
tunities, that is, on the available connections and on the application requirements (bandwidth,
link quality, energy).

At the mobile phone, existing research works are interested in selecting the best network
interface (Wi-Fi / cellular network) in terms of energy consumption. Indeed, 3G consumes
twice as much energy as Wifi connections, but 3G networks have wider service areas. Thus,
the mobile device must communicate in Wi-Fi as much as possible. Kim et al. [224] proposed
to adapt the interval between two network interface selections. This is because frequent
network interface selections consume energy at the phone device for Wi-Fi scanning to
discover an access point, while it reduces the communication time via 3G. The authors
show that their solution improves energy-efficiency by 15% compared to the case where the
phone is only using 3G. Rhamati and Zhong [225] propose to estimate the Wi-Fi availability
without turning on the interface because the energy cost for establishing a connection is very
high. They propose different selection policies based on the time, history, network conditions
(available access point, signal strength), and device motion. In-field experiments demonstrate
that this approach can achieve 35% improvement in battery lifetime. Paschou et al. [223]
select the most suitable data transfer technology to be used (WiFi, 3G, SMS) in terms of
economic costs for the user, depending on the volume and type of health data to be sent.

At sensor nodes, some studies are interested in the fact that higher throughput radios
have a lower energy-per-bit cost [238]. However, high throughput radios also have higher
start up time and energetic cost. Therefore, high bandwidth radios become more energy
efficient only when a large number of bytes have to be transmitted, which offsets the wakeup
energy overhead. Nonetheless, not every healthcare application requires such a high data
rate. Moreover, the energy consumption of high-power radio when idle is prohibitive, so it is
imperative to turn it off when it is not in use. The transition overhead due to start-up cost
can be amortized by buffering a minimum amount of data. In this context, Sengul et al [227]
and Loseu et al. [226] propose to accumulate data at local nodes and then transmit them.
The drawback of these solutions is the delay induced by the buffering process. Therefore,
for strict deadline (e.g 20ms – 1s) healthcare applications it is preferable to use a low-power
low-throughput radio since there is no time to accumulate enough packets in buffer. Thus,
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existing network interface selection approaches for sensor nodes aim to optimize the usage
of a higher throughput interface. Our approach is different from previous solutions since
our objective is to save energy at the sensor level by giving priority to a less-consuming
communication technology when available. In the next section, we present our architecture
model for energy-efficient network interface selection at personal wearable sensor networks.

We are aware that mutual and cross technology interference may occur when other wire-
less communications such as Bluetooth, Wi-Fi or ZigBee are ongoing in the user environment
[251, 252]. Interference issues are beyond the scope of this study, but our architecture is
enough open to integrate existing interference mitigating techniques. For example, in [251],
the authors formulate an optimization problem for the assignment of Wi-Fi and ZigBee
channels to dual radio devices, so that the mutual and cross technology interference are
minimized.

6.3 Motivations and general idea of our solution

In the proposed architecture, we consider that a patient is equipped with a sensor that
monitors his/her status health. We assume that a sensor can always connect and transfer its
data to the smartphone of the patient through Bluetooth. We also consider that the sensor
can connect to a ZigBee base station, whose access is possible only in some environments,
for example at home or at the office. These base stations could be laptops or internet boxes
equipped with a ZigBee receiver. Then, the mobile phone and the ZigBee access points
can transfer the data to a remote server which centralizes the sensed data. This architecture
is illustrated in Figure 6.1. Thus, Bluetooth is considered as a high-availability primary
wireless network while the use of ZigBee is restricted to the coverage of particular access
points. Generally, ZigBee consumes less energy than Bluetooth. Moreover, when the sensor
is sending its data to a ZigBee access point, the smartphone can switch off its Bluetooth
interface and thus saves energy. Thus, if ZigBee is available instead of Bluetooth in certain
area, sensors will communicate via the ZigBee interface in order to reduce the energy cost of
data transfer and to discharge the smartphone from communication for a while. We consider
that the access points are not energy-limited. Therefore, they periodically broadcast beacons
so that the sensor can discover an access point by listening the medium.

To use ZigBee interface, the sensor has to check for ZigBee availability and perform
a vertical handover from Bluetooth to ZigBee. So, the sensor needs to perform periodic
network interface selection in order to detect if a ZigBee access point is available. When the
sensor communicate with a ZigBee access point, the smartphone can switch off its Bluetooth
communication and save energy. When a ZigBee communication ends, the sensor puts itself
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Fig. 6.1 The considered architecture.

in discoverable mode, so that the mobile phone can initiate a Bluetooth session. However, the
mobile phone does not know the availability profile of ZigBee. This is why the mobile phone
needs to perform periodic Bluetooth scan to detect if the sensor is willing to communicate
with it. At the end, there will be a succession of ZigBee and Bluetooth connections at the
sensor. A network cycle is defined as a Bluetooth session followed by a period of Zigbee
communications.

We propose the following three strategies for the mobile phone to detect the sensor and/or
the sensor to detect ZigBee access point.

6.3.1 Fixed approach

We first assume that the Bluetooth scan interval δScan and the network interface selection
interval δNIS are constant. We denote this solution EENIS (Energy-Efficient Network Inter-
face Selection) and we illustrate its behaviour in Figure 6.2. In the first place, the sensor is
communicating with the mobile phone, and checks every δScan seconds if a ZigBee access
point is available (1). When the sensor detects that ZigBee is available, it sends its data
towards the access point (2). At that time, the phone does not receive any more data: it
switches off its Bluetooth interface and goes to sleep mode (3). Then, it periodically performs
Bluetooth scan to detect if the sensor wants to communicate with it (4). Afterwards, as
the user is moving the ZigBee access point becomes unavailable, thus the sensor enters in
discoverable mode in order to be detected by the phone (5). The mobile phone will detect
the sensor at its next Bluetooth scan, and it will initiate a Bluetooth communication with the
sensor: a new network cycle begins (6).
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Fig. 6.2 Illustration of the behaviour of the EENIS solution.

6.3.2 Adaptive approach

The Bluetooth scan interval δScan and the network interface selection interval δNIS are
critical parameters because they greatly impact the energy consumption of the smartphone
and the sensor respectively. Indeed, frequent Bluetooth scan are costly for the smartphone
because the power used when a mobile phone is performing a device discovery is not
negligible [253]. Thus, scanning mode of Bluetooth is very power-demanding and should be
used carefully. At the same time, frequent Bluetooth scans reduce the delay because when the
sensor is waiting to be discovered, it cannot send data. Similarly, at the sensor side, frequent
network interface selections consume a lot of energy to switch off/on the radios, but it allows
reducing the time spent in Bluetooth when ZigBee access points are detected more rapidly.
Therefore, there is a trade-off between frequent network interface selections and reducing
transmissions over Bluetooth.

In the adaptive approach, the sensors and the mobile phone estimate the ZigBee availabil-
ity in order to adjust the interval between two tests to the network conditions. This strategy
is detailed in Section 6.4.

6.3.3 SMS-based approach

In the fixed and adaptive approaches, when the ZigBee access point is not anymore
available and the mobile phone Bluetooth interface is still switched off, a high packet delivery
delay may be observed. To tackle this shortcoming, we propose an SMS-based solution: the
remote server detects when a sensor is no more connected to a ZigBee access point (since
it does not receive data for a while), and sends a SMS to the patient’s mobile phone. Upon
receiving the text message, the mobile phone turns on its Bluetooth interface and initiate a
connection, without any need for intervention from the user. The advantages of this strategy
are twofold:
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• First, this solution conserves the energy of the mobile phone since the mobile performs
a Bluetooth scan only when needed, thus staying longer in sleep mode.

