Modeling and verification of probabilistic data-aware business processes

par Haizhou Li

Thèse de doctorat en Informatique

Sous la direction de Farouk Toumani et de François Pinet.

Soutenue le 26-03-2015

à Clermont-Ferrand 2 , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (laboratoire) et de (LIMOS) Laboratoire d'Informatique- de Modélisation et d'optimisation des Systèmes (laboratoire) .

Le président du jury était Salima Benbernou.

Le jury était composé de Farouk Toumani, François Pinet, Sandro Bimonte, Vasile-Marian Scuturici.

Les rapporteurs étaient Salima Benbernou, Karine Bennis-Zeitouni.

  • Titre traduit

    Modélisation et vérification des processus métier orientés données probabilistes


  • Résumé

    Un large éventail de nouvelles applications met l’accent sur la nécessité de disposer de modèles de processus métier capables de manipuler des données imprécises ou incertaines. Du fait de la présence de données probabilistes, les comportements externes de tels processus métier sont non markoviens. Peu de travaux dans la littérature se sont intéressés à la vérification de tels systèmes. Ce travail de thèse étudie les questions de modélisation et d’analyse de ce type de processus métier. Il utilise comme modèle formel pour décrire les comportements des processus métier un système de transitions étiquetées dans lequel les transitions sont gardées par des conditions définies sur une base de données probabiliste. Il propose ensuite une approche de décomposition de ces processus qui permet de tester la relation de simulation entre processus dans ce contexte. Une analyse de complexité révèle que le problème de test de simulation est dans 2-EXPTIME, et qu’il est EXPTIME-difficile en termes de complexité d’expression, alors que du point de vue de la complexité en termes des données, il n’engendre pas de surcoût supplémentaire par rapport au coût de l’évaluation de requêtes booléennes sur des bases de données probabilistes. L’approche proposée est ensuite étendue pour permettre la vérification de propriétés exprimées dans les logiques P-LTL et P-CTL. Finalement, un prototype, nommé ‘PRODUS’, a été implémenté et utilisé dans le cadre d’une application liée aux systèmes d’information géographiques pour montrer la faisabilité de l’approche proposée.


  • Résumé

    There is a wide range of new applications that stress the need for business process models that are able to handle imprecise data. This thesis studies the underlying modelling and analysis issues. It uses as formal model to describe process behaviours a labelled transitions system in which transitions are guarded by conditions defined over a probabilistic database. To tackle verification problems, we decompose this model to a set of traditional automata associated with probabilities named as world-partition automata. Next, this thesis presents an approach for testing probabilistic simulation preorder in this context. A complexity analysis reveals that the problem is in 2-exptime, and is exptime-hard, w.r.t. expression complexity while it matches probabilistic query evaluation w.r.t. data-complexity. Then P-LTL and P-CTL model checking methods are studied to verify this model. In this context, the complexity of P-LTL and P-CTL model checking is in exptime. Finally a prototype called ”PRODUS” which is a modeling and verification tool is introduced and we model a realistic scenario in the domain of GIS (graphical information system) by using our approach.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.