• Second, the delay is restricted to the time required by the server to send the SMS. In
[254], Dondyk measured that it takes on average 9.8s to deliver a notification to the
mobile phone, which may be a reasonable delay for some healthcare applications.

The SMS-based approach is detailed in section 6.5.

6.4 Adaptive approach

In the adaptive strategy, the sensor and the mobile phone learn the availability of ZigBee,
and calculate the optimal interval between two tests. At the sensor side, our objective is to
determine the optimal network interface selection interval δ ∗

NIS which achieves a good trade-
off between the energy consumption due to Bluetooth communications and the additional
energy consumption due to network interface selection. At the phone side, our objective
is to determine the optimal Bluetooth scan interval δ ∗

Scan which offers a trade-off between
the additional energy consumption due to Bluetooth discovery procedures and the latency
introduced when the sensor is waiting to be discovered.

We can model the availability status of ZigBee with a two-state Markov chain [224] as
given in Figure 6.3. Here, λ denotes the state transition rate of ZigBee from the unavailable
to the available state, while µ is the state transition rate from the available state to the
unavailable state. We model the usage patterns of Bluetooth and ZigBee with a continuous
Markov process. Both λ and µ can change depending on the network environment and on
the user mobility. In order to determine the optimal intervals δ ∗

NIS and δ ∗
Scan we need to model

ZigBee
unavailable

ZigBee
available

λ

µ

Fig. 6.3 Two-states diagram of ZigBee availability

the energy consumption of the devices in function of the ZigBee availability. We use the
notations summarized in Table 6.1. We will consider the model introduced by Kim et al. in
[224] and adapt it as follows:
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Table 6.1 Notations and descriptions used for modeling the energy consumption.

Notations Descriptions
λ State transition rate of ZigBee from the unavailable to the available state.
µ State transition rate of ZigBee from the available state to the unavailable state.

E[TBT ] The expected Bluetooth usage time of the sensor and the phone during one
network cycle.

E[TZig] The expected ZigBee usage time of the sensor during one network cycle.
E[TSleep] The expected sleep time of the mobile phone during one network cycle.

eBT The energy cost at the sensor for data transmission per Bytes over Bluetooth
(J/Bytes).

eZig The energy cost at the sensor for data transmission per Bytes over ZigBee
(J/Bytes).

eNIS The energy cost at the sensor for one network interface selection operation.
eScan The energy cost at the mobile phone for one Bluetooth scan operation.
E[AR] The expected average amount of data to be transferred by the sensor (Bytes/s).

TCSensor Total energy consumption of the sensor during one network cycle.
TCT X Total energy consumption at the sensor due to transmissions during one network

cycle.
TCNIS Total energy consumption of the sensor spent for network interface selection

operations during one network cycle.
TCScan Total energy consumption of the mobile phone for Bluetooth scan operations

during one network cycle.
δNIS The network interface selection interval (sec).
δScan The Bluetooth scan interval (seconds).

PSucc(δNIS) The probability that a network interface selection result is a success when using
the δNIS interval.

PScan_Succ(δScan) The probability that a Bluetooth scan result is a success when using the δScan

interval.
E[N(δNIS)] The expected number of network interface selection operations performed by

the sensor during one network cycle when using the δNIS interval.
E[NScan(δScan)] Expected number of Bluetooth scan operations performed by the mobile phone

during one network cycle when using the δScan interval.
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6.4.1 Sensor side

The total energy consumption of the sensor TCSensor is composed of the energy used to
transfer the data and the energy spent during the periodic network interface selection.

TCSensor = TCT X +TCNIS (6.1)

We define the random variables E[TBT ] and E[TZig] respectively as the expected Bluetooth
and ZigBee usage time of the sensor during one network cycle. We define the random
variables E[TBT ] and E[TSleep] as the expected Bluetooth and Sleep usage time of the phone
during one network cycle. Note that E[TZig] and E[TSleep] represents the same variable since
the phone is sleeping when the sensor is sending its data to a ZigBee access point. However,
it is convenient to distinguish the notation for the sensor and the phone in the following.

eBT (resp. eZig) denotes the energy costs for transmission of data per Bytes over Bluetooth
(resp. over ZigBee). E[AR] represents the expected average amount of data to be transferred
by the sensor in (Bytes/s). Thus, we can calculate the energy consumption of the sensor for
data transfer as follows:

TCT X = (eBT ×E[TBT ]+ eZig ×E[TZIG])E[AR] (6.2)

The sensor performs periodic network interface selection in order to detect if a ZigBee
access point is available. The result of each network interface selection is either a success
or a failure. We consider that there is a failure when there is no accessible ZigBee, so that
Bluetooth must be used. The existence of a ZigBee access point is considered as a success.
When a successful wireless interface selection occurs, a vertical handover is performed from
Bluetooth to ZigBee. Each network interface selection is a Bernoulli trial. The probability
that ZigBee is in an available state after t seconds given that it was unavailable can be
calculated by the transient state probability of a continuous Markov process, as expressed in
(6.3):

P[ZigBee is available after t seconds | unavailable] =
λ

λ +µ
− λ

λ +µ
e−(λ+µ)t (6.3)

Using δNIS as the network interface selection interval, the probability that a network interface
selection is a success is:

PSucc(δNIS) =
λ

λ +µ
− λ

λ +µ
e−(λ+µ)δNIS (6.4)
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Thus, given PSucc(δNIS) the expected number of performed network interface selection
operations E[N(δNIS)] is:

E[N(δNIS)] =
1

PSucc(δNIS)
(6.5)

The expected usage time of Bluetooth E[TBT ] during one network cycle can be calculated by
(6.6) using E[N(δNIS)] and δNIS.

E[TBT ] = E[N(δNIS)]×δNIS (6.6)

The expected usage time of ZigBee E[TZig] during one network cycle is given by (6.7).

E[TZig] =
1
µ

(6.7)

TCNIS(δNIS) denotes the energy cost of wireless interface selection during one network
interface selection. When δNIS is used as the interval, the total energy consumption of
network interface selection during one network cycle can be calculated by (6.8).

TCNIS(δNIS) = eNIS ×E[N(δNIS)] (6.8)

The optimal interval δ ∗
NIS is the interval that minimizes the energy consumption of the sensor,

that is δ ∗
NIS = argmin

δNIS

TCSensor(δNIS).

6.4.2 Phone side

We define the failure and success of a Bluetooth scan operation from the mobile phone’s
side. We consider that a failure occurs when the sensor is transmitting data to a ZigBee
access point, i.e. when ZigBee is available, because the mobile phone will not detect the
sensor during the scan. When there is no accessible ZigBee access point, it is a successful
case because the sensor will be waiting to be discovered by the phone. Using δScan as the
Bluetooth scan interval, the probability that a scan is a success after δScan seconds given that
the last test was a failure (i.e. the probability that ZigBee is unavailable after δScan seconds
given that ZigBee was available) can be calculated as follows.

PScan_Succ(δScan) = P[ZigBee is unavailable after δScan seconds | available]

=
µ

λ +µ
− µ

λ +µ
e−(λ+µ)δScan

(6.9)
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From equation (6.9), the expected number of performed Bluetooth scan operations is:

E[NScan(δScan)] =
1

PScan_Succ(δScan)
(6.10)

From equation (6.10), the expected sleep time E[TSleep] of the phone during one network
cycle is:

E[TSleep] = E[NScan(δScan)]×δScan (6.11)

The expected usage time of Bluetooth can be calculated as follows, given the memory-less
property of exponential distribution.

E[TBT ] =
1
λ

(6.12)

The total cost for Bluetooth scanning during one network cycle changes according to the
Bluetooth scan interval, and can be expressed as in (6.13).

TCScan(δScan) = eScan ×E[NScan(δScan)] (6.13)

The optimal interval δ ∗
Scan is the interval that trades-off the energy consumption of the phone

and the delay. We propose that δ ∗
Scan = argmin

δScan

TCScan(δScan)+δScan.

6.4.3 EENIS algorithms

In what follows, we present the EENIS algorithms that are implemented in the sensor
(Algorithm 2) and in the mobile phone (Algorithm 3). The notations used in the algorithms
are summarized in Table 6.2. At the beginning, the sensor is communicating with the user
mobile phone and checks every δNIS seconds if a ZigBee access point is available (l.2). When
it detects that ZigBee access point is available (l.3), it is able to measure the time spent in
Bluetooth during this network cycle TBT [t] (l.6), and it can estimate the expected usage time
of Bluetooth in the following network cycle E[TBT [t +1]], using TBT [t] and E[TBT [t]] (l.7-8).
α is a parameter between 0 and 1 that reflects if we give more importance to the recent
measurements (α near 1) or if we give more importance to the overall environment history
(α near 0). Then, the sensor can approximate the expected transition rate of ZigBee from
unavailable to available E[λ ], using E[TBT [t +1]] (l.9).

Afterwards, when ZigBee is no more available, the sensor switches back to Bluetooth
communications (l.11). It is able to measure the time spent in ZigBee state TZig[t] and the
amount of data transferred during this network cycle AR[t] (l.14). The sensor can estimate
the expected usage time of ZigBee in the next network cycle E[TZig[t +1]], using TZig[t] and
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Table 6.2 Notations and descriptions used in our algorithms.

Notations Descriptions
E[λ ] Expected state transition rate of ZigBee from the unavailable to the available

state.
E[µ] Expected state transition rate of ZigBee from the available state to the unavail-

able state.
E[TBT [t]] The expected Bluetooth usage time of the sensor and the phone in the t th

network cycle.
E[TZig[t]] The expected ZigBee usage time of the sensor in the t th network cycle.
E[TSleep[t]] The expected sleep time of the mobile phone in the t th network cycle.

TBT [t] The Bluetooth usage time of the sensor and the mobile phone in the t th network
cycle.

TZig[t] The ZigBee usage time of the sensor in the t th network cycle.
TSleep[t] The sleep time of the mobile phone in the t th network cycle.
E[AR[t]] Expected average amount of data to be transferred by the sensor (B/s) in the t

th network cycle.
AR[t] Average amount of data to be transferred by the sensor (Bytes/s) in the t th

network cycle.
TCSensor Total energy consumption of the sensor.
TCScan Total energy consumption of the mobile phone for Bluetooth scan operations.

δNIS The network interface selection interval (sec).
δScan The Bluetooth scan interval (seconds).

δNIS_NEW New network interface selection interface at the sensor.
δScan_NEW New Bluetooth scan interval at the phone.

α Coefficient value (0 ≤ α ≤ 1).

E[TZig[t]] (l.15-16). It also approximates the expected amount of data to be transferred in the
next network cycle E[AR[t +1]], using AR[t] and E[AR[t]] (l.17-18). The expected transition
rate of ZigBee from available to unavailable can be approximated using E[TZig[t +1]] (l.19).
Finally, δNIS_NEW is calculated using E[µ], E[λ ] and E[AR[t +1]], and is assigned to δNIS

for the next network cycle (l.20).

When the sensor is communicating with the ZigBee access point, the mobile phone
performs a device discovery every δScan seconds (l.24). When it detects the sensor, it starts
to receive data from the sensor (l.25). At that time, the phone is able to measure the time
spent in sleep mode TSleep[t] (l.28), and it approximates the expected time spent in sleep
mode at the next network cycle E[TSleep[t+1]] using TSleep[t] and E[TSleep[t]] (l.29-30). Then,
when the mobile phone does not receive any more data it goes in sleep mode (l.33), and it
is able to measure the time spent in Bluetooth during this network cycle TBT [t] (l.36). The
phone can also estimate the expected usage time of Bluetooth in the following network
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cycle E[TBT [t +1]] (l.37-38), and the expected transition rate of ZigBee from unavailable to
available E[λ ] (l.39). Eventually, the phone calculates the new δScan_NEW , using E[µ] and
E[λ ], and assigned this new value to δScan for the next network cycle (l.40).

Algorithm 2 Sensor side
1: function NETWORK INTERFACE SELECTION

2: Check ZigBee state every δNIS seconds
3: If (ZigBee is available) Call BTToZigBee
4: end function

5: function BTTOZIGBEE

6: Measure TBT [t]
7: Update E[TBT [t +1]] :
8: E[TBT [t +1]] := α ×TBT [t]+ (1−α)×E[TBT [t]]

9: Update E[λ ] : E[λ ] =
1

E[TBT [t +1]]
10: Send data to ZigBee access point
11: If (No more ZigBee access point) Call ZigBeeToBT
12: end function

13: function ZIGBEETOBT
14: Measure TZig[t] and AR[t]
15: Update E[TZig[t +1]] :
16: E[TZig[t +1]] := α ×TZig[t]+ (1−α)×E[TZig[t]]
17: Update E[AR[t +1]] :
18: E[AR[t +1]] := α ×AR[t]+ (1−α)×E[AR[t]]

19: Update E[µ] : E[µ] =
1

E[TZig[t +1]]
20: Update δNIS_NEW : δNIS_NEW = argmin

δNIS

TCSensor using E[µ], E[λ ] and E[AR[t +1]].

21: Send data to the mobile phone
22: end function

When the architecture includes multiple body sensors, each sensor runs the EENIS
algorithm independently. In case sensors have different data generation rate, they will
calculate different δNIS parameters. Thus, the sensors will detect the ZigBee access point
at different times. The phone will remain in Bluetooth mode until at least one sensor is
connected, that is until at least one sensor has not yet detected a ZigBee access point. In
order to do that, the mobile phone only has to know the number of sensors involved in the
applications. Then, it manages a variable that counts the number of sensors currently detected.
Moreover, we need to consider a time division multiple access (TDMA) channel scheme in
order to prevent contention if all sensors want to communicate.
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Algorithm 3 Phone side
23: function BLUETOOTH SCAN

24: Perform Bluetooth scan every δScan seconds
25: If (Sensor is discoverable) Call SleepToBT
26: end function

27: function SLEEPTOBT
28: Measure TSleep[t]
29: Update E[TSleep[t +1]] :
30: E[TSleep[t +1]] := α ×TSleep[t]+ (1−α)×E[TSleep[t]]

31: Update E[µ] : E[µ] =
1

E[TSleep[t +1]]
32: Receive data from sensor
33: If (No more connection) Call BTToSleep
34: end function

35: function BTTOSLEEP

36: Measure TBT [t]
37: Update E[TBT [t +1]] :
38: E[TBT [t +1]] := α ×TBT [t]+ (1−α)×E[TBT [t]]

39: Update E[λ ] : E[λ ] =
1

E[TBT [t +1]]
40: Update δScan_NEW : δScan_NEW = argmin

δScan

TCScan +δScan, using E[µ] and E[λ ].

41: Go in sleep mode
42: end function

6.5 SMS-based approach

The SMS-based approach introduces modifications at the server and mobile phone sides,
but each sensor still runs the EENIS adaptive algorithm in order to detect ZigBee access
points. In this SMS-based solution, the remote server is able to detect when a sensor is no
more connected to a ZigBee access point. Indeed, in our architecture, the server centralizes
all the generated data. Since the data generation rate is assumed to be constant, the server can
detect when it has not received data from a sensor for a while. In order to to this, the server
manages one timer per sensor, and sends a notification to the patient’s mobile phone through
a wakeup short message service (SMS) every time it detects that a sensor is disconnected
from an access point (see Algorithm 4). Upon receiving the text message, the mobile phone
can switch on its Bluetooth interface if in sleep mode, and initiate a communication with the
sensor, without the intervention of the patient (Algorithm 5). Thus, this solution exploits the
traditional cellular text messaging as a side channel in facilitating energy conservation as
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illustrated in Figure 6.4. This strategy has several advantages in terms of latency and energy
saving at the mobile phone. Indeed, with this solution, the phone performs a sensor discovery
only once per network cycle, per sensor, that is only when a sensor is disconnected from
a ZigBee access point. Moreover, this policy does not require the phone to be connected
to a data network (3G, WiFi) to receive messages from the server while in sleep mode. In
addition, the short message service (SMS) is inherently energy efficient, because the radio
does not enter the high power state when receiving SMS [254]. Finally, regarding latency, a
sensor will wait at most δSMS seconds to be discovered by the phone, where δSMS is the time
required by the server to detect that a sensor is disconnected and send a SMS towards the
phone. Dondyk [254] measured that it takes on average 9.8s to deliver a notification to the
mobile phone. Zerfos et al. [255] found that 73.2% of messages are delivered within a ten
seconds delay. Note that this solution is especially suitable for users who have unlimited or
cheap text messaging. We also could imagine that the test messaging costs are included by
the health application provider.

Fig. 6.4 The SMS-based approach.

Algorithm 4 Server side
1: function RECEIVE DATA FROM SENSOR (i)
2: Reinitialize timer for sensor (i)
3: end function

4: function TRIGGER TIMER FOR SENSOR (i)
5: Send SMS to the mobile phone
6: end function
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Algorithm 5 Phone side
1: function RECEIVE SMS FOR SENSOR(i)
2: Perform Bluetooth scan
3: If (Sensor i is discovered) Do nbConnected++
4: Else if (nbConnected == 0) Go in sleep mode
5: end function

6: function NO MORE DATA FROM i
7: Do nbConnected−−
8: If (nbConnected == 0) Go in sleep mode
9: end function

6.6 Delay modeling and analysis

6.6.1 Delay modeling

In this section, we model the expected delay of a single node under four data transfer
policies: Bluetooth only, ZigBee only, using both Bluetooth and ZigBee communication
technologies with the adaptive approach, and with the SMS-based approach. We use the
notation summarized in Table 6.3.

Using Bluetooth only With this strategy the sensor can only send its data towards the
mobile phone through Bluetooth communications. The expected delay E[DBT ] can be
expressed as in equation (6.14) where D represents the amount of data to transfer (in MB),
and E[RBT ] denotes the expected data transfer rate of Bluetooth (in MB/s).

E[DBT ] =
D

E[RBT ]
(6.14)

Using ZigBee only When using the ZigBee-only policy, the sensor has to wait for available
access point to send its data. The minimum number of network cycles required to transfer
the data is denoted by NCZig, and can be expressed by equation (6.15).

NCZig =

⌈
D

E[TZig]×E[RZig]

⌉
(6.15)

The expected delay E[DZig] is given in equation (6.16). It includes the delay due to the
effective transmission of data through ZigBee D/E[RZig] - where E[RZig] is the expected data
transfer rate of ZigBee (in MB/s) - plus the non-used Bluetooth periods when ZigBee access
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Notations Descriptions
E[TBT ] The expected Bluetooth usage time of the sensor and the mobile phone during

one network cycle.
E[T E f f

BT ] The effective time during which transmission can occur in Bluetooth.
E[TZig] The expected ZigBee usage time of the sensor during one network cycle.

δNIS The network interface selection interval (seconds).
δScan The Bluetooth scan interval (seconds).

E[DBT ] The expected delay when using the Bluetooth only policy.
E[DZig] The expected delay when using the ZigBee only policy.

E[DZig/BT ] The expected delay when using both ZigBee and Bluetooth.
D The amount of data to transfer at the sensor node (in MB).

E[RBT ] The expected data transfer rate of Bluetooth (in MB/s).
E[RZig] The expected data transfer rate of ZigBee (in MB/s).
NCZig The minimum number of network cycles required to transfer the data when

using the ZigBee only policy.
NCZig/BT The minimum number of network cycles required to transfer the data when

using both ZigBee and Bluetooth.
E[AZig] The expected availability of ZigBee.

p The time required to perform a network interface selection (in seconds).

Table 6.3 Notations and descriptions used for the delay modeling.

points are not available. When the data transfer begins with a ZigBee period, the non-used
time is equal to (NCZig −1)×E[TBT ] while when the data transfer begins with a Bluetooth
period, it is equal to NCZig ×E[TBT ]. Therefore, the expected delay E[DZig] depends on
the availability of ZigBee E[AZig], which can be estimated as E[AZig] = E[TZig]/(E[TZig]+

E[TBT ]).

E[DZig] = E[AZig]×
(
(NCZig −1)×E[TBT ]+

D
E[RZig]

)
+(1−E[AZig])×

(
NCZig ×E[TBT ]+

D
E[RZig]

) (6.16)

Using both Bluetooth and ZigBee with the adaptive approach With this strategy, the
sensors use both their Bluetooth and ZigBee interfaces to transfer their data depending on
the ZigBee availability. During Bluetooth connection, the sensors periodically perform
ZigBee access point detection which induces short Bluetooth disconnection. Thus, the sensor
disconnects every δNIS seconds for p seconds, where p is the time required to perform a
ZigBee access point detection. Therefore, we have to distinguish between the expected time
spent in Bluetooth E[TBT ] and the effective time during which transmission can occur in
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Fig. 6.5 Illustration of the difference between E[TBT ] and E[T E f f
BT ].

Bluetooth E[T E f f
BT ], as illustrated in Figure 6.5. Thus, the effective time during which the

sensor can send its data through Bluetooth is equal to the expected time spent in Bluetooth
minus the time spent while waiting to be discovered by the mobile phone, and the time spent
by the sensor performing ZigBee access point detection. For simplicity, we estimate the
time spent by the sensor waiting to be discovered by δSCAN . In fact, δSCAN is the maximum
amount of time during which the sensor can wait before being discovered. Therefore, we
will have an upper bound on the expected delay since it is a conservative approach.

E[T E f f
BT ] can be expressed as in (6.17).

E[T E f f
BT ] = E[TBT ]−δSCAN − p×

⌊
E[TBT ]−δSCAN

δNIS + p

⌋
(6.17)

The minimum number of network cycles required to transfer the data is denoted by NCZig/BT ,
and can be expressed by (6.18).

NCZig/BT =

⌈
D

E[TZig]×E[RZig]+E[T Eff
BT ]×E[RBT ]

⌉
(6.18)

The data transfer can begin during either a ZigBee or a Bluetooth cycle. Therefore, we have
to consider the availability of ZigBee when calculating the delay. The expected delay when
using ZigBee and Bluetooth together, E[DZig/BT ], can be expressed by:

E[DZig/BT ] = E[AZig]×
(
(NCZig/BT −1)× (E[TBT ]+E[TZig])+β1

)
+(1−E[AZig])×

(
(NCZig/BT −1)× (E[TBT ]+E[TZig])+β2

) (6.19)
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In (6.19), β1 and β2 represent the delay of the residual data (RD) that have to be transferred
during the last network cycle where

RD = D− (NCZig/BT −1)× (E[T E f f
BT ]×E[RBT ]+E[TZig]×E[RZig]) (6.20)

β1 denotes the expected delay for the last network cycle when the data transfer begins with a
ZigBee period. We have to distinguish two cases: the residual data can be transferred during
the ZigBee period, and the residual data is transferred using both ZigBee and Bluetooth
period.

i f

⌊
RD

E[RZig]×E[TZig]

⌋
≤ 1 then β1 =

RD
E[RZig]

else β1 = E[TZig]+δSCAN +
(RD−E[RZig]E[TZig])

E[RBT ]

+

⌊ (RD−E[RZig]E[TZig])

E[RBT ]

δNIS

⌋
× p

(6.21)

Similarly, β2 denotes the expected delay for the last network cycle when the data transfer
begins with a Bluetooth period. We have to distinguish two cases: the residual data can
be transferred during the Bluetooth period, and the residual data is transferred using both
Bluetooth and ZigBee period.

i f

⌊
RD

E[RBT ]×E[T E f f
BT ]

⌋
≤ 1 then β2 = δSCAN +

RD
E[RBT ]

+

⌊ RD
E[RBT ]

δNIS

⌋
× p

else β2 = E[TBT ]+
(RD−E[RBT ]E[T

E f f
BT ])

E[RZig]

(6.22)

Using both Bluetooth and ZigBee with the SMS-based approach With this policy, the
mobile phone receives a notification from the server to switch on its Bluetooth interface.
Therefore, the maximum time during which the sensor waits before being discovered is δSMS,
which represents the time required for the phone to receive the SMS. This time, which could
be estimated to 10 seconds [254, 255], is generally lower that δSCAN . In order to calculate
the expected delay when using the SMS-based approach, we use the previous equations,
replacing δSCAN by δSMS.

123



Chapter 6 - Energy-efficient gateway selection strategies for a wearable sensor architecture

6.6.2 Delay analysis

Figure 6.6 shows the expected delay according to the amount of data to transfer, and
different transfer policies. The Bluetooth only policy is the one that minimizes the delay since
this technology provides the highest data rate. On the contrary, using only ZigBee access
points to send the data induces the maximum delay. Indeed, the expected delay increases
in a stair-case manner because ZigBee cannot be used continually. In-between, the delay
achieved when using both ZigBee and Bluetooth to transmit the data stays within these two
extremes and varies depending on the ZigBee availability.

When we increase the availability of ZigBee by varying the expected usage time of
ZigBee from 60s in figure 6.6a to 120s in figure 6.6b, we can see that the delay of the
ZigBee only policy decreases since the opportunities to communicate in ZigBee increase.
On the contrary, the delay when using both ZigBee and Bluetooth communications increases
since the sensor will spend more time in ZigBee which has a lower data rate than Bluetooth.
However, this configuration is likely to save more energy both at the mobile phone and at the
sensor. Indeed, the sensor will spend more time in ZigBee and the mobile phone will spend
more time in sleep mode. Furthermore, the gap between the SMS-based and the adaptive
approaches widens when ZigBee periods are longer. This is because the optimal δSCAN

increases to save energy while δSMS remains constant.

Clearly, there is a trade-off between energy-efficiency and latency, since the communica-
tion technology with the highest data rate is also the one with the highest energy consumption
pattern.

6.7 Simulation

6.7.1 Simulation settings

We used the OMNeT++ simulator to evaluate the performances of our approaches (fixed,
adaptive and SMS-based intervals). We implemented the framework developed by Helgason
and Kouyoumdjieva in [256] in order to model nodes equipped with multiple controllable
radios that can be dynamically suspended and woken up. We consider a scenario composed
of:

• A mobile sensor equipped with a Bluetooth radio and a Zigbee radio. It generates data
at a constant rate.

• A mobile phone equipped with a Bluetooth network interface to receive data from the
sensors, and a Wi-Fi connection to transfer the data to a remote server.
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(a) E[TBT ] = 60s, E[TZig] = 60s, E[RBT ] = 1MB/s
and E[RZig] = 0.25MB/s.

(b) E[TBT ] = 60s, E[TZig] = 120s, E[RBT ] = 1MB/s
and E[RZig] = 0.25MB/s.

Fig. 6.6 Expected delay according to the amount of data to transfer.

• A static ZigBee access point (e.g a laptop), also having a Wi-Fi connection to commu-
nicate with a remote server.

• A static remote server that can be reached through Wi-Fi communication by both the
mobile phone and the access point.

The sensor can send its data either to the mobile phone or to the access point. The phone
and the access point can receive data from the sensor and they automatically transmit them
through Wi-Fi towards the server which centralizes all the data. We consider that the user
can be in two states: in state 1, the user is near the ZigBee access point, while in state 2 the
user is not in the proximity of the access point. We used the following user mobility models
to simulate the transition from one state to another.

• Periodic[r]: In this model, the user changes from one state to another periodically
every r seconds.

• Random[q]: In this model, every 100s we decide whether the user changes its location
or not. It moves from state 1 to state 2 with a probability q, and from state 2 to state 1
with probability 1−q.
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We consider a healthcare application where the sensor samples 6 channels of data (eg.
3-axis accelerometer + 3-axis gyroscope) with 16-bit resolution at 50 Hz. Thus, a packet
size is equal to 12 Bytes for payload plus 6 Bytes for header. The simulation parameters are
summarized in Table 6.4.

Table 6.4 Simulation parameters.

simulation time 7200 s
sampling rate 50 Hz

packet size 18 B
α 0.5

eNIS 0.03 J
eZIG 2.88 µJ/B
eBT Sensor: 41.2 µJ/B Phone: 3.6 mJ/B

eSCAN 2.27 J
δNIS / δSCAN fixed: 5s adaptive: 1-300s

6.7.2 Simulation results

Fixed and adaptive approaches

We study the performances of our approaches (fixed and adaptive intervals) under different
user mobility models. We compare our results to a reference architecture where the sensor can
only send its data to the user mobile phone. In Fig. 6.7 (top), we represent the percentage of
time spent by the sensor in Bluetooth and ZigBee, for varying values of the parameter p. The
Fig. 6.7 (down) shows also the percentage of time spent by the phone in sleep mode and in
Bluetooth. Regarding the random mobility, our first observation is that as ZigBee availability
increases, the time spent by the sensor in ZigBee also increases. As a consequence, when
the ZigBee availability increases, the phone spends less time in Bluetooth and more time in
sleep mode. Therefore, the fixed and adaptive approaches are able to take advantage of the
availability of an access point in the user environment in order to decrease the time spent in
Bluetooth, at both the sensor side and the mobile phone side. Now, if we look at the periodic
mobility in Fig. 6.7b, we can see that the sensor and the phone spend nearly 50% of their
time in Bluetooth, which is consistent with the fact that we consider a periodic mobility
where the user changes every p seconds from one state to another. Therefore, the availability
of ZigBee is close to 50% in this case.

In Fig. 6.8 we plot the number of Network Interface Selection performed by the sensor
in function of the user mobility, and the number of Bluetooth scan performed by the phone.
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(a) Random mobility (b) Periodic mobility

Fig. 6.7 The percentage of time spent by the sensor in Bluetooth and ZigBee, and by the
phone in Bluetooth and sleep mode, in function of the user mobility.

(a) Random mobility (b) Periodic mobility

Fig. 6.8 Number of Network Interface Selection at the sensor, and number of Bluetooth scan
performed at the mobile phone, in function of the user mobility.

Our first observation is that the adaptive approach enables to reduce the number of network
interface selection at the sensor, and the number of Bluetooth scan at the phone side. When
we consider the random mobility (Fig. 6.8a) as the availability of ZigBee increases, the
number of tests performed by the sensor to detect a ZigBee access point decreases, since
the sensor spends less time in Bluetooth. On the contrary, the number of Bluetooth scan
increases, because the mobile phone spends more time in sleep mode. When considering
the periodic mobility (Fig. 6.8b), as the time spent by the user in one state increases, both
the number of network interface selection and Bluetooth scan decreases with the adaptive
approach. This is because the adaptive solution adapts the δNIS and δScan intervals to the
network conditions. So, when the user tends to stay longer in one state, the intervals can be
increased since the probability of success after a short period of time is low.

Fig. 6.9 shows the energy consumption of the sensor and the phone. At the sensor, the
energy consumption is composed of the ZigBee and Bluetooth communication costs, as well
as the cost of the network interface selection. At the phone side, the energy consumption
includes the Bluetooth communication costs and the Bluetooth scan cost. We could have
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(a) Random mobility (b) Periodic mobility

Fig. 6.9 Energy consumption in Joules at the sensor and at the phone, in function of the user
mobility.

included the energy consumption due to the WiFi communications, since the phone has to
relay the received data towards the remote server. We can see that our architecture enables to
reduce the energy consumption at both devices compared to a reference architecture where
the sensor can only communicate with the user mobile phone. The gap between the fixed and
adaptive approaches can be explained by the additional energy consumption due to periodic
network interface selection and Bluetooth scan in the fixed solution. Moreover, we can
observe that the shapes of the energy consumption at the sensor and the phone are similar.
This is because, with our settings, the energy consumption due to Bluetooth communications
is predominant compared to the energy consumption of the ZigBee communications. For
the random mobility (Fig. 6.9a), the energy consumption at both the sensor and the mobile
phone decreases when the ZigBee availability increases. This is because the mobile phone
can spend more time in sleep mode, and the sensor uses preferably its low-power ZigBee
radio. With the periodic mobility (Fig. 6.9b), we can observe that the energy consumption of
both devices corresponds to the energy consumption of the device when ZigBee availability
is equal to 50%.

In Fig. 6.10 (top) we plot the average data latency achieved by the different solutions.
The data latency corresponds to the time that elapses between the generation of the data at
the sensor, and the reception of the data by the remote server. Our architecture introduces a
reasonable latency compared to the reference architecture. This additional delay comes from
the network interface selection and the Bluetooth scan. Indeed, when the sensor performs
a network interface selection, it has to switch off its BT radio, switch on its ZigBee radio,
listen for few seconds (3s in the simulation) if there is a ZigBee access point, and if the
sensor does not detect a ZigBee access point, it has to switch off its ZigBee radio and switch
on its BT interface. During this procedure, the sensor generates data but cannot send them,
which introduces a delay. Furthermore, when the sensor is waiting to be discovered by the
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(a) Random mobility (b) Periodic mobility

Fig. 6.10 Average data latency and data delivery ratio, in function of the user mobility.

mobile phone, it cannot send its data, while in the reference architecture, the sensor is always
connected to the mobile phone and continuously sends its data.

Fig. 6.10 (bottom) shows the data delivery ratio at the remote server. We notice that the
three solutions achieve a nice delivery ratio that stays above 97%. We could have expected
packet loss when the ZigBee access point is not anymore available and the mobile phone
Bluetooth interface is still switched off. However, it is possible to dimension the network
in order to prevent packet loss. Indeed, we can introduce a local buffer at the sensor and
an upper bound δScanMax on the maximum time between two Bluetooth scan. In this way, a
sensor will wait at most δScanMax seconds before being discovered and the data accumulated
in the local storage (which depends on the data generation rate) will be sent once a connection
is established.

Adaptive and SMS-based approaches

In what follows we compare the performances of our adaptive and SMS-based approaches,
considering the random user mobility model. In Fig. 6.11 (top), we represent the percentage
of time spent by the sensor in Bluetooth and ZigBee, for both solutions. Fig. 6.11 (down)
shows the percentage of time spent by the phone in sleep mode and in Bluetooth. Right
bars are for the SMS-based approach, while left bars represents the adaptive approach. Our
first comment is that we do not observe much difference in the behavior of the devices
between the two solutions. This can be explained by the fact that in our parameters setting,
the energy consumption is dominated by the Bluetooth communications. Therefore, the
adaptive solution tends to calculate short intervals δSCAN that are close to the δSMS delay. As
a consequence, both solutions are able to detect rapidly the opportunities to communicate to
the ZigBee access point, resulting in the same percentage of time spent in different modes.
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Fig. 6.11 The percentage of time spent by the sensor in Bluetooth and ZigBee, and by the
phone in Bluetooth and sleep mode.

Fig. 6.12 Number of Network Interface Selection at the sensor, and number of Bluetooth
scan performed at the mobile phone.

In Fig. 6.12 we plot the number of Network Interface Selections performed by the sensor,
and the number of Bluetooth scans performed by the phone. As expected, the SMS-based
approach enables to reduce the number of Bluetooth scans performed by the mobile phone.
This is because the phone receives a text message from the server only when necessary. We
can notice that for the SMS-based approach, the number of Bluetooth scan does not increases
with the availability of ZigBee (compared to the adaptive approach). In fact, this number
increases with the number of network cycles, since the mobile phone performs one Bluetooth
scan per network cycle.

Fig. 6.13 shows the energy consumption of the sensor and the phone. We would
have expected an higher reduction of the energy consumption at the phone with the SMS-
based appraoch since the phone performs significantly less Bluetooth scans with this solution.
However, the order of magnitude of the energy consumption due to Bluetooth communication
offsets the energy gain due to the reduction of the number of Bluetooth scans at the phone.

In Fig. 6.14 (top) we can see that the average data latency achieved by the SMS-based
solution is slightly better than the one achieved by the adaptive approach. This is because
the SMS-based approach reduces the time spent by the sensor in discoverable mode while
waiting to be discovered by the mobile phone.
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Fig. 6.13 Energy consumption in Joules at the sensor and at the phone.

Fig. 6.14 Average data latency and data delivery ratio.

Fig. 6.14 (bottom) shows that all solutions achieve a high data delivery ratio at the remote
server. The solutions compromise energy efficiency for latency.

Multi node case

We study the impact of the number of sensors on the performances of the SMS-based
approach. We use the random mobility with parameter q = 0.5. In Fig. 6.15 (left) we plot
the average percentage of time spent by the sensors in ZigBee and Bluetooth mode. Fig. 6.15
(right) corresponds to the percentage of time spent by the phone in sleep mode and Bluetooth.
Since the percentage of time spent by the devices in one mode or another depends on the
ZigBee availability, we observe that this relation does not change with the number of nodes.

Fig. 6.16 illustrates the average number of network interface selections performed by a
sensor, and the number of scans performed by the phone, in function of the number of sensors
in the network. We can see that the average number of access point detection conducted by
a sensor is constant. This is because δNIS is influenced by the availability of ZigBee, but
not by the number of sensors. On the contrary, the number of Bluetooth scans performed
by the mobile phone increases linearly with the number of nodes. This is because in the
SMS-based solution, the phone receives a text message for every sensor, and performs
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Fig. 6.15 The percentage of time spent by the sensors in Bluetooth and ZigBee, and by the
phone in Bluetooth and sleep mode.

Fig. 6.16 Number of Network Interface Selection at the sensor, and number of Bluetooth
scan performed at the mobile phone, in function of the number of sensors.

individual sensor detection. Still, note that the number of tests performed by the phone with
the SMS-based approach when there is five nodes is around 100, which is half of the number
of tests performed by the phone with the adaptive approach when there is only one sensor in
the network (around 200 in Fig. 6.12 and 6.8a bottom).

In Fig. 6.17 we represent the average energy consumption of the phone, and per sensor.
Our first observation is that the individual energy consumption of the sensors is not affected
by the number of sensors in the network. This is because the sensors consume energy when
transmitting their data and when performing network interface selections, but not when the
other nodes transmit. On contrary, the energy consumption of the mobile phone increases
linearly with the number of sensors, since the energy depletion at the mobile phone is mainly
due to Bluetooth communications. The number of data received by the phone is multiplied
by the number of sensors.

Fig. 6.17 Energy consumption in Joules at the sensors and at the phone, in function of the
number of nodes.
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Fig. 6.18 Average data latency and data delivery ratio in function of the number of nodes.

Fig 6.18 (left) shows the average data latency achieved by both solutions with varying
number of nodes. Fig. 6.18 (right) displays the data delivery ratio at the server. As can be
seen, the data delivery ratio stays above 0.99 and the latency remains constant even when
the number of nodes increases. This can be explained by the fact that although the access
channel is divided between more nodes, the data generation rate, the ZigBee and Bluetooth
data rate, and buffer size are sufficient enough to enable the transmission of every data.

6.8 Conclusion

In this chapter, we have proposed a new architecture that improves the energy-efficiency
of personal area networks. Contrary to existing approaches, we optimize the lifetime of both
the sensors and the base station. Indeed, traditional architectures consider that sensors send
their data to a mobile phone in order to support the user mobility. However, mobile phone
are also energy constraint, and continuously receiving data represents an additional burden
task. So, the main idea of our solution is to offer the sensors the possibility to communicate
with access points that are not always present in the user environment, but when they are
available it enables to relieve the phone from receiving all the data. Our simulation results
show that our approach increases the system lifetime, while keeping nice end-to-end data
latency and delivery ratio.
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Chapter 7

Implementation of an energy-efficient wearable
sensor network prototype

In this chapter, we present the design and implementation of a light-weight wearable
sensor network for remote patient supervision applications. The tesbed has been developed in
order to assess the efficiency of our architecture presented in Chapter 6 through a real-world
prototype. The system consists of a sensor node that monitors patient’s limbs movements as
well as a mobile phone and a ZigBee access point which act as gateways, and are responsible
for relaying the data to a remote medical server. The objective of our architecture is to
privilege ZigBee communications as they are more energy-efficient for the sensor, and during
this period of time the mobile phone can switch off its Bluetooth interface, thus saving
energy. The proposed prototype is still under development, but early results demonstrate the
feasibility of our approach.

7.1 Introduction

Remote patient monitoring applications make use of body-worn sensors that gather
clinically relevant information such as heart rate, respiration rate or temperature. In order
to support patient mobility, traditional architectures assume that sensors transmit their data
towards the patient mobile phone which act as a mobile gateway. However, the mobile phone
itself is subject to rapid energy depletion when it has to continuously receive and relay health
data. Therefore, we have proposed in Chapter 6 an architecture that enables to save energy at
both the sensors and the mobile phone, still supporting patient mobility.

The main idea of our solution is that sensors send the sensed data via the user mobile
phone through Bluetooth communications, but they have the possibility to send data to
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ZigBee access points when they are available in the user environment. This approach has
two advantages: at the sensor side it privileges ZigBee communications as they are more
energy-efficient for the sensor, and during this period of time the mobile phone can switch
off its Bluetooth interface, thus saving energy.

In this Chapter, we aim to demonstrate the feasibility of our research work presented in
Chapter 6 through the implementation of a real sensor platform. In section 2, we describe
the general architecture of our remote patient monitoring system. In section 3, we detail the
hardware and software implementation of the sensor node. In sections 4 and 5 we respectively
describe the ZigBee gateway and the mobile application that we developed to collect data
generated by the sensor node. In section 6, we describe services to be hosted on the remote
medical server. In section 7, we conclude this chapter.

7.2 General architecture of our prototype

The different components of our wearable sensing system are shown in Figure 7.1. The
first component is a sensor node deployed on the patient to collect information about his
movement. The sensor is equipped with two radios, and sends its collected data either to
the mobile phone through Bluetooth, or to the ZigBee access point when available using the
IEEE 805.15.4 communication technology. Both mobile phone and access point re-transfer
the data upon reception to the remote medical server through a Wide Area Network (WAN)
interface such as Wi-Fi, ethernet or 3G.

In our prototype, we implemented the periodic approach of our energy-efficient archi-
tecture proposed in Section 6.3.1. In this configuration, the sensor runs a network interface
selection algorithm in order to detect if the ZigBee access point is available, while the mobile
phone runs a sensor node detection algorithm in order to detect if the sensor is willing to
communicate in Bluetooth. In practice, the ZigBee gateway periodically broadcasts beacons
so that the sensor can discover the access point by listening the medium. At the beginning,
the sensor is in Bluetooth mode and regularly checks for a ZigBee access point. In order
to do that, the sensor listen during few seconds for beacons from the ZigBee gateway. If it
does not receive beacon, it switches back to Bluetooth. Otherwise, it sends its data to the
ZigBee gateway. Then, if the sensor does not receive beacons for a while, it goes back to
Bluetooth. Regarding the mobile phone, it periodically turns on its Bluetooth interface. If the
sensor is waiting to communicate in Bluetooth, the mobile phone and the sensor will initiate
a Bluetooth session. Afterwards, if the mobile detects that it does not receive any more data,
it will switch off its Bluetooth interface.
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Fig. 7.1 General architecture.

Figure 7.2 depicts our wearable sensor architecture prototype and its components, namely,
a motion sensor node, a ZigBee gateway, a mobile phone and a remote server.

In the next sections, we focus on the description of the hardware and software design of
the architecture’s components.

7.3 Sensor node

The motion sensor node is worn by the patient, and collect data as the patient moves
his limbs. We use the lightweight (15g), and compact form factor (50mmx25mmx12.5mm)
Shimmer platform with elastic adjustable bracelets for easy sensor node fixation. Shimmer
(Sensing Health with Intelligence, Modularity, Mobility, and Experimentation Reusability)
is an unobtrusive wireless sensor platform which provides kinematic sensing capabilities.
In our prototype, the motion sensor integrates a three-axis accelerometer to measure the
acceleration of the sensor node, and a Gyroscope to measure the angular velocity of the
sensor along three axis.

The core component of the shimmer platform is the Texas Instrument MSp 430 MCU
running at 8 MHz. This low power microcontroller has 10 KByte RAM, 48 KByte flash
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Fig. 7.2 Wearable sensor network components.

and an integrated 8-channels 12-bits Analog to Digital Converter (ADC). We use six ADC
channels to capture the accelerometer and the gyroscope sensor data (1 channel per axis). To
be able to communicate wirelessly, sensor node integrates two radios: the IEEE 802.15.4
compliant Chipcon CC2420 radio-transceiver and the Roving Networks RN-46 Class 2
Bluetooth module. The two radio cannot be used at the same time, which require careful
orchestrated mutually-exclusive startup and shutdown routines.

We developed a TinyOS applications that periodically samples the accelerometer and
gyroscope sensors. It also implements a network interface selection algorithm in order to
switch between the two communication technologies depending on ZigBee availability. As
illustrated in Figure 7.3, the two radio are supervised by a communication module, and the
network interface manager controls these two modules. The network interface manager
ensures that only one radio is turned on at a time. When the CC2420 communication
module is on, it triggers a receive event when a beacon packet is received. Upon receiving a
beacon packet, the network interface manager will send sampled data through the CC2420
communication module. If the network interface manager detects that it has not received
beacon messages for a while, it will turn off the CC2420 interface and turn on the RN-46
radio. Once the Bluetooth interface is turned on, the network interface manager tries to
establish a connection.

7.4 ZigBee access point

The access point is responsible for receiving the data from the sensor node and transfer
them towards the server. The ZigBee access point is emulated with a TelosB sensor node
which has the same micro-controller and radio transceiver as Shimmer nodes. It is connected,
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Fig. 7.3 Motion sensor software architecture.

through a USB port, to a laptop in order to relay received data. Indeed, the TelosB periodically
broadcasts beacons to advertise its presence in the user’s environment. Once it receives data
from the sensor, the ZigBee access point transfers the data to the server.

We have developed a TinyOS application that acts as a relay between the motion sensor
and the laptop as shown in Figure 7.4. The CC2420 radio of the ZigBee access point is
supervised by the communication module which triggers a receive event when a packet is
received. Upon receiving this event, the gateway manager extracts the data from the packet
and forwards it to the serial communication module. The serial communication module
sends this information to the PC through the serial USB connection. At the PC side, a serial
listener module continuously listens for incoming packets. Once a packet is received, it sends
this packets towards the server through HTTP requests. The communication module also
periodically triggers a send event to send the beacons.

7.5 Mobile phone

The mobile phone is the default gateway of the sensor: it is responsible for receiving the
data of the sensor when there is no available access point in the user environment. The sensor
and the mobile phone exchange data using the Bluetooth technology.
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Fig. 7.4 ZigBee access point software architecture.

We developed an android application that regularly turns on the mobile phone Bluetooth
interface and tries to connect to the sensor. If the application start receiving data, it directly
forwards the packets to the server through WiFi.

7.6 Server

The server is responsible for centralizing the data for further processing and storage.
Actually, the server only receives the data and update a web interface that displays the
received data in real time. Further functionalities may be developed such as data filtering,
patient profile management and health data storage. In parallel, a doctor application may be
developed to access the stored data and check the patient physical performance. A doctor
will be able to search for a patient profile, visualize the captured data, add comments or write
a report.

The server is developed in python and receives data through HTTP requests from both the
ZigBee gateway and the mobile phone. The data are then displayed on a web page using the
Flask micro web application framework, as illustrated in Figure 7.5. In order to distinguish
the communication interfaces, the data received through the Bluetooth interface are displayed
with circle points. The screen-shot corresponds to a piece of program in which the sensor
switches between its two radios every 30 seconds. We can see that it begins with 30 seconds
Bluetooth communications, followed by 30 seconds ZigBee communications, and so on. It is
interesting to note that our experiments have shown that the time required to power off an
interface and then power on the other interface is around 20/30 seconds. This is an additional
delay that have to be taken into account, but we expect that more recent platform integrating
dual radio will allow both radios to be powered on simultaneously.
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Fig. 7.5 Real-time data updates of received health data.

7.7 Conclusion

In this chapter, we have presented the design and implementation of a wearable sensor
platform prototype based on our architecture proposed in Chapter 6. We described the
different components of our system and how they communicate with each other. Our
prototype is a proof-of-concept that our energy-efficient gateway selection strategy for patient
monitoring is practically feasible. As future work, we plan to implement the adaptive version
of our architecture and perform a campaign measurements.
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Conclusion

8.1 Summary

Advancements in wireless communications and Micro-Electro-Mechanical systems have
enabled the development of wireless sensor networks (WSN), which in turn have fostered the
emergence of a plethora of applications in various fields such as agriculture, healthacre super-
vision, and transportation systems. However, due to the energy limitation of battery-powered
sensors, these applications still face a major energy issue that prevent their widespread
adoption. In this thesis, we contributed to overcome this challenge through several contribu-
tions. We developed new architectures, models and distributed algorithms to improve the
energy-efficiency of WSN, and we evaluated their performances through extensive numerical
experiments and simulations.

A first part of this thesis is dedicated to general wireless sensor networks. We began with
a a proposal of a comprehensive review of existing energy-efficient mechanisms designed
for wireless sensor networks. This top-down study surveys the different WSN application
families and their specific requirements, and analyses how these requirements interact with
the implementation of energy-efficient solutions. Afterwards, we proposed an energy-efficient
data collection scheme with a mobile base station. We optimized the sojourn times of the
mobile sink, as well as the buffer usage and data routing at the sensor nodes. We also proposed
a solution for multi-hop wireless charging that optimizes the deployment of wireless chargers
in the network, so that they can satisfy the energy-demand of every sensor.

The second part of this thesis contains an interdisciplinary study that aims to tackle
the energy consumption of wearable sensor networks for healthcare-oriented applications.
This work involved three persons of the computer science community, and one from the
bio-mechanical community. We first introduced a new classification of energy-efficient
architectures using wearable sensors for remote patient supervision. Then, we developed
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a new architecture that allow to save energy at both the sensors and the base stations, by
privileging a less consuming communication technology when available. Therefore, this is
a context-aware solution that takes into account the effective opportunities that arise in the
user environment.

8.2 Future work

Regarding the first part of this thesis, as a future work, we envisage to consider the
coordination of multiple mobile sinks for data collection in WSN. This strategy will certainly
decrease both the energy consumption at sensors and the data latency by reducing the average
distance between nodes and the closest base station. It is also possible to design other
decision rules at sensors to decide whether or not to send the data. For example, we could
integrate data priorities in the function. Finally, in the distributed scenario, the base station
moves randomly, whereas it would be interesting to design policies for the sink mobility.
Concerning our multi-hop wireless charging scheme, future directions include the case when
a transmitter can transfer energy to multiple receivers at a time. The wireless energy transfer
to multiple receivers has already been considered in WSN [257, 258], but never in a multihop
scenario. This will lead to more complex wireless energy transfer schemes but will certainly
require less energy. Another issue that has not been addressed in this study is the recharging
schedule. Indeed, once the chargers are deployed, it could be interesting to find out a schedule
that minimizes the charging latency. Eventually, one could imagine to consider the joint
optimization of mobile base stations that collect the data, and mobile chargers that recharge
the network.

For the second part of this thesis, as a future work, we intend to finish the development
of our wearable sensor architecture prototype in order to demonstrate the efficiency of our
approach. Ideally, we will conduct in-field experiments and a measurements campaign in
order to characterize the performance of our architecture.
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